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Abstract
Zircon geochemistry provides a sensitive monitor of its parental magma composition. However, due to the complexity of 
the uptake of trace elements during zircon growth, identifying source magmas remains challenging, particularly for detrital 
grains whose petrological context is lost. We use a machine learning-based approach to explore the classifiers for zircon 
provenance, based on 3794 published, high-quality zircon trace element analyses compiled from I-, S-, and A-type granites. 
Three supervised machine learning algorithms, namely, Support Vector Machine (SVM), Random Forest (RF), and Mul-
tilayer Perceptron (MLP) were used and trained with 11 features, including 7 trace elements (Ce, Eu, Ho, Nb, Ta, Th, and 
U) and 4 derived trace element ratios (Th/U, U/Yb, Ce/Ce*, and Eu/Eu*). Our results show that all three trained machine 
learning methods perform very well with accuracy varying from 0.86 to 0.89, and that input–output relationships captured 
by different ML methods are nearly consistent and can be explained by the known petrological processes. The application 
of our trained machine learning classifiers to detrital zircon studies will enhance the interpretability of zircon assemblages 
of different origins. It also helps develop interpretations, approaches, and tools that will benefit, for example, the study of 
continental crust evolution and mineral exploration.

Keywords  Detrital zircon · I-type granite · S-type granite · A-type granite · Tectonic setting · Mineral exploration · 
Machine learning

Introduction

Zircons as an indicator for tectonic provenance 
and mineralization

Due to the physio-chemical resilience, detrital zircons may 
undergo multiple episodes of sedimentation, magmatism, 
and/or metamorphism, yet retain information on the age and 
chemistry of original parental magmas (Grimes et al. 2007; 
Cawood et al. 2013; Bindeman et al. 2018). This resilience 
has provided significant insight into the long-term evolution 
of the continental crust (Cawood et al. 2012, 2013), as well 
as enabled the development of provenance tools for min-
eral exploration (Belousova et al. 2002; Nardi et al. 2013). 
However, in many circumstances, to obtain the above infor-
mation, we first need to identify the source rocks of detrital 
zircons.

The most common source rocks for detrital zircon of 
magmatic origin are I-, S-, and A-type granitoids. I- and 
S-type granitoids, which were first proposed by Chappel 
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and White (1974), mainly occur in convergent plate margins 
(generally arc settings for I-type dominated granites and con-
tinent–continent collisional settings for S-type dominated 
granites; Fig. 1) and form by partial melting of igneous rocks 
and sedimentary rocks, respectively (Blevin and Chappell 
1995). In contrast, A-type granitoids, which were first pro-
posed by Loiselle and Wones (1979), have somewhat alkalic 
compositions and are linked to tectonic settings at the stage 
of post-orogenic collapse when convergent stresses become 
reversed or in intraplate and anorogenic regimes (Fig. 1; Eby 
1992; Foden et al. 2015). Thus, correctly identifying the 
source rocks of detrital zircons is vital, which can provide a 
basis for interpreting the geodynamic settings in which the 
zircons formed. This effort is further enhanced by the dif-
ferent affinities of these three types of granitoids (and thus 
zircon) with metal mineralization. I-type granitoids (espe-
cially those with high whole-rock Sr/Y) are generally related 
to porphyry Cu-Mo-Au deposits (Wang et al. 2018), whereas 
S-type granitoids show a particular affinity for W-Sn miner-
alization (Chappel and White 2001) and A-type granitoids 
can generate Sn, Li, Nb, W and rare earth element (REE) 
deposits (Fig. 1; Vasyukova and Williams-Jones 2020; Zhao 
et al. 2021). Thus, the identification of source rocks for detri-
tal zircon can be used as a regional discriminatory tool for 
fertility evaluation, especially at an early stage of explora-
tion (Ballard et al. 2002; Lee et al. 2021); for example, the 
predominance of I-type detrital zircons indicates very low 
fertility in generating W-Sn deposits but high fertility for 
generating porphyry Cu deposits (e.g., Lu et al. 2016).

Complexity of zircon compositions

The geochemical features of I-, S-, and A-type rocks are 
closely related to melt compositions, temperature, and oxi-
dation state (Whalen et al. 1987; Blevin and Chappell 1992; 
Chappell and White 1992; Eby 1992; Breiter et al. 2014; 
Foden et al. 2015). Elevated Nb and Ta are a common fea-
ture of within-plate, alkaline A-type granites (Collins et al. 
1982); A-type magmas are also characterized by low H2O, 

oxygen fugacity, and high temperature (Collins et al. 1982; 
Whalen et al. 1987; Eby 1990; Li et al. 2012). In contrast, 
both I- and S-type granites are generally characterized by 
much lower high-field-strength elements (HFSEs, e.g., Nb 
and Ta) and form from melts with higher H2O and lower 
temperature (Collins et al. 1982; Eby 1990; Foden et al. 
2015). Moreover, I-type magmas are also characterized by 
much higher oxidation states than A- and S-type magmas 
(Blevin and Chappell 1992; Foden et al. 2015). These dis-
tinct features of I-, S-, and A-type granites should, thus, be 
reflected in the compositions of zircon that grows from them. 
Indeed, according to our compiled database, zircons from 
A-type rocks tend to display much higher Nb and Ta than the 
other two groups (Fig. 2a, b); zircons from I-type rocks, tend 
to display much higher Ce/Ce* and Eu/Eu* (and thus higher 
oxidation state) than zircons from A-type granites (Fig. 2c, 
d). Zircon from S-type rocks also displays much lower Eu/
Eu* than the I-type population, although the range of Ce/
Ce* for the two groups shows considerable overlap (Fig. 2d). 
This confirms the existence of differences in zircon chemis-
try for the three groups of granites. Thus, it is reasonable to 
assume that bivariate plots, comprising the above elements 
and/or ratios, would be useful in the identification of the 
provenance of zircon. However, as shown in Fig. 2, all the 
bivariate diagrams display noticeable overlaps among the 
three groups. This limits the possible use of such diagrams 
in identifying the source rocks for detrital zircons.

