ORIGINAL PAPER

The prediction method for standard enthalpies of apatites using the molar volume, lattice energy, and linear correlations from existing experimental data

Bartosz Puzio¹ · Maciej Manecki¹

Received: 21 April 2022 / Accepted: 27 September 2022 / Published online: 25 October 2022 © The Author(s) 2022

Abstract

Experimental data of thermodynamic state functions and molar volume for phosphate, arsenate, and vanadate apatites containing Ca, Sr, Ba, Pb, end Cd at the cationic positions Me²⁺ and F, OH, Cl, Br, and I at the halide position X were collected. The apatite supergroup splits into distinct subgroups (populations) constituted by Me₁₀(AO₄)₆X₂ with the same Me²⁺ cations and tetrahedral AO₄³⁻ anions but with different anions at the X position. Linear relationships between various parameters within apatite subgroups are observed. The prediction method for standard enthalpies of apatites ($\Delta H^{o}_{f,el}$) is based on regression analysis of the linear correlations within the subgroups between $\Delta H^{o}_{f,el}$ of apatites and their molar volume V_{m} , lattice energy U_{POT} , and $\Delta H^{o}_{f,el}$ of their anions AO₄³⁻ or X⁻. This allowed to predict 22 new $\Delta H^{o}_{f,el}$ values for apatites and materials with an apatite structure. The prediction precision is comparable to the experimental uncertainty obtained when reproducing experimental data using calorimetric measurements or dissolution experiments and can be applied to a wider range of apatites than other methods.

Keywords Iodoapatites \cdot Thermodynamics of apatites \cdot Thermodynamic stability \cdot Volume-based Thermodynamics \cdot Thermodynamic database

Introduction

Quantitative geochemical calculations are not possible without thermodynamic databases. Considerable advances in the quantity and quality of these databases have been made since the early days of Lewis and Randall (1923), Latimer (1952), and Rossini et al. (1952). According to Oelkers and Shott (2018), the emergence of thermodynamic databases can be considered one of the greatest advances in geochemistry of the last century. Thermodynamic data have been used in basic research and for countless applications in computational modelling, computer simulations, waste management, and policy-making. The challenges today are to evaluate thermodynamic data for internal consistency

Communicated by Mark S Ghiorso.

Bartosz Puzio bpuzio@agh.edu.pl and to reach a most reliable properties. The present work focuses on the enthalpy of formation from elements $(\Delta H^{\circ}_{\rm f,el})$ of minerals and synthetic compounds belonging to the apatite supergroup.

The natural apatites and apatite-based materials are a class of compounds with the stoichiometry $Me_{10}(AO_4)_6X_2$, where the Me-site is occupied by larger monovalent (Na⁺, K⁺, etc.), divalent (Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺, Cd²⁺, etc.), or trivalent (La³⁺, Y³⁺, Ce³⁺, Sm³⁺, etc.) cations, the A-site is occupied by a smaller metal, metalloid or nonmetal $(P^{5+},$ As⁵⁺, V⁵⁺, Si⁴⁺, etc., often accompanied by carbonate anion CO_3^{2-}), and the X-site is filled by halides, hydroxides, or oxides (F⁻, Cl⁻, Br⁻, I⁻, OH⁻, O²⁻, etc., also often accompanied by a carbonate anion CO_3^{2-}) (e.g., Rakovan and Hughes 2000; Pan and Fleet 2002; Pasero et al. 2010; Tait et al. 2015; Ptáček 2016; Hughes and Rakovan 2018; Pieczka 2018; Rakovan and Scovil 2021). Due to the extremely rich array of possible substitutions in each of the highlighted positions, the possible end-members alone are over 200 types, indicating that this is currently the most numerous supergroup of minerals and compounds (Baker 1966; Oelkers and Valsami-Jones 2008; Rakovan

¹ Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

and Pasteris 2015; Flora et al. 2004a, b). Synthesis methods are also still being developed to produce apatite-based materials, which have enormous applications in numerous technologies (Oelkers and Montel 2008; Cao et al. 2017; Lei et al. 2020). Unfortunately, for many of the apatites, there is a lack of experimentally determined basic thermodynamic data including $\Delta H^{\circ}_{\text{f.el}}$. This includes some representatives of the best-characterized phosphate apatites (e.g., $Ba_{10}(PO_4)_6Br_2$, $Sr_{10}(PO_4)_6Br_2$ or $Cd_{10}(PO_4)_6Br_2$) as well as most arsenate and vanadate apatites. As of the current state of knowledge, there is not a single experimentally measured $\Delta H^{\circ}_{f,el}$ for iodine-containing apatitebased materials, which are the subject of intense research due to potential technological uses (Wang 2015; Hartnett et al. 2019: Merker and Wondratschek 1959: Brenner et al. 1970; Sudarsanan et al. 1977; Audubert et al. 1999; Alberius et al. 1999; Stennett et al. 2011; Lu et al. 2014; Suetsugu 2014; Witkowska et al. 2014; Coulon et al. 2017; Mungmode et al. 2018; Sordyl et al. 2020; Islam 2021). However, with relatively little effort, gaps in thermodynamic databases can be filled using predictive methods.

Several attempts have been made to fill the gaps in the thermodynamic databases using predictive methods e.g., Volume-based Thermodynamics (VBT; Jenkins and Glasser 2003; Glasser and Jenkins 2016), the Simple Salt Approximation (SSA; Yoder and Flora 2005; Yoder and Rowand 2006; Glasser 2019), and the polyhedral contribution approach (Latimer 1951, 1952; Hazen 1985; Chermak and Rimistidt 1989; La Iglesia and Felix 1994; Glasser and Jenkins 2009; La Iglesia 2009; Drouet 2015, 2019). Moreover, the predictions based on linear correlations between thermodynamic state functions and selected physicochemical parameters gives promising results (Tardy and Vieillard 1977; Vieillard and Tardy 1988; Sassani and Shock 1992; Shock et al. 1997; Sverjensky et al. 1997; Vieillard 2000; Cruz et al. 2005a, b; Puzio et al. 2022). The ThermAP method by Drouet (2015 and 2019) gives the best accuracy approaching $\pm 1\%$ absolute error. However, in the case of apatites, an uncertainty of $\pm 1\%$ is too high: ΔH°_{fel} determined experimentally for Ca₁₀(PO₄)₆Cl₂ and Ca₁₀(PO₄)₆Br₂ differ only by 0.8% (58 kJ mol⁻¹; Cruz et al. 2005b).

In the present study the experimental data of thermodynamic state functions and molar volume for phosphate, arsenate, and vanadate apatites containing Ca, Sr, Ba, Pb, end Cd at the cationic positions Me²⁺ and F, OH, Cl, Br, and I at the halide position X were collected. Linear relationships between various parameters within apatite subgroups are examined. A new prediction method for standard enthalpies of apatites is proposed. This approach is based on regression analysis of the linear correlations within the subgroups between $\Delta H^{\circ}_{f,el}$ of apatites and their molar volume V_m , lattice energy U_{POT} , and $\Delta H^{\circ}_{f,el}$ of their anions AO₄³⁻ or X⁻.

Overview of experimental thermodynamic data of apatites

Table 1 provides a compilation of the thermodynamic data available in the literature (based on experiments and "ab initio" calculations) for stoichiometric Me₁₀(AO₄)₆X₂ apatites (phosphate, arsenate, and vanadate with different Me²⁺ and X⁻), such as the standard enthalpy of formation from elements $\Delta H^{\circ}_{f,el}$, the standard entropy $S^{\circ}_{298.15K}$, the specific heat capacity $C^{\circ}_{p,m}$, the molar volume V_m , and the solubility constant $K_{sp,298.15K}$. The Gibbs free energy of formation ($\Delta G^{\circ}_{f,el}$) is not included to maintain consistency in the thermodynamic data presented. $\Delta G^{\circ}_{f,el}$ values available in the literature are mostly calculated from approximations or using different, often mixed thermodynamic databases, which contributes significant scatter. Therefore, the compilation and variability analysis of the $\Delta G^{\circ}_{f,el}$ data for apatites should be discussed in a separate paper.

The observed discrepancies in the data are likely due to the varying crystallinity states, polymorphs (either hexagonal or monoclinic, mostly not identified in literature reports), nonstoichiometry, hydration state and/or the presence of undetected impurities. A lower degree of crystallinity, for example, may favor somewhat less negative values of $\Delta H^{\circ}_{f,el}$ (Craig and Rootare 1974). The difference between the hexagonal (P6₃/m) and monoclinic (P2₁/b) symmetries results in different positioning of the X⁻ anions along the apatitic channels (giving rise or not to a mirror plane) but does not correspond to a large ion rearrangement. Therefore, the energetics of formation are not expected to be very different (although not identical), allowing both polymorphs to be considered equal.

Drouet (2015) and Puzio et al. (2022) previously reported that thermodynamic state functions for apatites vary in a regular, mostly linear manner, depending on various physicochemical parameters of their components, such as the ionic radius of X^- , the electronegativity of X^{-} , the ionization energy of X, and others. A current and complete review of the data presented in Table 1 allows such trends and relationships to be clearly observed. For example, for a given X⁻ anion (from among OH⁻, F⁻, Cl⁻, or Br⁻), the formation of apatite is less exothermic (the enthalpy of formation $\Delta H^{\circ}_{f,el}$ is less negative) when apatite contains a heavier element, such as As or V instead of P and Cd or Pb instead of alkali metals (Fig. 1A). In contrast, this relationship is not observed when alkali metals $(Ca^{2+}, Ba^{2+} \text{ or } Sr^{2+})$ are substituted in the Me²⁺ position. It is clearly apparent from the graph that apatites form distinctly separate subgroups (Fig. 1A). Here, a subgroup is defined as a population of apatites with the same substitution at position Me and A but with different substitutions at position X (where X = F, Cl, Br, I, OH) e.g., subgroup of

and $X = F$, OH, Cl, Br, I),	, at $T = 298$ K and 1 l	bar								
Chemical formula	$\frac{\Delta H^{\circ}_{f,el}}{(kJ mol^{-1})}$	Reference	<i>S</i> ° (J mol ⁻¹ K ⁻¹)	Reference	$C^{\circ}_{p, m}$ (J mol- K ⁻¹)	Reference	$\log K_{ m sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
$\mathrm{Ca}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	-13,449	Yan et al. 2020	766.4	Dachs et al. 2010	739.2	Dachs et al. 2010	-118.0	Stumm and Morgan 2012	0.5236	Lim et al. 2011
	-13,548	Cherifa and Jemal 2004	765.0	Flora et al. 2004a, b	646.0	Cruz et al. 2005a, b	-111.4	Zhu et al. 2009	0.5237	O'Donnell et al. 2009
	-13,558	Flora et al. 2004a, b	771.8	Bogach et al. 2001	740.9	Fleche 2002	-58.8	Harouiya et al. 2007	0.5246	Mercier et al. 2007
	-13,550	Ntahomvukiye et al. 1997	775.8	Robie and Hem- ingway 1995	751.0	Bogach et al. 2001	-61.9	Stefansson 2001	0.5231	ICDD 1997
	-13,545	Jemal et al. 1995	775.7	Wagman et al. 1982	751.8	Robie and Hem- ingway 1995	-116.3	Jaynes et al. 1999	0.5233	Sudarsanan et al. 1972
	-13,744	Robie and Hem- ingway 1995	776.5	Egan et al. 1951	751.6	Roine 1994	-65.9	Valsami-Jones et al. 1998		
	-13,536	Cherifa et al. 1991			756.2	Zhu and Sver- jensky 1991	-50.9	Elliot 1994		
	-13,653	Zhu and Sver- jensky 1991			752.0	Vieillard and Tardy 1984	-120.1	Chin and Nan- collas 1991		
	-13,657	Valyashko et al. 1968			751.9	Wagman et al. 1982	-119.2	LeGeros 1991		
	-13,677	Farr and Elmore 1962			751.0	Mooney and Aia 1961	-121.2	Driessens 1982		
	-13,684	Smirnova et al. 1962			752.3	Egan et al. 1951	-120.3	Amjad et al. 1981		
	-13,797	Jacques 1963					-3.8	Ball et al. 1980		
	-13,719	Kelley and King 1961					-120.7	Farr and Elmore 1962		
	-13,655	Gottschall 1958					-117.8	Lindsay 1979		
							-140.8	Robie et al. 1979		
							-120.3	McCann 1968		
							-119.2	McCann 1968		
							-7.1	Valyashko et al. 1968		
							-2.2	Lindsay and Moreno 1960		
$\mathrm{Ca_{10}(PO_4)_6OH_2}$	-13,710	Puzio et al. 2018	768.0	Flora et al. 2004a, b	694.0	Cruz et al. 2005a, b	-115.8	Puzio et al. 2018	0.5300	Puzio et al. 2018
	-13,431	Rollin-Martinet et al. 2013	785.0	Bogach et al. 2001	765.8	Bogach et al. 2001	-116.8	Zhu et al. 2016	0.5243	Chernorukov et al. 2011

Table 1 (continued)										
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	<i>S</i> ° (J mol ⁻¹ K ⁻¹)	Reference	$egin{array}{cc} C^\circ_{p,m} \ (J\ \mathrm{mol}^- \mathrm{K}^{-1}) \ \mathrm{K}^{-1}) \end{array}$	Reference	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
	-13,399	Cruz et al. 2005a, b	780.8	Robie and Hem- ingway 1995	770.1	Robie and Hem- ingway 1995	- 106.6	Zhang et al. 2011	0.5298	Lee et al. 2009
	-13,314	Flora et al. 2004a, b	9.797	Zhu and Sverjen- sky 1991	769.9	Wagman et al. 1982	-106.6	Zhu et al. 2009	0.5252	Cruz et al. 2005a, b
	-13,508	Krivtsov et al. 1997	780.7	Wagman et al. 1982	772.6	Mooney and Aia 1961	-52.0	Stefansson 2001	0.5309	Kim et al. 2000
	-13,305	Jemal et al. 1995	781.1	Egan et al. 1951	770.2	Kelley et al. 1960	-112.0	Jaynes et al. 1999	0.5288	ICDD 1997
	-13,443	Roine 1994			770.2	Egan et. al. 1951	-114.0	Stumm and Morgan 2012	0.5289	Elasri et al. 1995
	-13,292	Cherifa et al. 1991			801.1	Egan et. al. 1950	-123.0	Ito et al. 1996	0.5270	Phebe and Nar- asaraju 1995
	-13,396	Zhu and Sver- jensky 1991					-115.5	Shellis et al. 1993	0.5296	Ben Cherifa et al. 1988
	-13,477	Vieillard and Tardy 1984					-115.3	LeGeros 1991	0.5287	McConell 1974
	-13,422	Valyashko et al. 1968					-112.1	Moreno and Aoba 1991	0.5291	Sudarsanan and Young 1969
	-13,517	Jacques 1963					-119.8	Gramain et al. 1987	0.5301	Posner et al. 1958
	-13,445	Smirnova et al. 1962					-110.6	Narasaraju et al. 1979		
	-13,525	Gottschall 1958					-115.1	Bell et al. 1978		
							-116.6	McDowell et al. 1977		
							-118.0	Santillan- Medrano 1975		
							-116.4	Avnimelech et al. 1973		
							-109.2	Moreno et al. 1968		
$Ca_{10}(PO_4)_6Cl_2$	-13,231	Cruz et al. 2005a, b	808.0	Babu et al. 2011	747.8	Dachs et al. 2010	-112.3	Narasaraju et al. 1979	0.5371	Cruz et al. 2005a, b
	-13,119	Cherifa and Jemal 2004	801.2	Dachs et al. 2010	608.0	Gotherstrom et al. 2002			0.5419	El Feki et al. 2004
	-13,179	Jemal 2004	804.3	Bogach et al. 2001	756.0	Tacker and Stormer 1989			0.5421	ICDD 2004
	-13,180	Flora et al. 2004a, b	800.2	Zhu and Sverjen- sky 1991	762.0	Zhu and Sver- jensky 1991			0.5561	White and Dong 2003

🖄 Springer

Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$egin{array}{c} C^{\circ}_{p,m} \ ({ m J} { m mole}^{-1}) \ { m K}^{-1}) \end{array}$	Reference	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
	- 13,139	Khattech and Jemal 1997	795.8	Vieillard and Tardy 1984	758.0	Krishnan et al. 2008			0.5389	Kim et al. 2000
	-13,161	Cherifa et al. 1991	796.2	Valyashko et al. 1968	751.0	Babu et al. 2011			0.5450	ICDD 1997
	-13,201	Zhu and Sver- jensky 1991			752.6	Bogach et al. 2001			0.5448	Ben Cherifa et al. 1991
	-13,096	Tacker and Stormer 1989			758.3	Valyashko et al. 1968			0.5450	Mayer et al. 1979
	-13,278	Gottschall 1958							0.5445	Sudarsanan and Young 1978
									0.5430	Mackie et al. 1972
									0.5455	Bhatnagar 1970
$Ca_{10}(PO_4)_6Br_2$	-13,063	Cruz et al. 2005a, b	827.3	Bogach et al. 2001	811.0	Cruz et al. 2005a, b	I		0.5486	Cruz et al. 2005a, b
					728.8	Bogach et al. 2001			0.5561	White and Dong 2003
									0.5561	Elliot et al. 1981
									0.5560	Dykes 1974
$Ca_{10}(PO_4)_6I_2$	-12,949	Cruz et al. 2005a, b	I		873.8	Cruz et al. 2005a, b	I		0.5440	Phebe and Nar- asaraju 1995
$Ca_{10}(PO_4)_6OH_{1.08}(IO_3)_{0.92}$									Not shown	Coulon et al. 2016
$Ca_{10}(PO_4)_6IO_{0.66}$									0.5484	Alberius Henning et al. 1999
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	-13,604	Jemal et al. 1995	I		I		I		0.6178	Jain et al. 2013
	-13,982	Jain et al. 2013							0.5695	Yuan et al. 2017
	-13,201	Yuan et al. 2017							0.6010	Knyazev et al. 2015
									0.6010	Chernorukov et al. 2011
									0.5961	Lim et al. 2011
									0.5964	Aissa et al. 2004
									0.5958	ICDD 2004
									0.5901	Swafford and Holt 2002
									0.5967	ICDD 1997
									0.5952 0.5944	Corker et al. 1995 McConell 1974

Table 1 (continued)

Table 1 (continued)										
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$\begin{array}{c} C^{\circ}_{p,m} \\ (J mol^{-1}) \\ K^{-1} \end{array}$	Reference	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
									0.5955	ICDD 2004
$\mathrm{Sr_{10}(PO_4)_6OH_2}$	-13,373	Jemal et al. 1995	I		I		I		0.5971	Mayer et al. 1979
									0.6010	Verbeeck et al. 1977
									0.6006	McConell 1974
									0.5975	Sudarsanan and Young 1974
									0.5948	Klement 1939
$Sr_{10}(PO_4)_6Cl_2$	-13,570	Jain et al. 2013	904.0	Babu et al. 2011	759.0	Babu et al. 2011	I		0.6305	Jain et al. 2013
	-12,768	Yuan et al. 2017			868.0	Krishnan et al. 2008			0.5786	Yuan et al. 2017
	-13,233	Khattech and Jemal 1997							0.6015	Knyazev et al. 2015
									0.6015	Chernorukov et al. 2011
									0.6152	ICDD 2004
									0.6152	ICDD 1997
									0.6073	Notzold et al. 1994
									0.6066	McConell 1974
									0.6066	Sudarsanan and Young 1974
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	-13,322	Jain et al. 2013	I		I		Ι		0.6434	Jain et al. 2013
	-12,634	Yuan et al. 2017							0.5902	Yuan et al. 2017
									0.5991	Knyazev et al. 2015
									0.6213	Alberius–Henning et al. 2000
$\mathrm{Ba}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	-13,667	Junhui et al. 2016	I		I		I		0.6959	Junhui et al. 2016
	-13,564	Jemal 2004							0.6947	Junhui et al. 2016
									0.6922	Junhui et al. 2016
									0.6890	Junhui et al. 2016
									0.6914	Aissa et al. 2004
									0.6904 0.6951	ICDD 2004 ICDD 1997

Table 1 (continued)										
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$C^{\circ}_{p,m}$ (J mol ⁻¹ K ⁻¹)	Reference	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
									0.6903	Mathew et al. 1979
									0.6874	McConell 1974
$\mathrm{Ba}_{10}(\mathrm{PO}_4)_6\mathrm{OH}_2$	-13,309	Ben Cherifa and Jemal 2004	I		I	·	1		0.6943	Lim et al. 2011
									0.6893	Duan et al. 2005
									0.6944	ICDD 2004
									Not shown	Bondareva and Malinovskii 1986
									0.6968	Bigi et al. 1984
									0.6924	McConell 1974
									0.6924	Klement 1936
$Ba_{10}(PO_4)_6Cl_2$	-13,348	Junhui et al. 2016	1044.0	Babu et al. 2011	767.0	Babu et al. 2011			0.7056	Junhui et al. 2016
	-13,246	Khattech et al. 1996			787.0	Jena et al. 2011			0.7051	Junhui et al. 2016
									0.7036	Junhui et al. 2016
									0.6995	Junhui et al. 2016
									0.6954	Chernorukov et al. 2011
									0.7008	ICDD 2004
									0.6965	ICDD 1997
									0.6951	Newberry et al. 1981
									0.7008	Hata et al. 1979
									0.6974	McConell 1974
$\mathrm{Ba}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	-13,047	Junhui et al. 2016	I		I	·			0.7159	Junhui et al. 2016
									0.7146	Junhui et al. 2016
									0.7126	Junhui et al. 2016
									0.7097	Junhui et al. 2016
									0.7107	Alberius-Henning et al. 2000

Table 1 (continued)								
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° Reference (J mol ⁻¹ K ⁻¹)	$\begin{array}{c} C^{\circ}_{p,m} & \text{Reference} \\ (J \mod 1) & K^{-1} \end{array}$	$\log K_{\rm sp}$	Reference	$V_{\rm m}$ (nm ³)	Reference
${ m Ba}_{9.06}({ m PO}_4)_6{ m I}_{0.08}$	I		1	1	I		0.6929	Bulanov et al. 2021
$\mathrm{Cd}_{10}(\mathrm{PO}_4)_6\mathrm{F}_2$	-8817	Lin et al. 2018			-120.1	Lin et al. 2018	0.4966	McConell 1974
	-8795	Jemal et al. 1995					0.4970	Kreidler and Hummel 1970
$Cd_{10}(PO_4)_6OH_2$	-8652	Ben Cherifa and Jemal 2004			-129.2	Zhu et al. 2015b	Not shown	Zhu et al. 2015b
	-8648	Jemal et al. 1995					Not shown	Karbovsky and Soroka 2014
	-8566	Zhu et al. 2015b					0.5029	Hata et al. 1978
	-8678	Mahapatra et al. 1982					0.5006	McConell 1974
							Not shown	Hayek and Peter 1959
							Not shown	Klement and Zureda 1940
$Cd_{10}(PO_4)_6Cl_2$	-8463	Ben Cherifa et al. 2001	I	I	-131.2	Wołowiec et al. 2019	0.5105	Wołowiec et al. 2019
					-99.3	Veillard and Tardy 1984	0.5209	Chernorukov et al. 2011
							0.5218	ICDD 2004
							0.5264	McConell 1974
							0.5211	Sudarsanan and Young 1972
$\mathrm{Cd}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	I		I	I	I		0.5282	Sudarsanan et al. 1977
							0.5306	Sudarsanan et al. 1977
$Pb_{10}(PO_4)_6F_2$	-8529	Jemal et al. 1995	I	I	-156.6	Yan et al. 2020	0.5251	Dziura et al. 2012
	-8466	Ntahomvukiye et al. 1997			Not shown	Dziura et al. 2012	0.6213	Chernorukov et al. 2011
	-8523	Yan et al. 2020					0.6022	ICDD 2004
							0.6010	ICDD 1997
							0.6047	McConell 1974
							0.6014	Merker and Won- dratschek 1957