Zircon trace element overlaps on the bivariate plots result 
from the complexity in the uptake of trace elements dur-
ing zircon growth (Storm et al. 2014; Grimes et al. 2015; 
Rubatto 2017). Trace elemental chemistry of zircons is not 
solely dependent on trace element contents of magma itself 
(Chapman et al. 2016; Zhong et al. 2021b), but also par-
tition coefficients dependent on temperature (Rubatto and 
Hermann 2007), and kinetics of zircon crystallization from 
magma (Melnik and Bindeman 2018; Bindeman and Mel-
nik 2022). Pressure, oxygen fugacity, and competition from 
other co-crystallizing accessory and major minerals also 
impact zircon compositions (Grimes et al. 2007; Claiborne 

Fig. 1   Schematic diagram 
showing the relationships of 
three common granite types 
with tectonic environments and 
mineralization
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et al. 2018; Melnik and Bindeman 2018). However, differen-
tiating the relative significance (and thus further deconvolv-
ing the effects) of these variables is extremely challenging, 
especially for detrital grains that lack a direct link with the 
source rock from which they were derived (Grimes et al. 
2007). Therefore, even if parental melt composition acts 
as a first-order control on the trace element composition of 
zircons that crystallized from it, the relationship between 
zircon compositions and their parental magma may not be as 
intuitive as expected. Deconvoluting the connection between 
zircon and its parental source magma is, thus, often diffi-
cult via conventional binary diagrams for elemental con-
centrations and ratios. This is the reason why, in this study, 
machine learning (ML) models are applied, as they enable 
more features that can impact zircon chemistry to be consid-
ered when developing robust provenance classifiers.

Advantages of machine learning

ML is a technology that is designed to automatically learn 
from experience and recognize complex patterns and relation-
ships in data (Jordan and Mitchell 2015; Bergen et al. 2019). It 
has been one of today’s most rapidly growing technical fields, 
lying at the intersection of computer science and statistics, and 
the core of artificial intelligence and data science (Jordan and 
Mitchell 2015). The growth of datasets of ever-increasing size 
has made ML an important tool in the integration of data and 
its application across the geosciences (e.g., Zuo et al. 2016; 
Petrelli and Perugini 2016; Petrelli et al. 2017; 2020).

ML methods are robust, fast, and allow exploration of a large 
function space (Bergen et al. 2019). ML enables the utilization 
of a large number of features as well as the ability to capture 
complex nonlinear relationships among large datasets (Jordan 
and Mitchell 2015; Bergen et al. 2019; Reichstein et al. 2019). 

This is different from traditional geochemical classification 
strategies that are generally based on single elements (e.g., 
Burnham and Berry 2012; Trail et al. 2017) or some binary 
and/or triangular diagrams where fewer elements are utilized 
(e.g., Wang et al. 2012; Grimes et al. 2015). Thus, ML prom-
ises to achieve a much higher level of classification precision 
than the previous methods, especially for complex geological 
problems characterized by a large enough number of input vari-
ables (Petrelli and Perugini 2016). Moreover, ML learns the 
classification features by itself and does not need to be explic-
itly programmed; therefore, the internal, complex relationships 
within the data can be discovered algorithmically without the 
requirement for preexisting knowledge (Zhong et al. 2023).

Therefore, in this study, we apply ML technology to relate 
the trace element geochemistry of zircon with the type of 
source magma. To build the ML classifiers applicable to 
the identification of zircon provenance, we first compiled a 
zircon trace element database comprising ~ 4000 published 
analyses for which source rocks are well known. Then we 
conducted ML modeling using this zircon dataset and three 
supervised ML algorithms, namely, Support Vector Machine 
(SVM), Random Forest (RF), and Multilayer Perceptron 
(MLP). We finally demonstrate the good performance of 
these novel ML methods in distinguishing zircon provenance 
by evaluating the outputs according to different metrics and 
by applying them to the recently published zircon database 
with known source rocks.

Data compilation and pre‑processing

Data compilation

Zircon can be of magmatic, metamorphic or more contro-
versially hydrothermal origin (e.g., Hoskin and Schaltegger 

Fig. 2   Kernel density and 
binary diagrams for three types 
of zircons. a Kernel density 
diagram for Nb. b Nb versus 
Ta diagram. c Kernel density 
diagram for Eu/Eu*. d Eu/Eu* 
versus Ce/Ce* diagram
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2003; Rubatto 2017). Only magmatic zircon can serve as an 
indicator for the magmas from which it crystallized, whereas 
hydrothermal and metamorphic zircon records fluid-infiltra-
tion and water–rock interaction, and metamorphic events, 
respectively (Rubatto et al. 2001; Schaltegger 2007). We 
compiled more than 20,000 magmatic zircon trace element 
analyses from published studies, for which the source rocks 
are known. For each zircon analysis, 20 features, including 
12 REEs (Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and 
Lu), Nb, Ta, Th, U and 4 derived trace element ratios (Th/U, 
U/Yb, Ce/Ce* and Eu/Eu*), were initially compiled. Ce/Ce* 
and Eu/Eu* were calculated using the exponential power 
function, as described by Zhong et al. (2019). These ratios 
reflect the degree of Ce and Eu anomalies, which have been 
suggested to be related to magmatic oxidation state (Ballard 
et al. 2002; Smythe and Brenan 2016; Zhong et al. 2019).