Table 1 (continued)										
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$egin{array}{c} C^\circ_{p,m} \ (J\ mol^{-1}) \ K^{-1}) \end{array}$	Reference	$\log K_{ m sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
Pb ₁₀ (PO ₄) ₆ OH ₂	-8261 -8220	Jemal et al. 1995 Zhu et al. 2015a	I		I		-161.5 -125.6	Zhu et al. 2016 Allison et al. 1991	0.6062 0.6260	Olds et al. 2021 ICDD 2004
									0.6294	Kim et al. 1997
									0.5933	Mayer et al. 1979
									0.6281	McConell 1974
									0.6274	Davis 1973
									0.6276	Engel 1970
$Pb_{10}(PO_4)_6Cl_2$	-8216	Puzio et al. 2021	1244.0	Topolska et al. 2016	804.0	Topolska et al. 2016	-159.1	Puzio et al. 2021	0.6348	Gu et al. 2020
	-8217	Topolska et al. 2016	1170.6	Bisengalieva et al. 2010	826.0	Bisengalieva et al. 2010	-159.2	Topolska et al. 2016	0.6297	Antao and Dhali- wal 2018
	-8248	Bisengalieva et al. 2010					-159.0	Drouet et al. 2015	0.6350	Antao and Dhali- wal 2018
	-7474	Chernorukov et al. 2010					-159.3	Flis et al. 2011	0.6321	Solecka et al. 2018
	-8220	Flora et al. 2004a, b					-161.7	Manecki and Maurice 2008	0.6336	Okudera 2013
	-8204	Jemal et al. 2004					-160.8	Xie and Giam- mar 2007	0.6323	Chernorukov et al. 2011
							-167.5	Manecki et al. 2000	0.6316	Chernorukov et al. 2010
							-168.8	Allison et al. 1992	0.6349	Flis et al. 2010
							-168.0	Nriagu 1973	0.6268	ICDD 2004
									0.6315	Kim et al. 2000
									0.6332	ICDD 1997
									0.6336	Dai and Hughes 1989
									0.6344	McConell 1974
									0.6301	Merker and Won- dratschek 1957
$Pb_{10}(PO_4)_6Br_2$	-8180	Flora et al. 2004a, b	I		I		-154.8	Janicka et al. 2012	0.6480	Janicka et al. 2012
							-156.2	Nriagu 1973	0.6548 0.6520	ICDD 1997 ICDD 1997

Table 1 (continued)									
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$C_{p, m}^{\circ}$ Reference (J mol ⁻¹ K ⁻¹)	$\log K_{\rm sp}$	Reference	$V_{\rm m}$ (nm ³)	Reference
								0.6472	Merker and Won- dratschek 1957
$Pb_{10}(PO_4)_6I_2$	-8042	Puzio et al. 2022	I		I	I		I	
$Pb_{9.14}(PO_4)_6I_{0.26}$	I		I		I	I		0.6281	Bulanov et al. 2021
$\mathrm{Ca_{10}(AsO_4)_6F_2}$	-11,259	Zhu et al. 2011	I		I	-78.42	Li et al. 2012	Not shown	Noel 2018
	-11,279	Li et al. 2012				- 78.42	Zhu et al. 2011	Not shown	Karbovsky and Soroka 2014
								0.5721	Biagioni and Pasero 2013
								0.5652	Baikie et al. 2007
$Ca_{10}(AsO_4)_6OH_2$	-11,208	Puzio et al. 2018	937.7	Zheng et al. 2015	5 -	-78.4	Puzio et al. 2018	0.5265	Puzio et al. 2018
	-10,935	Puzio et al. 2018				-81.7	Li et al. 2012	Not shown	Karbovsky and Soroka 2014
	-11,156	Mahapatra et al. 1987				-78.4	Zhu et al. 2006	0.5704	Biagioni and Pasero 2013
						-83.2	Zhu et al. 2006	0.5708	Henderson et al. 2009
						-80.2	Zhu et al. 2006	0.5711	Lee et al. 2009
						-76.1	Bothe and Brown 1999	0.6705	Mahapatra et al. 1989
						- 89.8	Mahapatra et al. 1987	0.5647	Dunn et al. 1980
						-94.5	Narasaraju et al. 1979	0.5681	Mayer et al. 1979
$\mathrm{Ca}_{10}(\mathrm{AsO}_4)_6\mathrm{Cl}_2$	I		I		I	I		0.5852	Biagioni et al. 2017
								Not shown	Karbovsky and Soroka 2014
								0.5984	Wardojo and Hwu 1996
								0.6460	Wardojo and Hwu 1996
								0.5724	Dunn et al. 1985
$\mathrm{Ca}_{10}(\mathrm{AsO}_4)_6\mathrm{Br}_2$	I		I		I	I		Not shown	Karbovsky and Soroka 2014

Table 1 (continued)								
Chemical formula	$\Delta H^{\circ}_{\text{fel}}$ (kJ mol ⁻¹)	Reference	S° Reference (J mol ⁻¹ K ⁻¹)	$C_{p,m}^{\circ}$ Reference (J mol ⁻¹ K ⁻¹)	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
$\mathrm{Sr}_{10}(\mathrm{AsO}_4)_6\mathrm{F}_2$	1		1	I	I		0.6392	Bordevic et al. 2008
							0.6396	Kreidler and Hummel 1970
$\mathrm{Sr}_{10}(\mathrm{AsO}_4)_6\mathrm{OH}_2$	I		I	I	I		0.6466	Weil et al. 2009
							0.6439	Mayer et al. 1979
$Sr_{10}(AsO_4)_6Cl_2$	I		I	1	I		0.6556	Bell et al. 2009
							0.6554	Weil et al. 2009
							0.6533	Kreidler and Hummel 1970
$\mathrm{Sr}_{10}(\mathrm{AsO}_4)_6\mathrm{Br}_2$	I		Ι	Ι	Ι		Not shown	Manca et al. 1980
$Ba_{10}(AsO_4)_6F_2$	I		I	I	I		Not shown	Chai 2020
							Not shown	Manca et al. 1980
							0.7348	Kreidler and Hummel 1970
$\mathrm{Ba}_{10}(\mathrm{AsO}_4)_6\mathrm{OH}_2$	I		I	1	I		0.7426	Chance 2014
							Not shown	Manca et al. 1980
$Ba_{10}(AsO_4)_6Cl_2$	Ι		Ι	Ι	I		0.7470	Bell et al. 2008
							Not shown	Manca et al. 1980
							0.6551	Dunn and Rouse 1978
$\mathrm{Ba}_{10}(\mathrm{AsO}_4)_6\mathrm{Br}_2$	I		I	I	I		Not shown	Manca et al. 1980
$Cd_{10}(AsO_4)_6F_2$	I		I	1	I		Not shown	Karbovskiy et al. 2011
$Cd_{10}(AsO_4)_6OH_2$	I		I	I	I		Not shown	Karbovskiy et al. 2011
Cd ₁₀ (AsO ₄) ₆ Cl ₂	I		I	I	I		0.5589	Johnston et al. 2004
							Not shown	Karbovskiy et al. 2011
							0.5689	Kreidler and Hummel 1970
$Cd_{10}(AsO_4)_6Cl_{1.16}(OH)_{0.84}$	I		I	I	I		0.5609	Bordević et al. 2008
$\mathrm{Cd}_{10}(\mathrm{AsO}_4)_6\mathrm{Br}_2$	I		I	Ι	I		0.5759	Sudarsanan et al. 1977
$Pb_{10}(AsO_4)_6F_2$	-6288	Puzio et al. 2022	1	1	I		0.6536	Sordyl et al. 2020

Table 1 (continued)									
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$C_{p,m}^{\circ}$ Reference (J mol ⁻¹ K ⁻¹)	$\log K_{\rm sp}$	Reference	$V_{\rm m}$ (nm ³)	Reference
								0.6529	Kreidler and Hummel 1970
								0.6516	Merker and Won-
								0	dratschek 1999
$Pb_{10}(AsO_4)_6OH_2$								0.6690	Kwaśniak– Kominek et al. 2015
								0.6679	ICDD 1997
								0.6710	Engel 1970
$Pb_{10}(AsO_4)_6OH_{1.72}(CO_3)_{0.14}$	-6060	Puzio et al. 2022	I		I	I		0.6763	Sordyl et al. 2020
$Pb_{10}(AsO_4)_6Cl_2$	-5932	Bajda 2010	1315.0	Bajda 2010	I	Not shown	Huang et al. 2014	0.6779	Antao and Dhali- wal 2018
						-152.6	Flis et al. 2011	0.6763	Okudera 2013
						-152.2	Flis et al. 2011	0.6779	Flis et al. 2010
						-152.7	Bajda 2010	0.6776	Baikie et al. 2007
						-163.5	Liu et al. 2009	0.6778	Henderson et al. 2009
						-153.3	Bajda et al. 2007	0.6780	Henderson et al. 2009
						-170.8	Inegbenebor et al. 1989	0.6700	Dai et al. 1991
								0.6782	Calos and Ken- nard 1990
								0.6612	Mayer et al. 1979
								0.6792	Merker and Won- dratschek 1959
								0.6693	ICDD 1997
$Pb_{10}(AsO_4)_6Cl_{0.1.6}(CO_3)_{0.2}$	-6053	Puzio et al. 2022						0.6770	Sordyl et al. 2020
$Pb_{10}(AsO_4)_6Br_2$								0.6876	Merker and Won- dratschek 1959
$Pb_{10}(AsO_4)_6Br_{1.6}(CO_3)_{0.2}$	-5935	Puzio et al. 2022						0.6883	Sordyl et al. 2020
$Pb_{10}(AsO_4)_6I_{0.9}OH_{0.7}(CO_3)_{0.2}$	-5986	Puzio et al. 2022						0.6991	Sordyl et al. 2020
$\mathrm{Pb}_{10}(\mathrm{AsO}_4)_6\mathrm{I}_2$								0.7022	Merker and Won- dratschek 1957
$Ca_{10}(VO_4)_6F_2$	I		I		I	I		0.5534	Pekov et al. 2021
								0.5725	Dong and White

Table 1 (continued)									
Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	$\frac{S^{\circ}}{(J \text{ mol}^{-1} \text{ K}^{-1})}$	eference	$C_{p, m}^{\circ}$ Reference (J mol ⁻¹) K ⁻¹)	$\log K_{\rm sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
								Not shown	Kreidler and Hummel 1970
Ca ₁₀ (VO ₄) ₆ OH ₂	I		I		I	I		Not shown	Karbovsky and Soroka 2014
								0.5778	Getman et al. 2001
Ca ₁₀ (VO ₄) ₆ Cl ₂	I		I		I	I		0.6062	Beck et al. 2006
								0.6076	Kreidler and Hummel 1970
$Ca_{10}(VO_4)_6Br_2$	I		I		I	I		0.6076	Baran 1972
$\mathrm{Sr}_{10}(\mathrm{VO}_4)_6\mathrm{F}_2$	I		I		I	I		0.6461	Knyazev et al. 2015
								0.6408	Zhang et al. 2015
								0.6426	ICDD 2004
								0.6442	Grisafe and Hum- mel 1970
$\mathrm{Sr}_{10}(\mathrm{VO}_4)_6\mathrm{OH}_2$	I		I		1	I		0.6505	Getman et al. 2007
								not seen	Marchenko and Getman 2003
								0.6478	Mayer et al. 1979
$Sr_{10}(VO_4)_6Cl_2$	I		I		I	I		0.6582	Knyazev et al. 2015
								0.6593	Beck et al. 2006
								0.6590	ICDD 2004
$Sr_{10}(VO_4)_6Br_2$	I		I		1	I		0.6699	Knyazev et al. 2015
								0.6695	Baran 1972
$Ba_{10}(VO_4)_6F_2$	I		I		I	I		0.7118	Chai 2020
								0.7320	ICDD 2004
								0.7385	Grisafe and Hum- mel 1970
$Ba_{10}(VO_4)_6OH_2$	I		I		I	I		Not shown	Krause 1955
$Ba_{10}(VO_4)_6Cl_2$	Ι		I		1	I		0.7460	Beck et al. 2006
								0.7488	Roh and Hong 2005
								0.7494	ICDD 2004

Chemical formula	$\Delta H^{\circ}_{\rm f,el}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$C^{\circ}_{p,m}$ F (J mol ⁻¹ K ⁻¹)	Reference	$\log K_{ m sp}$	Reference	$V_{\rm m}~({\rm nm}^3)$	Reference
$\mathrm{Ba}_{10}(\mathrm{VO}_4)_6\mathrm{Br}_2$	1		I		I		I		0.7555	Baran 1972
$Cd_{10}(VO_4)_6F_2$	I		I		I		I		0.5381	Karbovsky et al. 2014
$Cd_{10}(VO_4)_6OH_2$	I		I		I		I		0.5596	Karbovsky et al. 2014
Cd ₁₀ (VO ₄) ₆ Cl ₂	I		I		I		I		0.5798	Chernorukov et al. 2011
	I		I		I		I		0.5689	Karbovsky et al. 2014
$Cd_{10}(VO_4)_6Br_2$	I		I		I		I		0.5854	Sudarsanan et al. 1977
$Cd_{10}(VO_4)_6I_2$	I		I		I		I		0.5976	Sudarsanan et al. 1977
$Pb_{10}(VO_4)_6F_2$	I		Ι		Ι		I		0.6510	Oka et al. 2022
									Not shown	Nakamura et al. 2020
									0.6497	Kreidler and Hummel 1970
									0.6532	Grisafe and Hum- mel 1970
									0.6484	Merker and Won- dratschek 1957
$Pb_{10}(VO_4)_6OH_2$	I		Ι		I		I		0.6677	Engel 1970
$Pb_{10}(VO_4)_6Cl_2$	-7592	Puzio et al. 2021	1334.0 I	Puzio et al. 2021	867.4 0	Chernorukov et al. 2010	-188.7	Puzio et al. 2021	Not shown	Nakamura et al. 2020
	-7338	Chernorukov et al. 2010	1286.0 0	Chernorukov et al. 2010			-183.8	Topolska et al. 2021	0.6781	Antao and Dhali- wal 2018
							-172.0	Gerke et al. 2009	0.6761	Solecka et al. 2018
									0.6774	Okudera 2013
									0.6771	Chernorukov et al. 2011
									0.6727	Chernorukov et al. 2010
									0.6787	Trotter and Barnes 1958
									0.6761	Merker and Won- dratschek 1957