Due to radioactive decay, the measured Th and U con-
centrations would be lower than those at the time of crystal-
lization. This is especially true for the deep-time Hadean 
and Eoarchean zircons. Thus, both Th and U (and thus the 
derived Th/U and U/Yb) were corrected back to the time of 
crystallization. Furthermore, following Zhong et al. (2023), 
we did not consider two REEs—La and Pr—in our algo-
rithms. This is because La and Pr are present at very low 
levels in natural zircons and are generally below the limit 
of detection. We did not compile features like Al, P, Ti, Sc, 
Hf, and Y, as well as isotopes (O, Hf, Zr, Li), which may 
also be useful in the identification of the origin of zircon 
(e.g., Bindeman 2008; Burnham and Berry 2017; Melnik 
and Bindeman 2018; Ackerson et al. 2021), since these val-
ues are often not reported.

The compiled 20 elements and/or ratios have many 
advantages in their application to ML modeling. First, they 
are routinely analyzed in many laboratories and are more 
commonly reported in literature studies. Second, they have 

been shown to be useful in discriminating zircon provenance 
(Belousova et al. 2002; Grimes et al. 2007, 2015), despite 
some claims to the contrary (Hoskin and Ireland 2000; 
Coogan and Hinton 2006). Moreover, our statistical analy-
sis work has indicated that although none of these selected 
elements and/or ratios can independently identify all three 
types of zircons, most can distinguish at least one zircon 
type from the rest (Fig. 3). For example, most zircons from 
I-type rocks can be distinguished from the other two types 
by higher Eu/Eu* and Ce/Ce*, most zircons from S-type 
rocks can be distinguished by lower Ce and Th/U, and most 
zircons from A-type rocks can be distinguished by much 
higher Nb and Ta (Fig. 3).

Data filtering

The use of the above composite dataset that comprises dif-
ferent sources of data requires quality control. Many studies 
showed that zircon compositions are highly susceptible to 
contamination by accessory mineral inclusions (Zhong et al. 
2018, 2021a). To help to exclude such “artifacts”, we fol-
lowed previously published studies (e.g., Tang et al. 2022) 
and used the selection criterion of La < 1 ppm. The remain-
ing > 14,800 analyses might not all be autocrystic and some 
can be of hydrothermal, metamorphic or inherited origin. 
To exclude metamorphism-influenced zircons, zircon grains 
(~ 1100) from magmatic rocks with noticeable metamorphic 
overprint were filtered. To exclude hydrothermal zircons or 
analyses possibly experiencing chemical alteration, ~ 5600 
analyses were discarded using the criterion of LREE-I > 30 
(LREE-I = (Dy/Nd) + (Dy/Sm)), which was proposed by 
Bell et al. (2016). We also discarded ~ 1500 zircon analyses 
with discordant ages (> 10%) which are probably related to 
alteration and/or metamorphism and ~ 1000 analyses with 
noticeably older individual ages than the host rocks (and 

Fig. 3   Box and whisker plots of 
20 zircon trace element concen-
trations and/or ratios for I-, S-, 
and A-type rocks. The height 
of the colored bars represents 
the interquartile range. The 
horizontal black lines within 
the colored bars are the median 
and the open circles with black 
edges represent the mean value. 
“Whiskers” of each box illus-
trate the maximum values lying 
within 1.5 times the interquar-
tile range beyond the edges of 
the bars. The colored crosses 
represent the outliers deviating 
by more than ± 1.5 σ. The data 
points outside the box are all 
higher than the average because 
of the use of log transformation
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thus probably be of inherited origin; Siégel et al. 2018). 
Moreover, not all of the above elements are reported in the 
publications, causing gaps in the compiled database. In this 
study, we excluded the analyses that contain missing values 
for Nb, Ta, Th, and U, but analyses with partial missing 
values of REE data were not excluded. In this latter case, 
the missing values can be easily extrapolated from other 
REE concentrations using the method of Zhong et al. (2019).

After the above filtering, 1442 zircon grains from I-type 
granites, 1051 from S-type granites, and 1301 from A-type 
granites are retained, with the sample locations shown in 
Fig. S1, Online Resource 1. It can been seen that 82% of 
the retained samples are sourced from Asia, 9% from North 
America, 4% from Australia, 3% from Africa, 1% from 
Europe, and 1% from South America. This database may 
not be optimal and should be updated in the future due to 
geographical bias, but it contains all the data available to 
authors at the time of manuscript writing. The full features 
for this database are presented in Online Resource 2.

Feature selection

For each zircon analysis, 20 features were compiled, but we 
did not use all these features during the ML training. This is 
because many studies show that the incorporation of more 
features during the ML modeling does not necessarily guar-
antee better performance (Yang et al. 2022). Rather, the pres-
ence of more features and more noise sometimes increases 
the likelihood of incorrect decisions (Salama and El-Gohary 
2016; Wang et al. 2022). One common reason is multicollin-
earity, which indicates that several features are significantly 
correlated not only with the dependent feature but also with 
each other (Dormann et al. 2013; Garg and Tai 2013). Mul-
ticollinearity can not only prompt skewed or deluded results 
but also result in the inaccurate interpretation of the effects of 
explanatory features because the change of one feature would 
inevitably lead to the change of another feature (Shrestha 
2020). In other words, the findings from a model with mul-
ticollinearity may not be trustworthy. Thus, to improve the 
model performance and make the model more explainable, 
it is important and valuable to focus on the feature selection.

In this study, we use the correlation matrix (Tay 2018) 
and variance inflation factor (VIF; Dormann et al. 2013) to 
identify multicollinearity among the 20 features mentioned 
above. The correlation matrix shows the correlation coef-
ficient for all pairs of input features. The typical correlation 
value that has been suggested as the threshold ranges from 
0.6 to 0.8 (Tay 2018). If the correlation coefficients among 
the independent features are higher than the suggested 
threshold, then it can be deduced that there is a multicollin-
earity problem among the features. VIF is the other widely 
used selection criterion (Dormann et al. 2013; Rawal and 
Ahmad 2021). It is used to measure how much the variance 

of the estimated regression coefficient is inflated if the inde-
pendent features are correlated (Shrestha 2020). If VIF < 5, 
there is no multicollinearity issue in the data. If VIF ≥ 5 to 
10, there is multicollinearity among the features, whereas 
VIF > 10 indicates the regression coefficients are feebly 
estimated with the presence of multicollinearity (Dormann 
et al. 2013; Rawal and Ahmad 2021). Figure 4 displays the 
heatmap of the correlation matrix and the VIF for the 20 
features. Both of them confirm that only REEs (except Ce 
and Eu) are highly correlated and have a significant multi-
collinearity problem. The multicollinearity of zircon REEs 
illustrated by these diagrams is consistent with previous 
studies, which show that single REE concentrations can be 
well predicted by others (e.g., Zhong et al. 2019). According 
to the correlation matrix (Fig. 4a) and VIF values (Fig. 4b), 
Ho is mostly correlated with all other REEs (except Ce and 
Eu), indicating that Ho could likely represent the majority 
of features illustrated by these REEs. Therefore, we finally 
selected 11 features for the ML modeling: Ce, Eu, Ho, Nb, 
Ta, Th, U, Th/U, U/Yb, Ce/Ce*, and Eu/Eu*. Recalculation 
of VIF confirms that there is no multicollinearity relation-
ship among these 11 features (Fig. S2, Online Resource 1).

Treatment of class imbalance

Class imbalance is a major problem in ML where the 
instances of one of the two classes are in abundance (say 
majority class) while the instances belonging to the other 
class are low (say minority class) (Chawla 2009; Kotsiantis 
et al. 2006). Previous studies have demonstrated training 
on an imbalanced dataset is risky and detrimental to clas-
sification performance because of neglecting the minority 
class (e.g., del Río et al. 2014). In this study, the proportion 
of I-, S-, and A-type zircons is 39.3% 27.1%, and 33.6%, 
respectively. Although this class imbalance is not extreme 
especially compared to that possible in other ML problems 
(e.g., anomaly detection, object recognition; Chandola et al. 
2009; Elyan et al. 2020), a balanced class distribution is 
optional (Nathwani et al. 2022).

A common technique to solve this problem is oversam-
pling the minority class or undersampling the majority 
class to produce a class-balanced database (e.g., Kubat and 
Kubat 2017; Alpaydin 2020). In this study, undersampling 
was used because our preliminary investigation showed that 
it worked better than oversampling according to the per-
formance metrics including accuracy, precision, and recall. 
Specifically, we followed our recent work (Zhong et al. 
2023) to use “TomekLinks” (an undersampling approach 
that aims to remove samples, which are nearest neighbors) 
to get a balanced dataset (Tomek 1976). After the treatment 
of class imbalance, we found the accuracy of the trained 
models could be improved by 2–5%。
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Standardization and data splitting

Standardization of datasets is a common requirement for 
many ML estimators (Pedregosa et al. 2011; Petrelli et al. 
2020). This helps to avoid the dominance of features in 
greater numeric ranges and reduces the calculation expense 
(Hsu et al. 2003). Following the method of previous studies 
(e.g., Wang et al. 2021), we first transformed all the zircon 
trace element data by applying a natural logarithmic scale to 
reduce the effect of outliers. Then a “StandardScaler” (cen-
tering of data by removing the mean value of each feature, 
and then scaling it by dividing non-constant features by their 
standard deviation) was conducted to get zero mean and unit 
variance distributions (e.g., Petrelli et al. 2020).

With the leave-out method (e.g., Petrelli and Perugini 
2016), the whole dataset was randomly divided into a train-
ing set and a test set at a ratio of 8:2 while keeping the pro-
portions of each class (Fig. 5). Then a tenfold cross-valida-
tion technique was performed on the training set to measure 
the performance of three ML methods. This involves split-
ting the training set into ten subsets, with nine subsets (real 
“training set”) used to train the algorithm, and the remaining 
one subset (the validation set) used to validate the algorithm. 
This was repeated ten times until every subset had appeared 

once as the validating set. The algorithm performance was 
finally indicated by an average of the metric scores. The 
benefit of this approach, as opposed to a single train/test set, 
is that it reduces the possibility of high bias that may arise 
from a single train/test set and helps to ensure algorithms 
generalize better on unseen data (Nathwani et al. 2022). It 
is noted that the resulting average accuracy based solely on 
the training set is likely, to some degree, an underestimate 
of the true accuracy of these classifiers when the algorithm 
is trained on all data and tested on unseen data. However, 
in most cases, this estimate is reliable, particularly if the 
amount of labeled data is sufficiently large and if the unseen 
data follow the same distribution as the labeled examples 
(Urueta-Hinojosa et al. 2020).

Machine learning methods

Machine learning model selection

Many ML algorithms have been used to solve classification 
problems in geosciences (Bergen et al. 2019). Among these 
methods, Support Vector Machine (SVM) and Random For-
est (RF) are two of the most widely used algorithms (Petrelli 

Fig. 4   Parameters used to identify the multicollinearity of the 20 
zircon features. a Heatmap of the correlation matrix. The heatmap 
shows the darker the color, the stronger the correlation, with the red 
and blue colors showing positive and negative correlations, respec-
tively. b Variance inflation factor (VIF) for the 20 zircon features. The 
color bar at the bottom shows the correspondence between VIF and 

multicollinearity, with large VIF values showing more serious mul-
ticollinearity between features. Both the correlation matrix and the 
VIF values confirm that there is strong multicollinearity among REEs 
(except Eu and Ce); thus, some of them should be discarded before 
ML training (see Section "Feature selection" for more details)



Contributions to Mineralogy and Petrology (2023) 178:35	

1 3

Page 7 of 17  35

and Perugini 2016; Petrelli et al. 2020; Wang et al. 2021; 
Zou et al. 2022). In addition, our recent work shows that 
Multilayer Perceptron (MLP) also performs well in identify-
ing the source rocks of detrital zircons (Zhong et al. 2023). 
Thus, in this study, these three algorithms were selected to 
explore the classifiers for zircon provenance. The basic fea-
tures of SVM, RF, and MLP are summarized here.