Table 1 (continued)

							;	•		
Chemical formula	$\Delta H^{\circ}_{\text{fel}}$ (kJ mol ⁻¹)	Reference	S° (J mol ⁻¹ K ⁻¹)	Reference	$C^{\circ}_{p,m}$ (J mol ⁻ K ⁻¹)	Reference	$\log K_{ m sp}$	Reference	(^c uu) ^m	Reference
$Pb_{10}(VO_4)_6Br_2$	1		I		I		I		Not shown	Nakamura et al. 2020
									0.6881	Merker and Won- dratschek 1957
$Pb_{9,85}(VO_4)_6I_{1.7}$	I		I		I		I		0.7025	Audubert et al. 1999
$Pb_{10}(VO_4)_6I_2$	-5436	Fleche 2002	1359.5	Fleche 2002	877.8	Fleche 2002			Not shown	Nakamura et al. 2020
									0.7024	White and Dong 2003
									0.7101	Fleche 2002
									0.7001	Merker and Won- dratschek 1957

+ 2X⁻; ICDD—International Center for Diffraction Data (PDF (1997) and PDF-2⁺(2004) database); *italics* – estimated values; **bold** – selected experimental

 $+ 6AO_4^{3-}$

 $\leftrightarrow 10Me^{2+}$

 $Me_{10}(AO_{4})$

values used in calculations below

Contributions to Mineralogy and Petrology (2022) 177:103

 $Ca_{10}(PO_4)_6X_2$. The correlation of $\Delta H^{\circ}_{f.el}$ of apatites with molar volume of apatite (V_m) is also apparent (Fig. 1B). So far, such relationships can be found within P-apatites. Gaps in experimental data do not allow a complete picture of these relationships for As- or V-apatites.

Correlation of V_m with ionic radius of halogen anion Х

The molar volume $V_{\rm m}$ is not yet known for all apatites e.g., $Ca_{10}(VO_4)_6I_2$, $Cd_{10}(AsO_4)_6I_2$ or $Ba_{10}(AsO_4)_6Br_2$ (Table 1). Glasser and Jenkins have proposed a method to calculate missing $V_{\rm m}$ values based on the sum of contributions of internally consistent single-ion volumes (Jenkins and Glasser 2003; Glasser and Jenkins 2008). The use of their method gives promising and accurate results with the uncertainty not exceeding $\pm 11\%$ compare to experimental V_m (Glasser and Jenkins 2008). Over the last 15 years, many of the experimental diffraction data have been published for not only phosphate but also arsenate and vanadate apatites. This allows the calculation of more experimental $V_{\rm m}$ values and verification of this approach.

In this work, we propose a different procedure for predicting $V_{\rm m}$ values for apatites whose structure has not yet been determined or for potential apatite-based structures predicted by Wang (2015) and Hartnett et al. (2019). The method is based on the linear correlation of the V_m value with the ionic radius (R_i) of the halides present at the X position (Fig. 2). In this procedure, all available experimental data of apatites and their synthetic analogs (exptlV_m) are divided into apatite subgroups based on the same substitution at Me^{2+} and AO_4^{3-} positions but different X. The subgroups should be considered separately within the X substitutions excluding OH (X = F, Cl, Br, I), e.g., Ca₁₀(PO₄)₆X₂, Pb₁₀(PO₄)₆X₂, Ca₁₀(AsO₄)₆X₂, Pb₁₀(AsO₄)₆X₂, $Ca_{10}(VO_4)_6X_2$, $Pb_{10}(VO_4)_6X_2$, etc. A complete dataset within apatite subgroups exists for the $Pb_{10}(AsO_4)_6X_2$, $Pb_{10}(VO_4)_6X_2$ and $Cd_{10}(VO_4)_6X_2$ (Fig. 2). Both visual inspection and Pearson correlation coefficient along with R² values greater than 0.99 indicate positive linear correlations. This positive correlation of V_m vs. R_i allows for interpolation and extrapolation within other apatite subgroups. Linear correlation was assumed for all apatite subgroups based on linearity within subgroups with the most available experimental data. If there are at least two known values of $exptlV_m$ within a subgroup, the parameters a and b of the linear regression between $exptlV_m$ and R_i of the halides can be calculated. The unknown values of $V_{\rm m}$ are predicted from the relationship (determined separately for each subgroup of apatites):

$$predV_m = a \times R_i + b \tag{1}$$

Fig. 1 A Plot of the experimental enthalpies of formation from elements ($\Delta H^{\circ}_{f,el}$) against molar mass of selected apatites showing the presence of populations (subgroups). B Example of a systematic relationship between $\Delta H^{\circ}_{\rm f,el}$ and $V_{\rm m}$ (based on arithmetic means of $\Delta H^{\circ}_{f,el}$ values compiled in Table 1)

Contributions to Mineralogy and Petrology (2022) 177:103

where $predV_{\rm m}$ is predicted molar volume of apatite and R_i is the ionic radius of element X (X = F⁻, Cl⁻, Br⁻, and I⁻; Table SI 1). Linear regression coefficients a and b are listed in Table SI 2. The results of calculations are presented in Fig. 2 as empty marks. Predicted molar volumes $(predV_m)$ are summarized in Table 2. These volumes will be used in calculations below as data equal to the experimental ones.

A comparison of the values obtained using the approach presented here $(predV_m)$ with those obtained using the Glasser–Jenkins (2008) method ($calcV_m$) and with the experimental values is presented in Table 2. Precision of prediction was estimated by the relative percentage difference. The difference between $exptlV_m$ and the same values calculated from the regression does not exceed 0.5% for any apatite considered. In contrast, the differences determined for the values calculated by the Glasser-Jenkins method are up to 10% for calcium phosphate apatites, 30% for lead phosphate apatites, or 20% for cadmium phosphate apatites. This large difference is partly because the volumes used by Glasser and Jenkins (2008) for Pb²⁺ and Cd²⁺ cations were not corrected (calibrated) but taken directly from Marcus (1987). This indicates that greater precision in predicting $V_{\rm m}$ values was achieved using the approach presented in this work.

Correlation of lattice energy U_{POT} with V_{m}

 $U_{\rm POT}$ is the energy change upon the formation of one mole of an ionic compound from its constituent ions in the gaseous state. Experimental lattice energy $(exptlU_{POT})$ can be determined using Born-Haber thermochemical cycles described in detail by Flora et al. (2004b). For those apatites for which experimentally determined $\Delta H^{\circ}_{f,el}$ is available, the *exptlU*_{POT}

values are summarized in Table 3. The thermochemical data necessary to determine $exptlU_{POT}$ are given in Table SI 3.

The lattice energies listed as $exptlU_{POT}$ in Table 3 were obtained from the lattice enthalpy ΔH_{latt} by correcting for the difference between enthalpy and lattice energy $U_{\rm POT}$ (Jenkins 2005). ΔH_{latt} involves correction of the U_{POT} term by an appropriate RT (where R is the gas constant and Tis the temperature in K; Jenkins and Liebman 2005). For $U_{\rm POT}$ extraction from the Born–Fajans–Haber cycle (which is essentially an enthalpy-based thermochemical cycle) the ΔH_{latt} must be transformed using an extension discussed by Jenkins et al. 1999. Finally, for F-, Cl-, Br- and I-apatites, $\Delta H_{\text{latt}} = U_{\text{POT.}}$ so we do not present ΔH_{latt} values separately (Jenkins et al. 1999).

Lattice energy can be calculated also as $calcU_{POT}$ using the improved Kapustinskii equation, a generalized version of which was given by Glasser and Jenkins (2000). This equation for an isostructural family of minerals requires no parameters other than the molar volume $V_{\rm m}$ (in nm³) and is reduced to the form:

$$\operatorname{calc} U_{\rm POT} \left({}^{\rm kJ} /_{\rm mol} \right) = \frac{26680}{\sqrt[3]{V_{\rm m}}}$$
(2)

Flora et al. (2004b) used this equation to calculate calcU-POT values for phosphate apatites. We have extended these calculations to As- and V-apatites using both experimental and predicted $V_{\rm m}$ (Table 3). The results are presented in Table 3 ($calcU_{POT}$) and in Fig. 3. The values calculated based on Eq. (2) differ both from $exptlU_{POT}$ and from intuitively expected numbers. The $U_{\rm POT}$ value depends not only on the morphology and distribution of the individual atoms

Fig.2 Correlation of $V_{\rm m}$ with the ionic radius of halogen X⁻ for selected apatite subgroups. Experimental data used for regression are plotted as solid marks. Values predicted based on the Eq. 1 are plotted as open symbols

Table 2Comparison of the
experimental molar volumes
with values calculated based on
Glasser and Jenkins (2008) and
values predicted in this work

Apatite	$exptlV_m$ or $predV_m$ (nm ³)	$calcV_{m}$ (nm ³)	% diff ¹	$predV_{\rm m}~({\rm nm}^3)$	% diff ²
Ca ₁₀ (PO ₄) ₆ F ₂	0.5246	0.5710	-9	0.5246	-0.0023
Ca ₁₀ (PO ₄) ₆ Cl ₂	0.5430	0.6026	-11	0.5429	0.0095
$Ca_{10}(PO_4)_6Br_2$	0.5486	0.6156	-12	0.5487	-0.0072
$Ca_{10}(PO_4)_6I_2$	0.5578	0.6406	-15	0.5578	0.0000
$Sr_{10}(PO_4)_6F_2$	0.5967	0.5830	2	0.5967	0.0052
$Sr_{10}(PO_4)_6Cl_2$	0.6152	0.6146	0	0.6153	-0.0211
$Sr_{10}(PO_4)_6Br_2$	0.6213	0.6276	-1	0.6212	0.0159
$Sr_{10}(PO_4)_6I_2$	0.6305	0.6526	-4	0.6305	0.0000
$Ba_{10}(PO_4)_6F_2$	0.6874	0.6400	7	0.6868	0.0933
Ba ₁₀ (PO ₄) ₆ Cl ₂	0.7008	0.6716	4	0.7035	-0.3843
$Ba_{10}(PO_4)_6Br_2$	0.7107	0.6846	4	0.7087	0.2887
$Ba_{10}(PO_4)_6I_2$	0.7170	0.7096	1	0.7170	0.0000
$Cd_{10}(PO_4)_6F_2$	0.4970	0.4160	16	0.4970	-0.0096
$Cd_{10}(PO_4)_6Cl_2$	0.5211	0.4476	14	0.5209	0.0385
$Cd_{10}(PO_4)_6Br_2$	0.5282	0.4606	13	0.5284	-0.0289
$Cd_{10}(PO_4)_6I_2$	0.5403	0.4856	10	0.5403	0.0000
$Pb_{10}(PO_4)_6F_2$	0.6010	0.4660	22	0.6008	0.0286
$Pb_{10}(PO_4)_6Cl_2$	0.6350	0.4976	22	0.6357	-0.1136
$Pb_{10}(PO_4)_6Br_2$	0.6472	0.5106	21	0.6467	0.0849
$Pb_{10}(PO_4)_6I_2$	0.6641	0.5356	19	0.6641	0.0000
$Ca_{10}(AsO_4)_6F_2$	0.5721	0.6238	-9	0.5721	0.0000
$Ca_{10}(AsO_4)_6Cl_2$	0.5984	0.6554	-10	0.5984	0.0000
$Ca_{10}(AsO_4)_6Br_2$	0.6066	0.6684	-10	0.6066	0.0000
$Ca_{10}(AsO_4)_6I_2$	0.6198	0.6934	-12	0.6198	0.0000
$Sr_{10}(AsO_4)_6F_2$	0.6392	0.6358	1	0.6392	0.0000
$Sr_{10}(AsO_4)_6Cl_2$	0.6556	0.6674	-2	0.6556	0.0000
$Sr_{10}(AsO_4)_6Br_2$	0.6607	0.6804	-3	0.6607	0.0000
$Sr_{10}(AsO_4)_6I_2$	0.6690	0.7054	-5	0.6690	0.0000
$Ba_{10}(AsO_4)_6F_2$	0.7348	0.6928	6	0.7348	0.0000
$Ba_{10}(AsO_4)_6Cl_2$	0.7470	0.7244	3	0.7470	0.0000
$Ba_{10}(AsO_4)_6Br_2$	0.7508	0.7374	2	0.7508	0.0000
$\operatorname{Ba}_{10}(\operatorname{AsO}_4)_6 \operatorname{I}_2$	0.7569	0.7624	-1	0.7569	0.0000
$Cd_{10}(AsO_4)_6F_2$	0.5465	0.4688	14	0.5465	0.0000
$Cd_{10}(AsO_4)_6Cl_2$	0.5689	0.5004	12	0.5689	0.0000
$Cd_{10}(AsO_4)_6Br_2$	0.5759	0.5134	11	0.5759	0.0000
$Cd_{10}(AsO_4)_6I_2$	0.5871	0.5384	8	0.5871	0.0000
$Pb_{10}(AsO_4)_6F_2$	0.6516	0.5188	20	0.6515	0.0214
$Pb_{10}(AsO_4)_6Cl_2$	0.6792	0.5504	19	0.6793	-0.0119
$Pb_{10}(AsO_4)_6Br_2$	0.6876	0.5634	18	0.6880	-0.0544
$Pb_{10}(AsO_4)_6I_2$	0.7022	0.5884	16	0.7019	0.0449
$Ca_{10}(VO_4)_6F_2$	0.5725	0.6268	-9	0.5725	0.0000
$Ca_{10}(VO_4)_{\epsilon}Cl_2$	0.6062	0.6584	-9	0.6062	0.0000
$Ca_{10}(VO_4)_6Br_2$	0.6167	0.6714	-9	0.6167	0.0000
$Ca_{10}(VO_4)_6I_2$	0.6335	0.6964	-10	0.6335	0.0000
$Sr_{10}(VO_4)_{c}F_2$	0.6408	0.6388	0	0.6403	0.0768
$Sr_{10}(VO_4)_{\epsilon}Cl_2$	0.6593	0.6704	-2	0.6614	-0.3134
$Sr_{10}(VO_4)_6Br_2$	0.6695	0.6834	-2	0.6679	0.2351
$Sr_{10}(VO_4) \ge I_2$	0.6785	0.7084	-4	0.6785	0.0000
$Ba_{10}(VO_4)_{c}F_2$	0.7118	0.6958	2	0.7119	-0.0181
$Ba_{10}(VO_4)_6Cl_2$	0.7460	0.7274	2	0.7455	0.0726