SVM is a supervised classifier based on statistical learn-
ing theory and the principle of structural risk minimization 
(Cortes and Vapnik 1995). The basic idea of SVM is to cre-
ate the optimal fitting hyperplane in the sample space or 
feature space that best separates classes (Vapnik 1999). To 
solve linearly inseparable problems, the input data in the 
low-dimensional space are mapped into the high-dimen-
sional space using the kernel function, thereby transforming 
them into linearly separable problems in the high-dimen-
sional space (Fig. 6a). More detailed mathematical princi-
ples for SVM can be found in Burges (1998) and Chang and 
Lin (2011).

RF is a powerful ensemble learning method proposed 
by Breiman (2001). The idea of ensemble learning is to 
combine several weak classifiers into a strong classifier. RF 
algorithm is an averaging algorithm based on randomized 
decision trees. It produces multiple decision trees, using a 
randomly selected subset of training samples and variables 
(Fig. 6b). The bagging algorithm generates training data for 
each tree by sampling with the replacement of several sam-
ples equal to the sample number in the source dataset (Brei-
man 2001). As an ensemble method, each decision tree votes 
for a category prediction, and the top-voted one is then used 
to make the final prediction. A more detailed introduction 
can be found in Breiman (1996).

MLP is one of the most popular feed-forward neural net-
work architectures in use today. The architecture of MLP 
consists of three or more layers of nodes with unidirectional 
connections (an input layer, a single or more hidden layer(s), 
and an output layer, see Fig. 6c) to capture more complex 
relationships in the sample dataset. The nodes of the input 
layer are linked to the hidden layers via connections, with 
the weights for the connections depending on their impor-
tance that is learned during the training. The value at the 
output nodes is the result of the weighted sum of the hid-
den nodes. The performance and the error of the algorithm 
in predicting the real outcomes are then evaluated. A more 
detailed introduction can be found in Hinton (1989) and He 
et al. (2015).

Validation and tuning parameters

In this study, we use the following metrics to evaluate the 
performance of each classifier: accuracy, precision, recall, 
F1-score, and the area under the receiver operating charac-
teristic (ROC) curve (AUC). The accuracy, precision, recall, 
and F1-score are calculated based on the confusion matrix, 
in which true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN) are presented (Fig. 7). Accu-
racy is the ratio of the number of correct predictions to the 
total number of samples. Precision is the ratio between the 
number of correct predictions and all the samples predicted 
in this class. Recall is the ratio of the number of correct 
predictions to the total samples of this class. F1-score is the 
weighted harmonic mean of precision and recall. The AUC 
provides a single measure of the overall model accuracy that 
is threshold independent (Narkhede 2018). An AUC value of 

Fig. 5   Data splitting scheme 
and schematic illustration of a 
tenfold cross-validation work-
flow (modified after Pedregosa 
et al. 2011). The dataset is split 
into a training set and a test 
set. The training set is further 
divided tenfold. On this basis, 
ten times of cross-validation are 
performed, with one of them 
selected as a validation set for 
evaluation in each training. 
Performance metrics (P) are 
calculated for each fold and the 
mean metric (PT) is calculated 
as the overall performance. The 
proportion of each class remains 
the same throughout the training
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Fig. 6   Schematic illustrations of the three supervised ML methods used in this study

Fig. 7   Schematic diagram of the calculation of the four metrics 
(accuracy, precision, recall, and F1-score) based on the confusion 
matrix (left). TP (true positive) is the number of positive samples 
predicted correctly. FP (false positive) is the number of positive sam-
ples predicted incorrectly. TN (true negative) is the number of nega-

tive samples predicted correctly. FN (false negative) is the number of 
negative samples predicted incorrectly. Accuracy, precision, recall, 
and F1-score range from 0–1; theoretically, if the samples from the 
test set are all predicted correctly, accuracy, precision, recall, and 
F1-score would be 1
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1 indicates perfect prediction whereas 0.5 indicates predic-
tion performance is as good as random.

Many ML algorithms are parameterized, and their param-
eters should be tuned to achieve the best result with a par-
ticular dataset (Wang et al. 2021; Zou et al. 2022). Hyper-
parameters are parameters that are not directly learned from 
estimators (Nathwani et al. 2022). For the sake of the opti-
mization of the three ML methods, a “grid search” technique 
based on the tenfold cross-validation method was used to 
determine the best hyperparameters (Hsu et al. 2003). For 
MLP, SVM, and RF, there are three, two, and five hyperpa-
rameters to be optimized, respectively (Figs. S3–S5, Online 
Resource 1). The best combination suggested by grid search 
was chosen as the optimal hyperparameter values (Table S1, 
Online Resource). The methods using the optimal hyperpa-
rameter values were then retained and evaluated using the 
test set to provide the final, optimal performance metrics.

Model interpretation

ML is becoming increasingly used in the solid Earth geosci-
ence. However, ML is commonly considered a black-box 
method, meaning that humans cannot fully understand the 
underlying reasoning behind the predictions/classifications 
(Bergen et al. 2019). This is different from the traditional 
methods, in which the results obtained are generally explain-
able and transparent. Therefore, the results predicted by ML 
are not always fully endorsed by the community. Fortunately, 
model interpretability approaches, such as SHAP (Shapely 
Additive exPlanations; Lundberg and Lee 2017) and LIME 
(Local Interpretable Model-Agnostic Explainer; Ribeiro 
et al. 2016), have been developed, and these overcome the 
mentioned limitation by allowing interpretation of the esti-
mated results and analysis of the importance and depend-
ency of features. In this study, we use SHAP, which is based 
on game theory (Lundberg and Lee 2017), to investigate how 
the ML methods have learned input–output relationships. As 
described in previous studies (e.g., Lundberg and Lee 2017), 
the SHAP value is a measure of the contribution of each 
feature to the output that interprets the estimated results. 
However, it should be noted that SHAP values reflect the 
importance of a feature to the model, which can be differ-
ent from the direct importance of this feature in nature, as 
already emphasized in many studies (Nathwani et al. 2022).

Results

Performance metrics of three trained models

Average performance metrics for each classifier from the 
tenfold cross-validation process with individual metrics 
for each fold are summarized in Tables S2 to S4, Online 

Resource 1. The results of tenfold cross-validation show that 
three classifiers have higher stability. Three ML classifiers 
are applied to the test set, and their performance indica-
tors are reported in Fig. 8 and Table S5, Online Resource 
1. The SVM method performs well, as indicated by high 
accuracy (0.89), precision (0.82–0.93), recall (0.87–0.90), 
and F1-score (0.84–0.92) scores (Table S5, Online Resource 
1). For the RF and MLP methods, all the metrics scores 
are also high (mostly > 0.80) with accuracy being 0.86 
and 0.89, respectively (Table S5, Online Resource 1). The 
three methods are also characterized by high AUC values 
(0.966 for SVM, 0.966 for RF and 0.972 for MLP) (Fig. S6, 
Online Resource 1). All these metric scores indicate that 
three supervised ML methods are robust in predicting zircon 
types.

In each method, the prediction performance for the zir-
con populations from I- and A-type source rocks is always 
better than that from S-type source rocks. For example, for 
the I- and A-type zircon, the precision scores are almost all 
above 0.90 (average 0.92); in contrast, they range from 0.78 
to 0.82 (average 0.80) for S-type zircons. This indicates that 
S-type zircons are slightly more difficult to be correctly dis-
tinguished compared to I- and A-type zircons.

SHAP values

Mean absolute SHAP values (feature importance scores) 
and the relative importance of features are shown for SVM 
(Fig. 9a–c), RF (Fig. 9d–f), and MLP (Fig. 9g–i), respec-
tively. The five most important features in distinguishing 
I-type zircons are Eu/Eu*, Ce/Ce*, Eu, Ho, and Ta for the 
SVM method (Fig. 9a); Eu/Eu*, Ce/Ce*, Nb, Ta, Ce for 
the RF method (Fig. 9d); and Ce/Ce*, Nb, Ta, Th, and Ce 
for the MLP method (Fig. 9g). It can be seen that in each 
method, Ce/Ce* plays an important role in distinguishing 
zircons from I-type rocks. Three methods also display quite 
similar feature importance patterns in distinguishing S- and 
A-type zircons. Particularly, Ce and Ce/Ce* are ranked as 
the two most important features in identifying S-type zircons 
(Fig. 9b, e and h), whereas Nb is ranked as the most impor-
tant feature in identifying A-type zircons (Fig. 9c, f and i).

Besides, the SHAP summary plots also indicate that 
the relationship between input and output is captured con-
sistently in almost all methods. In each method, high Ce/
Ce* inputs (red) produce high SHAP values for I-type zir-
cons and, therefore, have a strong positive influence on the 
model output, whereas for S- and A-type zircons, low Ce/
Ce* inputs (blue) produce high SHAP values and, therefore, 
have a strong positive influence on the model output (Fig. 9). 
This is consistent with that derived from the statistical analy-
sis result, where I-type zircons are visually characterized 
by noticeably higher Ce/Ce* than other types of zircons 
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(Fig. 3). This is also true for Eu/Eu*. Low Eu/Eu* (blue) has 
a strong positive influence on the model output for the S- and 
A-type zircons, whereas it shows a strong negative influence 
on the model output for the I-type zircons (Fig. 9). Higher 
Nb and Ta (red) produce high SHAP values for A-type zir-
cons and, therefore, have a strong positive influence on the 
model output, whereas for I- and S-type zircons, negative 
Nb and Ta inputs (blue) generally produce high SHAP val-
ues and, therefore, have a strong positive influence on the 
model output (Fig. 9). For other features, like Ho, Th, U, 
U/Yb, and Th/U, the three ML methods also display nearly 
same input–output relationships for each zircon population. 
To first order, the nearly consistent feature importance pat-
tern and input–output relationship captured by different ML 
methods confirm the feasibility of zircon trace elements in 
the identification of zircon provenance and the plausibility 
of the ML results.

Discussion

Independent tests of model performance

In this study, all three trained ML methods showed high 
classification accuracy (0.89 for SVM, 0.86 for RF, and 0.89 

for MLP). However, published studies show that a method’s 
stated performance may sometimes not accurately reflect 
its performance post-deployment because of, for exam-
ple, overfitting (Reunanen 2003) and black-box effects 
(Rudin 2019) of the used ML methods. Additionally, in 
this study, although all the metric scores were derived from 
the test set, which was never encountered by the algorithm 
during the training process and thus can reflect the “real” 
performance of each method, in practice, this pre-process-
ing method may still result in overestimation of the metric 
scores. This is because the test set zircon data may be from 
the same locations and even from the same granite samples 
that the methods have been trained on. To further manifest 
the robustness of three trained classification techniques, they 
were tested on three independent datasets (Online Resource 
3) containing recently published zircon data from known 
granite provenance that do not appear in the training and 
test dataset at all. These three datasets include 109 I-type 
zircon analyses from Qu et al. (2022) and Tang et al. (2022), 
55 S-type analyses from Xu et al. (2022), and 128 A-type 
analyses from Zhang et al. (2022) datasets.