Table 2 (continued)

Table 3Comparison of theexperimental lattice energieswith values calculated using theimproved Kapustinskii equation(Flora et al. 2004b) and valuespredicted in this work

Apatite	$exptlV_m$ or $predV_m$ (nm ³)	$calcV_{m}$ (nm ³)	% diff ¹	$predV_{\rm m}~({\rm nm}^3)$	% diff ²
$Ba_{10}(VO_4)_6Br_2$	0.7555	0.7404	2	0.7559	-0.0546
$Ba_{10}(VO_4)_6I_2$	0.7727	0.7654	1	0.7727	0.0000
$Cd_{10}(VO_4)_6F_2$	0.5381	0.4718	12	0.5379	0.0384
$Cd_{10}(VO_4)_6Cl_2$	0.5689	0.5034	12	0.5715	-0.4589
$Cd_{10}(VO_4)_6Br_2$	0.5854	0.5164	12	0.5820	0.5966
Cd ₁₀ (VO ₄) ₆ I ₂	0.5976	0.5414	9	0.5987	-0.1823
$Pb_{10}(VO_4)_6F_2$	0.6484	0.5218	20	0.6482	0.0370
$Pb_{10}(VO_4)_6Cl_2$	0.6771	0.5534	18	0.6781	-0.1415
$Pb_{10}(VO_4)_6Br_2$	0.6881	0.5664	18	0.6874	0.0997
$Pb_{10}(VO_4)_6I_2$	0.7024	0.5914	16	0.7024	0.0045

Note: $exptlV_m$ – experimental data extracted from Table 1; calcV_m – based on Glasser and Jenkins (2008); $predV_m$ – based on Eq. 1; %diff ¹ = 100 · ($exptlV_m$ – calcV_m) / $exptlV_m$; %diff ² = 100 · ($exptlV_m$ – $predV_m$) / $exptlV_m$; the data in the first column will be used in further calculations

Apatite	exptlU _{POT} or <i>pre-</i> dU_{POT} (kJ mol ⁻¹)	calcU _{POT} (kJ mol ⁻¹)	$\%$ diff 1	<i>predU</i> _{POT} (kJ mol ⁻¹)	% diff ²
Ca ₁₀ (PO ₄) ₆ F ₂	34,158	33,080	3	34,160	-0.01
Ca10(PO4)6Cl2	33,865	32,703	4	33,856	0.03
$Ca_{10}(PO_4)_6Br_2$	33,756	32,591	4	33,763	-0.02
$Ca_{10}(PO_4)_6I_2$	33,611	32,411	4	33,611	0.00
$Sr_{10}(PO_4)_6F_2$	32,837	31,691	3	32,837	0.00
$Sr_{10}(PO_4)_6Cl_2$	32,516	31,370	4	32,516	0.00
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	32,411	31,268	4	32,411	0.00
$Sr_{10}(PO_4)_6I_2$	32,251	31,114	4	32,251	0.00
$Ba_{10}(PO_4)_6F_2$	31,372	30,231	4	31,372	0.00
Ba10(PO4)6Cl2	31,104	30,037	4	31,104	0.00
$Ba_{10}(PO_4)_6Br_2$	30,905	29,896	4	30,905	0.00
$Ba_{10}(PO_4)_6I_2$	30,779	29,809	3	30,779	0.00
$Cd_{10}(PO_4)_6F_2$	36,408	33,682	7	36,408	0.00
$Cd_{10}(PO_4)_6Cl_2$	36,126	33,155	8	36,126	0.00
$Cd_{10}(PO_4)_6Br_2$	36,043	33,006	8	36,043	0.00
$Cd_{10}(PO_4)_6I_2$	35,902	32,758	9	35,902	0.00
$Pb_{10}(PO_4)_6F_2$	33,603	31,615	6	33,600	0.01
$Pb_{10}(PO_4)_6Cl_2$	33,435	31,040	7	33,445	-0.03
$Pb_{10}(PO_4)_6Br_2$	33,397	30,844	8	33,389	0.02
$Pb_{10}(PO_4)_6I_2$	33,312	30,580	8	33,312	0.00

Note: %diff 1 = 100 · (exptlU_{POT} - calcU_{POT}) / exptlU_{POT}; %diff 2 = 100 · (exptlU_{POT} - *predU*_{POT}) / expt-IU_{POT}; the data from the first column will be used in further calculations

in the structure but also to a large extent on the chemical nature of these atoms, which is not included in the calculations. For example, for the apatite pair $Ca_{10}(PO_4)_6F_2$ and $Cd_{10}(PO_4)_6Cl_2$, the experimentally determined *exptlU*_{POT} values are 17,124 and 18,063 kJ mol⁻¹, respectively. However, since the difference in *exptlV*_m for these end-members is small (on the order of 0.4%), the *calcU*_{POT} values determined for these apatites from Eq. (2) are 16,554 and 16,577 kJ mol⁻¹, respectively. Not only do these values

deviate significantly from experimental determinations, but they are also almost indistinguishable from one another. This is, among other things, an artifact of using the molar volume $V_{\rm m}$ as the only variable in Eq. (2).

In contrast, the plot of $exptlU_{POT}$ against V_m shows that there is a linear relationship between them within the distinct apatite subgroups (Fig. 3). The different slopes of the trend lines show the varying effect of the halogen on the thermochemical behavior for apatite subgroups. Some apatites have **Fig. 3** Correlation of U_{POT} with V_m for selected phosphate apatite subgroups. A row of stars represents values of *calcU*_{POT} estimated using Eq. 2. Values predicted using the Eq. 3 are open symbols

very similar molar volumes but completely different chemical compositions. The linear correlations shown in Fig. 3 can be used for interpolation and extrapolation to predict missing U_{POT} values. The steps in determining U_{POT} and the prediction process are similar to the prediction of V_m . The *exptlU*_{POT} data of apatites and their synthetic analogs should be divided into apatite subgroups. The subgroups should be considered separately within the X substitutions excluding OH (X=F, Cl, Br, I), e.g., Ca₁₀(PO₄)₆X₂, Pb₁₀(PO₄)₆X₂, Ca₁₀(AsO₄)₆X₂, Pb₁₀(AsO₄)₆X₂, Ca₁₀(VO₄)₆X₂, Pb₁₀(VO₄)₆X₂, etc. If there are at least two known values of *exptlU*_{POT} within a subgroup, the parameters a and b of the linear regression between *exptlU*_{POT} and the molar volume V_m are calculated. Lattice energy *predU*_{POT} is predicted from the equation:

$$predU_{POT} = a \times V_m + b \tag{3}$$

The *predU*_{POT} values obtained by this method are plotted in Fig. 3 as empty marks. Linear regression coefficients a and b along with Pearson coefficient *R* and *R*² are listed in Table SI 4. A comparison of the *predU*_{POT} values and *calcU*_{POT} obtained using Eq. (2) with the experimental values shows that greater precision in predicting U_{POT} values was achieved (as assessed by the relative percentage deviation from experimental data). The difference between *exptlU*_{POT} and the values calculated from the regression does not exceed 0.05% for any apatite considered. In contrast, the differences calculated using the values computed by the Glasser–Jenkins (2000) method are up to 4% for calcium phosphate apatites, 8% for lead phosphate apatites, or 9% for cadmium phosphate apatites. All the *predU*_{POT} values summarized in Table 3 will be used in further calculations below on par with the experimental data.

Prediction of $\Delta H^{\circ}_{f,el}$ using U_{POT}

Figure 4 shows examples of the linear correlation of $\Delta H^{\circ}_{\text{f,el}}$ of apatites as a function of U_{POT} for selected phosphate

apatites. The linearity of these correlations is enforced by the Born–Haber cycle. Phosphate apatites were chosen to present these correlations. This is currently impossible for As- and V-apatites due to the lack of data. Using all the *exptlU*_{POT} and the *predU*_{POT} calculated from Eq. 3, the *pred* $\Delta H^{\circ}_{f,el}$ can be determined by extrapolating the linear relationships shown in Fig. 4:

$$pred\Delta H^{\circ}_{f,el} = a \times U_{POT} + b \tag{4}$$

The linear regression coefficients given in Table SI 5 were used for the calculations according to Eq. 4. The values obtained by this method are plotted in Fig. 4 as empty marks. A comparison of the $pred\Delta H^{\circ}_{f,el}$ with the experimental ones is shown in Table 4. The discrepancies do not exceed 0.1% relative error. This correlation allowed the prediction of eight, so far unknown, $\Delta H^{\circ}_{f,el}$ values for the following end-members: Ca₁₀(PO₄)₆I₂, Sr₁₀(PO₄)₆Br₂, Sr₁₀(PO₄)₆I₂, and Pb₁₀(PO₄)₆I₂.

Prediction of $\Delta H^{\circ}_{f,el}$ of apatites using $\Delta H^{\circ}_{f,el}$ of X⁻

The correlations of $\Delta H^{\circ}_{f,el}$ with $exptlU_{POT}$ do not allow the prediction of missing $\Delta H^{\circ}_{f,el}$ for As- and V-apatites even in the case when $\Delta H^{\circ}_{f,el}$ is available: the enthalpy of formation of the gaseous AsO₄³⁻ and VO₄³⁻ ions is still unknown, making it impossible to determine $exptlU_{POT}$ using Born–Haber cycles. Moreover, "ab initio " calculations are also not feasible due to the structural complexity of these particular apatites. To address this issue, we explored a linear relationship between $\Delta H^{\circ}_{f,el}$ of apatite and $\Delta H^{\circ}_{f,el}$ of monovalent anion X⁻.