All three trained classification methods produced a 
good performance for the three independent datasets, 
with the dominant zircon types identified by the three 
methods consistent with the provenance illustrated in the 

Fig. 8   Performance for the test set in different ML methods. a–c Con-
fusion matrix for SVM, RF, and MLP, respectively. d–f Polar plot of 
precision, recall, and F1-score, respectively. It can be seen that most 

of the metric scores are > 0.85, confirming that the three trained mod-
els perform very well
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publications according to other methods (Fig. 10). How-
ever, all the trained methods performed better on the I-type 
zircon dataset, with only a percentage of 2–6% of I-type 
grains being misclassified into the A- and/or S-type popu-
lations (Fig. 10a–c). For the S-type zircon database, the 
classification performance is weaker with accuracy being 
0.76–0.80; a percentage of 15–22% of grains were mis-
classified into the I-type population (Fig. 10d–f). For the 
A-type zircon database, the classification performance is 
also weaker than that for the I-type zircon database with 
accuracy being 0.71 to 0.76; a percentage of 13% to 23% 

of grains from the A-type zircon database were misclas-
sified into the S-type population (Fig. 10g–i). These are 
consistent with the results given by the confusion matrix 
(Fig. 8a–c) and reflect that in cases where the wrong clas-
sification exists, S-type grains are more likely to be mis-
classified into the I-type population, whereas some A-type 
zircons are more likely misclassified into the S-type 
population. For the I-type zircons, the proportion of the 
wrong classification is negligible. The data falling into 
unexpected populations may reflect magma contamination, 
unusual fractionation processes, and/or random variations 

Fig. 9   SHAP summary plots for three different methods in this 
study. a-c SVM-based SHAP plot for I-, S-, and A-type zircons, 
respectively. d-f RF-based SHAP plot for I-, S-, and A-type zircons, 
respectively. g-i MLP-based SHAP plot for I-, S-, and A-type zircons, 
respectively. Features are sorted by the sum of their SHAP value 
magnitudes across all samples in the test set. The order from the top 
vertically indicates the importance of the feature. Red color indicates 
a high value and blue color indicates a low value of the feature. The 
horizontal axis denotes the impact of the value of the feature on the 

output. The density achieved by the dots indicates their intensity. 
For example, for the SVM method, Eu/Eu* is the most important 
feature in identifying I-type zircons, whereas Ce for S-type zircons 
and Nb for A-type zircons; moreover, high Ce/Ce* values (red sym-
bols) contribute toward an I-type prediction (positive SHAP value), 
whereas low Ce/Ce* values (blue symbols) contribute toward an S- 
and A-type prediction (negative SHAP value). See Section  “SHAP 
values” for more details
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between isolated melt pockets formed late in the crystal-
lization sequence (Grimes et al. 2015). Thus, the misclas-
sification for a small group of a few grains seems to be 
inevitable. Enlarging the training database and involving 
complementary methods (e.g., isotopic analyses) will help 
to fully characterize the likely parental melt sources of 
out-of-context grains.

Petrogenetic implications

The feature importance obtained from SHAP values can be 
used to interpret key petrogenetic processes of the source 
magmas from which zircons crystallize. As mentioned 
above, analysis of those importance scores indicates that 
the features that tend to display high concentrations in I-type 

zircons but lower in S-type zircons are Ce/Ce* and Eu/Eu* 
(Fig. 9), all of which are related, in this case, to magma 
oxygen fugacity (Zhong et al. 2019). As already mentioned, 
these relationships are consistent with the well-known key 
difference between the two types: oxidation state (Blevin 
and Chappell 1992). The relatively reduced nature of S-type 
granites compared to I-type granites has been ascribed to 
the presence of graphite within the source rocks (Flood and 
Shaw 1975). A-type zircons are also characterized by lower 
Ce/Ce*, and Eu/Eu* than I-type zircons (Figs. 3 and 9), 
which is also consistent with previous work that suggested 
that the closest matching of A-type whole-rock composi-
tional trends was achieved by the closed system (i.e., unbuff-
ered) fractional crystallization at reduced oxidation states 
(Foden et al. 2015). It is noted that zircon Eu/Eu* is also 

Fig. 10   Pie charts showing the classification results using three 
trained ML classifiers for independent tests. a–c Results for the I-type 
zircons from Qu et  al. (2022) and Tang et  al. (2022) (n = 109). d–f 

Results for the S-type zircons from Xu et  al. (2022) (n = 55). g–i 
Results for the A-type zircons from Zhang et al. (2022) (n = 128)
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positively correlated to the water content of magmas (Zhong 
et al. 2018, 2019). A-type granites are generally derived 
from magmas with low water contents, which, thus, may 
enhance the low Eu/Eu* and also probably the Eu feature 
of zircons derived from such magmas. Figure 9 shows that 
different from the low Ce/Ce* and Eu/Eu* features, A-type 
zircons tend to display high Ce contents and S-type zircons 
generally tend to display high Eu contents. The uncoupling 
of Ce and Eu with the indicators of magma oxidation state 
is interesting and needs further research.

The SHAP pattern suggesting A-type zircons tend to 
have high Nb and Ta contents whereas the others tend to be 
characterized by lower contents (Fig. 9), is also consistent 
with the corresponding source rock features mentioned pre-
viously (see Section “Complexity of zircon compositions”). 
For example, elevated Nb and Ta, as well as low Ti, are a 
noticeable feature of within-plate, alkaline A-type granites 
(Collins et al. 1982; Eby 1990), which can be explained by 
the crystallization of ilmenite, with little influence of rutile 
or titanite (Li et al. 2012). This is due to ilmenite, rutile, and 
titanite being the main Ti-enriched minerals, with ilmen-
ite stable at high temperatures and low pressure (Liou et al. 
1998). Different from rutile and titanite, which have high 
concentrations of Nb and Ta (Rudnick et al. 2000; Liang 
et al. 2009), ilmenite is characterized by lower Nb and Ta 
(Cole and Stewart 2009). Thus, ilmenite crystallization will 
lead to the depletion of Ti without significant decreases in 
Nb and Ta (Li et al. 2012). Our ML methods indicate Nb as 
the most important feature in identifying A-type zircons, 
further supporting the above arguments and the high-temper-
ature characteristics of A-type granites. In contrast, S-type 
zircons tend to be characterized by lower Nb and Ta con-
tents because S-type granites are derived mainly from the 
remelting of sedimentary rocks or upper crustal materials, 
which are strongly depleted in high-field strength elements 
(e.g., Nb and Ta) (e.g., Tang et al. 2012; Wang et al. 2012). 
The low Nb and Ta contents of I-type zircons could not be 
explained by the above mechanism; rather, they are likely 
related to the crystallization of titanite (and probably also 
rutile), which are common in I-type rocks (Clemens et al. 
2011).