The experimental $\Delta H^{\circ}_{\rm f,el}$ from Table 1 and the predictions from Table 4 were used to plot these relationships (Fig. 5). In addition to halides, the OH⁻ anion and OH-apatites were used because they fit the linear trends with $R^2 > 0.99$ (except **Fig. 4** Correlation of $\Delta H^{\circ}_{f,el}$ with U_{POT} (from the first column in Table 3) within apatite subgroups used for prediction of missing $\Delta H^{\circ}_{f,el}$. Values predicted using the Eq. 4 are plotted as open symbols. Error bars from literature where available

for Ba₁₀(PO₄)₆X₂ where $R^2 = 0.97$; Table SI 6). The extrapolation of the regression lines allowed to obtain a prediction of $\Delta H^{\circ}_{\rm f,el}$ for calcium and lead As-apatites. For calculation of predicted $\Delta H^{\circ}_{\rm f,el}$ from the equation:

$$pred\Delta H^{\circ}_{f,el} = a \times \Delta H^{\circ}_{f, el \text{ of } X^{-}} + b$$
(5)

The $\Delta H^{\circ}_{f,el}$ of X⁻ from Table SI 1 and linear correlation coefficients from Table SI 6 were used. The existing and predicted $\Delta H^{\circ}_{f,el}$ data are compared in Table 5. The difference

Table 4 Comparison of the experimental enthalpies of formation with values predicted using $U_{\rm POT}$

Apatite	$\frac{exptl\Delta H^{\circ}_{f,el}}{mol^{-1}}$ (kJ	$^{a}pred\Delta H^{\circ}_{\rm f,el} ({\rm kJ} { m mol}^{-1})$	% diff
Ca ₁₀ (PO ₄) ₆ F ₂	-13,545	-13,546	-0.01
Ca10(PO4)6Cl2	-13,201	-13,196	0.04
$Ca_{10}(PO_4)_6Br_2$	-13,063	-13,067	-0.03
$Ca_{10}(PO_4)_6I_2$	_	-12,893	-
$Sr_{10}(PO_4)_6F_2$	-13,604	-13,604	0.00
$Sr_{10}(PO_4)_6Cl_2$	-13,233	-13,233	0.00
$Sr_{10}(PO_4)_6Br_2$	_	-13,111	-
Sr ₁₀ (PO ₄) ₆ I ₂	_	-12,926	-
$Ba_{10}(PO_4)_6F_2$	-13,564	-13,564	0.00
Ba ₁₀ (PO ₄) ₆ Cl ₂	-13,246	-13,246	0.00
$Ba_{10}(PO_4)_6Br_2$	_	-13,009	-
$Ba_{10}(PO_4)_6I_2$	_	-12,859	-
$Cd_{10}(PO_4)_6F_2$	-8795	-8795	0.00
$Cd_{10}(PO_4)_6Cl_2$	-8463	-8463	0.00
$Cd_{10}(PO_4)_6Br_2$	-	-8365	-
$Cd_{10}(PO_4)_6I_2$	-	-8199	-
$Pb_{10}(PO_4)_6F_2$	-8466	-8468	-0.02
$Pb_{10}(PO_4)_6Cl_2$	-8248	-8240	0.10
$Pb_{10}(PO_4)_6Br_2$	-8180	-8187	-0.08
$Pb_{10}(PO_4)_6I_2$	-	-8072	-

Note: $exptl\Delta H^{\circ}_{f,el}$ – experimental data extracted from Table 1; $apred\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 4; %diff=100 · ($exptl\Delta H^{\circ}_{f,el} - apred\Delta H^{\circ}_{f,el}$) / $exptl\Delta H^{\circ}_{f,el}$ between $exptl\Delta H^{\circ}_{f,el}$ and the values calculated from the regression does not exceed 0.27% for any apatite considered. The $\Delta H^{\circ}_{f,el}$ values were predicted for the following apatites: $Ca_{10}(AsO_4)_6Cl_2$, $Ca_{10}(AsO_4)_6Br_2$, $Ca_{10}(AsO_4)_6I_2$, $Pb_{10}(AsO_4)_6Br_2$, and $Pb_{10}(AsO_4)_6I_2$. Linear extrapolation from only two points was used for $Ca_{10}(AsO_4)_6X_2$. The linear correlation was assumed based on the linearity within other apatite subgroups.

Prediction of $\Delta H^{\circ}_{f,el}$ of apatites using $\Delta H^{\circ}_{f,el}$ of AO₄³⁻

Due to lack of data, the prediction methods presented above do not allow estimation of $\Delta H^{\circ}_{f,el}$ for V-apatites. Only two experimental $\Delta H^{\circ}_{f,el}$ for the synthetic vanadinite analog Pb₁₀(VO₄)₆Cl₂ are known. Therefore, an attempt was made to use the relationship between $\Delta H^{\circ}_{f,el}$ of apatite and $\Delta H^{\circ}_{f,el}$ of the AO₄³⁻ anion. The availability of experimental data allows to plot such a dependence only for lead apatites Pb₁₀(AO₄)₆Cl₂, where A = P, V, or As (Fig. 6). Since ideal linear fit is apparent ($R^2 = 1.00$), we hypothesize that linear correlation also exists for other apatite subgroups, with the same Me and X but different A. The lines drawn for the various P- and As-apatites (Fig. 7) allow to

Fig. 5 Correlation of the $\Delta H^{\circ}_{f,el}$ of apatites vs. the $\Delta H^{\circ}_{f,el}$ of anions X⁻. Experimental data and values predicted using Eq. 4 (Table 4) were used to plot regression lines (full symbols). Empty marks indicate values calculated from Eq. 5

Table 5 Comparison of the experimental enthalpies of formation and selected $pred\Delta H^{\circ}_{f,el}$ from Table 4 with values predicted using $\Delta H^{\circ}_{f,el}$ of monovalent anion X⁻

Apatite	$exptl\Delta H^{\circ}_{f,el}$ and $^{a}pred\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹)	$^{b}pred\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹)	% diff
$Ca_{10}(PO_4)_6F_2$	-13,545.0	-13,550.1	0.0
Ca ₁₀ (PO ₄) ₆ OH ₂	-13,292.0	-13,308.5	-0.1
Ca10(PO4)6Cl2	-13,200.8	-13,164.2	0.3
$Ca_{10}(PO_4)_6Br_2$	-13,063.0	-13,059.5	0.0
$Ca_{10}(PO_4)_6I_2$	-12,892.7	-12,911.4	-0.1
$Sr_{10}(PO_4)_6F_2$	-13,604.0	-13,618.7	-0.1
Sr ₁₀ (PO ₄) ₆ OH ₂	-13,373.0	-13,364.9	0.1
$Sr_{10}(PO_4)_6Cl_2$	-13,233.0	-13,213.3	0.1
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	-13,111.5	-13,103.2	0.1
Sr ₁₀ (PO ₄) ₆ I ₂	-12,926.3	-12,947.6	-0.2
$Ba_{10}(PO_4)_6F_2$	-13,564.0	-13,584.4	-0.2
Ba ₁₀ (PO ₄) ₆ OH ₂	-13,309.0	-13,318.3	-0.1
$Ba_{10}(PO_4)_6Cl_2$	-13,246.0	-13,159.4	0.7
$Ba_{10}(PO_4)_6Br_2$	-13,008.9	-13,044.0	-0.3
$Ba_{10}(PO_4)_6I_2$	-12,859.1	-12,880.9	-0.2
$Cd_{10}(PO_4)_6F_2$	-8795.0	-8797.7	0.0
$Cd_{10}(PO_4)_6OH_2$	-8565.8	-8577.6	-0.1
$Cd_{10}(PO_4)_6Cl_2$	-8463.0	-8446.1	0.2
$Cd_{10}(PO_4)_6Br_2$	-8365.2	-8350.7	0.2
$Cd_{10}(PO_4)_6I_2$	-8198.8	-8215.7	-0.2
$Pb_{10}(PO_4)_6F_2$	-8466.0	-8471.9	-0.1
$Pb_{10}(PO_4)_6OH_2$	-8325.2	-8325.0	0.0
$Pb_{10}(PO_4)_6Cl_2$	-8248.0	-8237.3	0.1
$Pb_{10}(PO_4)_6Br_2$	-8180.0	-8173.6	0.1
$Pb_{10}(PO_4)_6I_2$	-8072.1	-8083.6	-0.1
$Ca_{10}(AsO_4)_6F_2$	-11,258.8	-11,258.8	0.0
Ca10(AsO4)6OH2	-10,934.7	-10,934.7	0.0
Ca10(AsO4)6Cl2	-	-10,741.1	-
$Ca_{10}(AsO_4)_6Br_2$	-	-10,600.6	-
Ca10(AsO4)6I2	-	-10,401.9	-
$Pb_{10}(AsO_4)_6F_2$	-6288.0	-6286.8	0.0
Pb ₁₀ (AsO ₄) ₆ OH ₂	-6060.0	-6063.3	-0.1
$Pb_{10}(AsO_4)_6Cl_2$	-5931.8	-5929.8	0.0
Pb ₁₀ (AsO ₄) ₆ Br ₂	-	-5832.9	-
$Pb_{10}(AsO_4)_6I_2$	_	-5695.8	-

Note: **exptl** $\Delta H^{\circ}_{f,el}$ – experimental data extracted from Table 1; ^a*pred* $\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 4; ^b*pred* $\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 5; %diff=100 · (**exptl** $\Delta H^{\circ}_{f,el}$ -^b*pred* $\Delta H^{\circ}_{f,el}$) / **exptl** $\Delta H^{\circ}_{f,el}$ or %diff=100 · (^a*pred* $\Delta H^{\circ}_{f,el}$ -^b*pred* $\Delta H^{\circ}_{f,el}$) / ^a*pred* $\Delta H^{\circ}_{f,el}$

determine the $\Delta H^{\circ}_{f,el}$ of their vanadate counterparts. Linear regression coefficient a and b given in Table SI 7 were used to calculate $pred\Delta H^{\circ}_{f,el}$ of V-apatites using Eq. 6:

$$pred\Delta H^{\circ}_{\rm f,el} = a \times \Delta H^{\circ}_{\rm f, \ el \ of \ AO_4^{3-}} + b \tag{6}$$

Fig. 6 Correlation of experimental $\Delta H^{\circ}_{f,el}$ of Pb-apatites with $\Delta H^{\circ}_{f,el}$ of tetrahedral anion AO₄³⁻, where A = P, V, Cl

The $\Delta H^{\circ}_{f,el}$ of AO₄³⁻ were extracted from Table SI 3. The results are summarized in Table 6. It is important to note that prediction of $\Delta H^{\circ}_{f,el}$ for V-apatites would not have been possible without firstly estimating the values of $\Delta H^{\circ}_{f,el}$ by the predictive methods described above.

Discussion

Experimental data selected from Table 1 and predicted values recommended in this work (Table 7) allow for comparison of $\Delta H^{\circ}_{\rm f,el}$ and presentation of the linear relationships observed within apatite subgroups (Fig. 8). The dependence of $\Delta H^{\circ}_{\rm f,el}$ on the molecular weight is apparent. The heavier halide substituted within any of the apatite subgroups the less negative $\Delta H^{\circ}_{\rm f,el}$ (apatite is less stable). This relationship is identical within all apatite subgroups studied but the intensity of this effect varies as evidenced by different slope coefficients of the trend lines. This observation also applies to the molecular weight of whole apatite. The lightest phosphate apatites have the most negative $\Delta H^{\circ}_{\rm f,el}$. Therefore, $Sr_{10}(PO_4)_6F_2$ is enthalpically the most stable of all the apatites studied while $Pb_{10}(AsO_4)_6I_2$ is the least stable one.