The relationships between other elements (Ho, Th, U, 
Th/U, and U/Yb) and the granite genetic types cannot be 
explained intuitively as those mentioned above. Further 
research is, thus, merited. Nonetheless, since all the key 
geochemical characteristics illustrated by the SHAP value 
analysis are in agreement with previous petrological stud-
ies, this confirms our ML methods are credible and robust.

Cautions on the application

This work confirms the feasibility of using ML methods for 
identifying zircon provenance. These methods are designed 

for detrital grains for which the petrological context is 
missing. Meanwhile, they will also be useful for inher-
ited, xenocrystic populations and grains from geochemi-
cally altered host rocks, as long as it can be established that 
they are of granitic magma origin and the analyzed areas 
do not undergo alteration and metamorphism. In practice, 
the identification of hydrothermal and metamorphic zircon 
populations can be facilitated by, for example, backscattered 
electron (BSE) and cathodoluminescence (CL) images, and 
isotopic data.

One limitation of these ML classifiers is that they can 
only make predictions on the classes they were trained on, 
i.e., all zircons will be classified as I-type, S-type or I-type 
even if they were sourced from something completely dif-
ferent. They cannot identify zircon suites from magmatic 
rocks except for granitoids. Indeed, zircons that grew from 
mafic rocks are also reported (Borisova et al. 2020). How-
ever, zircons of mafic magma origin are not very common; 
thus, the possibility to be preserved in detrital zircon popula-
tions should be low. Therefore, as is usually done (Zhu et al. 
2020), we generally do not need to consider detrital grains of 
mafic origin, unless there is evidence to indicate that zircon 
populations from mafic rocks may not be negligible.

Another possible limitation is that these ML classifiers 
may be less robust when applied to detrital zircons derived 
from Europe, South America, Australia, and Africa. This 
is because the proportion of zircons from these four areas 
only accounts for less than 10% of the training dataset, 
whereas more than 90% are from Asia and North America. 
Thus, as we mentioned earlier, the training database should 
be updated in the future, which may improve the perfor-
mance of these ML classifiers. Nonetheless, according to 
our knowledge, no geographically geochemical distinctions 
have been reported for I-, S-, and A-type granites. Therefore, 
despite the existence of geographical bias for the training 
zircon dataset, no evidence indicates that the performance 
of three ML classifiers will be significantly compromised.

Lastly, we re-emphasize the need to carefully filter zir-
con data when using these ML classifiers. For example, 
according to our previous studies, mineral inclusion con-
tamination is quite common during zircon analyses (Zhong 
et al. 2018); this creates many “artifacts” with deceptive 
genetic information and thus should be excluded. In this 
study, we have provided a detailed filtering strategy for the 
trained database (e.g., La < 1 ppm, LREE-I > 30), which 
can also be applied to treating the input grains. Addition-
ally, as with many geochemical tools, successful applica-
tions of ML classifiers discussed here to out-of-context 
zircon will be most effective when considered alongside 
additional constraints, especially the geological back-
ground from which the detrital zircons are collected.

To make our ML models more easily used, three trained 
ML models are packaged as an installation-free .exe file, 
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Perceptron), we have developed a novel approach to iden-
tify zircon types. The results demonstrate that trace ele-
ment compositions of zircons can well mirror the nature of 
plutons from which they crystallized, and that the trained 
machine learning methods are robust in discriminat-
ing zircons from I-, S-, and A-type granites. The feature 
importance analysis indicates that the features sensitive to 
magma oxidation state (e.g., Ce/Ce* and Eu/Eu*) are most 
important in distinguishing zircons from I- and S-type 
granites, whereas Nb ranks among the most important in 
identifying zircons from A-type granites. All these are 
consistent well with known petrological processes dur-
ing the formation of three groups of granites. To make 
the trained zircon classifiers more accessible, specialized 
software for classifying zircon types is developed. The 
application of our classifiers to detrital zircon studies will 

Fig. 11   The user interface of ZirconISAClassifier, a software that is designed in this study to predict the source rocks of zircons (see Text S1, 
Online Resource 1 for more details)

named ZirconIASClassifier, that can be run on Windows 
platforms (Fig. 11). Using this software, users can directly 
get the classification results for their zircon datasets. More 
details about this software can be found in the Supplemen-
tary Material (Text S1, Online Resource 1). This software, 
as well as the associated ML code (written in Python) to 
reproduce the results in this paper, is available at https://​
github.​com/​Shihu​aZhong/​CTMP2​023Zi​rconI​ASCla​ssifi​er.

Conclusion

Using high-quality, published zircon trace element data 
from known source rocks (I-, S-, and A-type granites) 
and three supervised machine learning algorithms (Sup-
port Vector Machine, Random Forest, and Multilayer 

https://github.com/ShihuaZhong/CTMP2023ZirconIASClassifier
https://github.com/ShihuaZhong/CTMP2023ZirconIASClassifier
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improve the accuracy and efficiency for identificating zir-
con assemblages of different origins, and help develop 
interpretations, approaches, and tools that will benefit con-
tinental crust evolution studies and mineral exploration.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00410-​023-​02017-9.
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