The mass of the tetrahedral anion AO_4^{3-} and the mass of the anion at the X position strongly and equally affect the $\Delta H^{\circ}_{\rm f,el}$ but the mass of the metal cation Me²⁺ does not influence $\Delta H^{\circ}_{\rm f,el}$ unambiguously. Apatites containing alkaline earth metal cations (Ca²⁺, Sr²⁺, Ba²⁺) are more enthalpically stable than apatites of other metals, e.g., Pb and Cd (but also Zn, Cu, Fe, see Drouet 2015, 2019), regardless of

Table 6Compilation of theexperimental and predictedenthalpies of formation forphosphate, arsenate andvanadate Ca- and Pb-apatites

Apatite	exptl Δ H ° _{f,el} and ^{<i>a</i>} <i>pred</i> Δ H ° _{f,el} (kJ mol ⁻¹) A = P	exptl$\Delta H^{\circ}_{f,el}$ and ${}^{b}pred\Delta H^{\circ}_{f,el}$ (kJ mol⁻¹) A = As	exptl $\Delta H^{\circ}_{f,el}$ and $^{c}pred\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹) A = V
Ca10(AO4)6F2	-13,545	-11,259	-12,761
Ca ₁₀ (AO ₄) ₆ OH ₂	-13,292	-10,935	-12,484
Ca ₁₀ (AO ₄) ₆ Cl ₂	-13,201	-10,741	-12,357
$Ca_{10}(AO_4)_6Br_2$	-13,063	-10,601	-12,218
$Ca_{10}(AO_4)_6I_2$	-12,893	-10,402	-12,038
$Pb_{10}(AO_4)_6F_2$	-8466	-6288	-7719
Pb ₁₀ (AO ₄) ₆ OH ₂	-8325	-6060	-7548
$Pb_{10}(AO_4)_6Cl_2$	-8248	-5932	-7465
$Pb_{10}(AO_4)_6Br_2$	-8180	-5833	-7375
$Pb_{10}(AO_4)_6I_2$	-8072	-5696	-7257

Note: **exptl** $\Delta H^{\circ}_{f,el}$ – experimental data extracted from Table 1; ${}^{a}pred\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 4; ${}^{b}pred\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 5; ${}^{c}pred\Delta H^{\circ}_{f,el}$ – calculated based on Eq. 6

Table 7 Enthalpy of formation from elements $\Delta H^{\circ}_{f,el}$ for apatites recommended for use in thermodynamic calculations (recom $\Delta H^{\circ}_{f,el}$) in comparison with data obtained by two other prediction methods: ThermAP (Drouet 2015) and SSA (Glasser 2019)

Apatite	$recom\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹)	ThermAP $\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹)	% diff ¹	SSA $\Delta H^{\circ}_{f,el}$ (kJ mol ⁻¹)	% diff ²
Ca ₁₀ (PO ₄) ₆ F ₂	-13,545.0	-13,598.0	-0.39	-13,590.4	-0.34
Ca ₁₀ (PO ₄) ₆ OH ₂	-13,292.0	-13,373.0	-0.61	-13,348.5	-0.43
$Ca_{10}(PO_4)_6Cl_2$	-13,200.8	-13,258.0	-0.43	-13,157.8	0.33
$Ca_{10}(PO_4)_6Br_2$	-13,063.0	-12,833.0	1.76	-13,046.2	0.13
$Ca_{10}(PO_4)_6I_2$	-12,892.7	-	-	-12,895.9	-0.02
$Sr_{10}(PO_4)_6F_2$	-13,604.0	-13,604.0	0.00	-13,585.0	0.14
$Sr_{10}(PO_4)_6OH_2$	-13,373.0	-13,379.0	-0.04	-13,327.7	0.34
$Sr_{10}(PO_4)_6Cl_2$	-13,233.0	-13,265.0	-0.24	-13,197.6	0.27
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{Br}_2$	-13,111.5	-12,839.0	2.08	-13,086.3	0.19
$\mathrm{Sr}_{10}(\mathrm{PO}_4)_6\mathrm{I}_2$	-12,926.3	-	-	-12,926.8	0.00
$Ba_{10}(PO_4)_6F_2$	-13,564.0	-13,558.0	0.04	-13,483.1	0.60
Ba ₁₀ (PO ₄) ₆ OH ₂	-13,309.0	-13,333.0	-0.18	-13,220.7	0.66
Ba10(PO4)6Cl2	-13,246.0	-13,218.0	0.21	-13,135.2	0.84
$Ba_{10}(PO_4)_6Br_2$	-13,008.9	-12,793.0	1.66	-13,033.3	-0.19
$Ba_{10}(PO_4)_6I_2$	-12,859.1	-	-	-12,878.1	-0.15
$Cd_{10}(PO_4)_6F_2$	-8795.0	-8808.0	-0.15	-8686.4	1.23
$Cd_{10}(PO_4)_6OH_2$	-8565.8	-8583.0	-0.20	-8546.7	0.22
$Cd_{10}(PO_4)_6Cl_2$	-8463.0	-8469.0	-0.07	-8377.5	1.01
$Cd_{10}(PO_4)_6Br_2$	-8365.2	-8043.0	3.85	-8302.2	0.75
$Cd_{10}(PO_4)_6I_2$	-8198.8	-	-	-8189.0	0.12
$Pb_{10}(PO_4)_6F_2$	-8466.0	-8503.0	-0.44	-8944.9	-5.66
Pb ₁₀ (PO ₄) ₆ OH ₂	-8325.2	-8278.0	0.57	-8796.9	-5.67
$Pb_{10}(PO_4)_6Cl_2$	-8248.0	-8164.0	1.02	-8640.3	-4.76
$Pb_{10}(PO_4)_6Br_2$	-8180.0	-7738.0	5.40	-8559.6	-4.64
$Pb_{10}(PO_4)_6I_2$	-8072.1	-	-	-8456.4	-4.76
$Ca_{10}(AsO_4)_6F_2$	-11,258.8	-	-	-11,124.1	1.20
Ca10(AsO4)6OH2	-10,934.7	-	-	-10,882.2	0.48
Ca10(AsO4)6Cl2	-10,741.1	-	-	-10,691.5	0.46
$Ca_{10}(AsO_4)_6Br_2$	-10,600.6	-	-	-10,579.9	0.20
$Ca_{10}(AsO_4)_6I_2$	-10,401.9	-	-	-10,429.6	-0.27
$Pb_{10}(AsO_4)_6F_2$	-6288.0	-	-	-6004.6	4.51
Pb ₁₀ (AsO ₄) ₆ OH ₂	-6060.0	-	-	-5856.6	3.36
Pb10(AsO4)6Cl2	-5931.8	-	-	-5700.0	3.91
$Pb_{10}(AsO_4)_6Br_2$	-5832.9	-	-	-5619.3	3.66
$Pb_{10}(AsO_4)_6I_2$	-5695.8	-	-	-5516.1	3.16
$Ca_{10}(VO_4)_6F_2$	-12,761	-	-	-12,561.8	1.56
$Ca_{10}(VO_4)_6OH_2$	-12,484	-	-	-12,319.9	1.31
$Ca_{10}(VO_4)_6Cl_2$	-12,357	-	-	-12,129.2	1.84
$Ca_{10}(VO_4)_6Br_2$	-12,218	-	-	-12,017.6	1.64
$Ca_{10}(VO_4)_6I_2$	-12,038	-	-	-11,867.3	1.42
$Pb_{10}(VO_4)_6F_2$	-7719	-	-	-	-
$Pb_{10}(VO_4)_6OH_2$	-7548	-	-	-	-
$Pb_{10}(VO_4)_6Cl_2$	-7465	-	-	-	-
$Pb_{10}(VO_4)_6Br_2$	-7375	-	-	-	-
$Pb_{10}(VO_4)_6I_2$	-7257	-	-	-	-

Note: bold – experimental data extracted from Tab. 1; *italics* – values predicted in this work; %diff ¹ = 100 · (ThermAP $\Delta H^{\circ}_{f,el}$ —recom $\Delta H^{\circ}_{f,el}$) / recom $\Delta H^{\circ}_{f,el}$; %diff ²=100 · (SSA $\Delta H^{\circ}_{f,el}$ —recom $\Delta H^{\circ}_{f,el}$) / recom $\Delta H^{\circ}_{f,el}$; %diff ²=100 · (SSA $\Delta H^{\circ}_{f,el}$ —recom $\Delta H^{\circ}_{f,el}$) /

available

= 0.994

1.000

= 1.000

0.80

0.70

Br

 $Sr_{10}(PO_4)_6X_2$

substitution at the A or X position. However, the difference between ΔH°_{fel} of phosphate apatites containing Ca²⁺, Sr²⁺ or Ba²⁺ is minimal compared to the differences with other apatites (even though the difference in the molecular mass of these cations is very pronounced, and the contribution of the cation to the formula is the largest). This may indicate that it is the chemical character of the Me²⁺ bond in the apatite structure that has also a strong effect on the ΔH°_{fel} . The chemical character of the bonds is similar within alkali earth elements (Ca^{2+} , Sr^{2+} , and Ba^{2+}) and different for heavy metals (Pb^{2+} , Cd^{2+} , etc.).

Hydroxylapatites fit well into linear regression line in the relationship between $\Delta H^{\circ}_{f,el}$ of apatite and $\Delta H^{\circ}_{f,el}$ of X^- (Fig. 8A). This is somewhat obvious since the enthalpy of X^{-} is the component for the calculation of the enthalpy of apatite formation. Such complete linear dependencies are rare. Deviations of hydroxylapatites from the trend line are more often observed as in the case of $\Delta H^{\circ}_{f,el}$ of apatite versus $V_{\rm m}$ (Fig. 8B). This reflects the dissimilarity of the OH⁻ anion from the halide anion, due, among other things, to the anisotropy of the charge distribution. The presence of such an anion in the hexagonal tunnel of the apatite crystalline structure imposes a higher energy penalty resulting in higher $\Delta H^{\circ}_{f,el}$ (more endothermic). The presence of H⁺ on the OH⁻ group can also lead to hydrogen bonding effects within apatite channels, probably causing a stabilizing effect. Additionally, the OH⁻ ions in the X-position ions in the channels within the apatite structure do not occupy the same positions in the z value along the c-axis. A larger X-site anion results in more separation from the mirror plane of the triangular cationic II sites.

A $Pb_{10}(AsO_4)_6X_2$ O $Pb_{10}(VO_4)_6X_2$

Ca₁₀(VO₄)₆X₂

Pb₁₀(PO₄)₆X₂

The recommended $\Delta H^{\circ}_{f,el}$ (Table 8) show linear correlation also with the electronegativity of the halide X, the ionization energy of the halide X and the $\Delta H^{\circ}_{f,el}$ of MeX₂ (Figs. SI 1, 2, 3). All relationships give a very good or good linear fit. These correlations have been reported before but referred only to experimental data (Cruz et al. 2005b; Drouet 2015; Puzio et al. 2022). The fact that the experimental and predicted values match these lines equally well can be taken as evidence of their reliability.

Linear relationships between selected parameters within apatite subgroups are used to predict missing thermodynamic data by regression analysis. The proposed complete procedure consists of 5 steps and is shown in Table 9. The **Table 8** The prediction method for standard enthalpies of apatites using the molar volume, lattice energy, $\Delta H^{\circ}_{f,el}$ of anions AO₄³⁻ or X⁻ and linear regression

Step	Procedure
1	Compilation of existing experimental molar volume $V_{\rm m}$ data for apatites and estimation of missing data (where possible) based on the linear relationship of $V_{\rm m}$ with halide ionic radius $R_i(X^-)$ plotted separately for the halide apatite subgroups
2	Compilation of existing lattice energy U_{POT} experimental data and estimation of missing data (where possible) based on the linear dependence of U_{POT} on V_{m} plotted separately for the halide apatite subgroups (utilizing both experimental V_{m} and values predicted in step 1)
3	Compilation of existing experimental enthalpies of formation from elements $\Delta H^{\circ}_{f,el}$ for apatites and estimation of the missing data (where possible) based on linear relationship of $\Delta H^{\circ}_{f,el}$ of apatites with U_{POT} plotted separately for the halide apatite subgroups

4 Using the experimental $\Delta H^{\circ}_{f,el}$ and values predicted for apatites in step 3, estimation of missing values (where possible) from the linear relationship of $\Delta H^{\circ}_{f,el}$ of apatites with $\Delta H^{\circ}_{f,el}$ of halide anions X⁻ plotted separately for the halide subgroups

5 Using the experimental $\Delta H^{\circ}_{f,el}$ and values predicted in the steps above, estimation of missing values (where possible) based on the linear relationship of $\Delta H^{\circ}_{f,el}$ of apatites with $\Delta H^{\circ}_{f,el}$ of tetrahedral anions AO₄³⁻ plotted separately for the apatite subgroups containing the same Me²⁺ cations and the same X⁻ anions

order in which the calculations are performed is crucial because only by supplementing the database with the values obtained from one prediction could the calculations for obtaining subsequent prediction values be performed. This procedure allowed for the prediction of 22 thus far experimentally unknown $\Delta H^{\circ}_{f,el}$ values for apatite end-members. This includes 9 values for iodoapatites which are the least characterized apatites. The percentage relative difference which is a measure of precision is in most cases less than 1%. The prediction precision is due to the high regression coefficients (above $R^2 = 0.98$). Such precision is comparable to the experimental uncertainty obtained when reproducing experimental data using calorimetric measurements or dissolution experiments. It is also higher than in other prediction methods proposed so far.

Using the $\Delta H^{\circ}_{\rm f,el}$ recommended in this work the solubility constants $K_{\rm sp,298.15K}$ can be calculated and compared where available with experimental data. It is based on dissolution reaction:

$$Me_{10}(AO_4)_6 X_2 \xrightarrow{298.15K,1atm.} 10Me^{2+} + 6AO_4^{3-} + 2X^-$$
 (7)

 $Log K_{sp, 298, 15K}$ is calculated from the equation:

$$logK_{sp,298.15K} = \log e^{\frac{-\Delta G_P^2}{RT}}$$
(8)

where ΔG_r° is the free Gibbs energy of the dissolution reaction (7), T is temperature (in K), R is the gas constant (8.31447 J mol⁻¹K⁻¹) and superscript "o" denotes normal conditions. The thermodynamic data used in calculations are provided in Tables SI 3 and SI 9. Comparison of the calculated $K_{sp,298.15 \text{ K}}$ with previously reported values indicates very good or good agreement within the experimental error (Tab. SI 9). This confirms the usefulness and reliability of the ΔH_{fel}° predicted here for thermodynamic calculations.

Conclusions

A method for predicting the $\Delta H^{\circ}_{f,el}$ of apatites using molar volume, lattice energy, and $\Delta H^{\circ}_{f,el}$ of anions AO₄³⁻ or X⁻ was proposed and demonstrated on phosphate, arsenate, and vanadate apatites containing Ca, Sr, Ba, Pb, and Cd at the cationic positions and F, OH, Cl, Br, and I at the halide position. The approach is based on regression analysis of the correlations occurring within apatite subgroups. These subgroups are formed by $Me_{10}(AO_4)_6X_2$ apatites with the same Me^{2+} cations and tetrahedral AO_4^{3-} anions and with different halides in the X position (or a complex monovalent OH⁻ anion). This approach not only leads to more accurate predictions (with precision comparable with the experimental uncertainty) but allows to see important relationships between apatites and should also be used when analyzing other properties of apatite end-members. The proposed prediction procedure allowed for the prediction of 22 so far unknown ΔH°_{fel} and can be applied to a wider range of apatites than other methods. Due to lack of experimental data, it is still not possible to predict the $\Delta H^{\circ}_{f,el}$ for Sr₁₀(VO₄)₆X₂, $Ba_{10}(VO_4)_6X_2$, $Cd_{10}(AsO_4)_6X_2$, $Sr_{10}(AsO_4)_6X_2$ or $Ba_{10}(AsO_4)_6X_2$. The new prediction method for $\Delta H^{\circ}_{f,el}$ of apatites could provide important insights, e.g., allowing optimization of the chemical composition and properties of apatite-based materials for their suitability to various forms of nuclear waste deposited in geological repositories.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00410-022-01964-z.

Acknowledgements The authors would like to thank the two anonymous reviewers for their diligent and very thorough work on the manuscript.

Authors contributions Conceptualization; Methodology; Formal analysis; Investigation resources; Data curation; Writing—original draft preparation; Visualization; Project administration; Funding acquisition: Bartosz Puzio; Writing—review and editing; supervision: Maciej Manecki. All authors have read and agreed to the published version of the manuscript.

Funding The authors have no relevant financial or non-financial interests to disclose. The research leading to these results received funding from the Polish National Science Center (NCN) under Grant Agreement [Grant No. 2017/27/N/ST10/00776].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Aissa A, Badraoui B, Thouvenot R, Debbabi M (2004) (2004) Synthesis, x-ray structural analysis and spectroscopic investigations (IR and 31P MAS NMR) of mixed barium/strontium fluoroapatites. Eur J Inorg Chem 19:3828–3836. https://doi.org/10.1002/ejic. 200400224
- Alberius HP, Lidin S, Petříček V (1999) Iodo-oxyapatite, the first example from a new class of modulated apatites. Acta Crystall B-Stru 55(2):165–169. https://doi.org/10.1107/S010876819 8012312
- Alberius-Henning P, Mattsson C, Lidin S (2000) Crystal structure of pentastrontium tris (phosphate) bromide, Sr₅(PO₄)₃Br and of pentabarium tris (phosphate) bromide Ba₅(PO₄)₃Br, two bromoapatites. Z Krist-New Crys St 215(3):345–346. https://doi. org/10.1515/ncrs-2000-0319
- Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRO-DEFA2, a geochemical assessment model for environmental systems: version 3.0 user's manual. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia
- Amjad Z, Koutsoukos PG, Nancollas GH (1981) The mineralization of enamel surfaces. A constant composition kinetics study. J Dent Res 60(10):1783–1792. https://doi.org/10.1177/0022034581 0600100901
- Antao SM, Dhaliwal I (2018) Lead apatites: structural variations among Pb₅(BO₄)₃Cl with B=P (pyromorphite), As (mimetite) and V (vanadinite). J Synchrotron Radiat 25(1):214–221. https:// doi.org/10.1107/S1600577517014217
- Audubert F, Savariault JM, Lacout JL (1999) Pentalead tris (vanadate) iodide, a defect vanadinite-type compound. Acta Crystall c 55(3):271–273. https://doi.org/10.1107/S0108270198005034
- Avnimelech Y, Moreno EC, Brown WE (1973) Solubility and surface properties of finely divided hydroxyapatite. J Res NBS a Phys Ch 77(1):149. https://doi.org/10.6028/jres.077A.008
- Babu R, Jena H, Kutty KG, Nagarajan K (2011) Thermodynamic functions of $Ba_{10}(PO_4)_6Cl_2$, $Sr_{10}(PO_4)_6Cl_2$ and $Ca_{10}(PO_4)_6Cl_2$. Thermochim Acta 526(1–2):78–82. https://doi.org/10.1016/j. tca.2011.08.027

- Baikie T, Mercier PH, Elcombe MM, Kim JY, Le Page Y, Mitchell LD, White TJ, Whitfield PS (2007) Triclinic apatites. Acta Crystall B-Stru 63(2):251–256. https://doi.org/10.1107/S010876810 6053316
- Bajda T, Szmit E, Manecki M (2007) Removal of As(V) from solutions by precipitation of mimetite Pb₅(AsO₄)₃Cl. Environ. Engn. 1:119–124
- Bajda T (2010) Solubility of mimetite Pb₅(AsO₄)₃Cl at 5–55 °C. Environ Chem 7:268–278. https://doi.org/10.1071/EN10021
- Baker WE (1966) An X-ray diffraction study of synthetic members of the pyromorphite series. Am Mineral J Earth Planet Mater 51(11–12):1712–1721
- Ball JW, Nordstorm DK, Jenne EA (1980) Additional and revised thermochemical data and computer code for WATEQ2: A computerized chemical model for trace and major element speciation and mineral equilibria of natural waters (Vol. 78). US Geological Survey, Menlo Park, California
- Baran EJ (1972) Kristallographische Daten einiger Vanadin-Bromapatite. Monatsh Chem 103(6):1684–1690. https://doi.org/ 10.1007/BF00904623
- Beck HP, Douiheche M, Haberkorn R, Kohlmann H (2006) Synthesis and characterisation of chloro-vanadato-apatites M₅(VO₄)₃Cl (M=Ca, Sr, Ba). Solid State Sci 8(1):64–70. https://doi.org/10. 1016/j.solidstatesciences.2005.08.014
- Bell LC, Mika H, Kruger BJ (1978) Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch Oral Biol 23(5):329–336. https://doi.org/10.1016/0003-9969(78)90089-4
- Bell AM, Henderson CMB, Wendlandt RF, Harrison WJ (2008) Rietveld refinement of Ba₅(AsO₄)₃Cl from high-resolution synchrotron data. Acta Crystallogr e 64(9):i63–i64. https://doi.org/10. 1107/S1600536808026901
- Bell AM, Henderson CMB, Wendlandt RF, Harrison WJ (2009) Rietveld refinement of Sr₅(AsO₄)₃Cl from high-resolution synchrotron data. Acta Crystallogr e 65(3):i16–i17. https://doi.org/10. 1107/S1600536809005054
- Ben Cherifa A, Nounah A, Lacout JL, Jemal M (2001) Synthése et thermochimie de phosphates au cadmium. Thermochimica Acta 366(1):7–13. https://doi.org/10.1016/S0040-6031(00)00713-9
- Bhatnagar VM (1970) Preparation, lattice parameters and X-ray powder patterns of lead fluorapatite and lead chlorapatite. Inorg Nucl Chem Lett 6(12):913–917. https://doi.org/10.1016/0020-1650(70)80074-5
- Biagioni C, Pasero M (2013) The crystal structure of johnbaumite, Ca5(AsO4)3OH, the arsenate analogue of hydroxylapatite. Am Mineral 98(8–9):1580–1584. https://doi.org/10.2138/am.2013. 4443
- Biagioni C, Bosi F, Hålenius U, Pasero M (2017) The crystal structure of turneaureite, Ca₅(AsO₄)₃Cl, the arsenate analog of chlorapatite, and its relationships with the arsenate apatites johnbaumite and svabite. Am Mineral 102(10):1981–1986. https://doi.org/10.2138/am-2017-6041
- Bigi A, Foresti E, Marchetti F, Ripamonti A, Roveri N (1984) Barium calcium hydroxyapatite solid solutions. J Chem Soc Dalton 6:1091–1093. https://doi.org/10.1039/DT9840001091
- Bisengalieva MR, Ogorodova LP, Vigasina MF, Melchakova LV (2010) Calorimetric determination enthalpy of the formation of natural pyromorphite. Russ J Phys Chem A 84:1838–1840. https://doi.org/10.1134/S0036024410110038
- Bogach VV, Dobrydnev SV, Beskov VS (2001) Calculation of the thermodynamic properties of apatites. Russ J Inorg Chem 46(7):1011-1014
- Bondareva OS, Malinovskii YA (1986) Crystal structure of synthetic Ba hydroxylapatite. Kristallografiya 31(2):233–236
- Bothe JV Jr, Brown PW (1999) The stabilities of calcium arsenates at 23±1 C. J Hazard Mater 69(2):197–207. https://doi.org/10. 1016/S0304-3894(99)00105-3

- Brenner P, Engel G, Wondratschek H (1970) Blei-Apatite mit Überstruktur. Z Krist-Cryst Mater 131(1–6):206–212. https://doi. org/10.1524/zkri.1970.131.16.206
- Bulanov EN, Petrov SS, Xu Z, Knyazev AV, Skoblikov NE (2021) Synthesis and crystal structure of some Ba-apatites. Russ J Inorg Chem 66(4):455–459. https://doi.org/10.1134/S0036 023621040069
- Calos NJ, Kennard CH, Davis RL (1990) Crystal structure of mimetite, Pb₅(AsO₄)₃Cl. Z Kristallogr 191(1–2):125–129. https://doi.org/10.1524/zkri.1990.191.1-2.125
- Cao C, Chong S, Thirion L, Mauro JC, McCloy JS, Goel A (2017) Wet chemical synthesis of apatite-based waste forms–A novel room temperature method for the immobilization of radioactive iodine. J Mater Chem a 5(27):14331–14342. https://doi.org/10. 1039/C7TA00230K
- Chai BH (2020) Optical crystals. In CRC handbook of laser science and technology (pp. 3–65). CRC Press
- Chance MW (2014) Hydroflux synthesis: a new and effective technique for exploratory crystal growth
- Cherifa AB, Khattech I, Jemal M (1988) A fast and direct method for the preparation of hydroxyapatite. Chem. Inform. 19(24):1
- Cherifa AB, Somrani S, Jemal M (1991) Détermination de l'enthalpie standard de formation de la fluorapatite de l'hydroxyapatite et de la chlorapatite. J Chim Phys 88: 1893–1900 (in French). https:// doi.org/10.1051/jcp/1991881893
- Cherifa AB, Jemal M (2004) Enthalpy of formation and mixing of calcium-cadmium phosphoapatites. Phosph Res Bull 15:113–118. https://doi.org/10.3363/prb1992.15.0_113
- Chermak JA, Rimstidt JD (1989) Estimating the thermodynamic properties (ΔG_{f}° and ΔH_{f}°) of silicate minerals at 298 K from the sum of polyhedral contributions. Am Miner 74(9–10):1023–1031
- Chernorukov NG, Knyazev AV, Bulanov EN (2010) Isomorphism and phase diagram of the Pb₅(PO₄)₃Cl-Pb₅(VO₄)₃Cl system. Russ J Inorg Chem 55(9):1463–1470. https://doi.org/10.1134/S0036 023610090226
- Chernorukov NG, Knyazev AV, Bulanov EN (2011) Phase transitions and thermal expansion of apatite-structured compounds. Inorg Mater 47(2):172–177. https://doi.org/10.1134/S00201685110100 2X
- Chin KA, Nancollas GH (1991) Dissolution of fluorapatite. A constantcomposition kinetics study. Langmuir 7(10):2175–2179
- Corker DL, Chai BH, Nicholls JOHN, Loutts GB (1995) Neodymium-doped Sr₅(PO₄)₃F and Sr₅(VO₄)₃F. Acta Crystallogr C 51(4):549–551. https://doi.org/10.1107/S0108270194006906
- Coulon A, Laurencin D, Grandjean A, Le Gallet S, Minier L, Rossignol S, Campayo L (2016) Key parameters for spark plasma sintering of wet-precipitated iodate-substituted hydroxyapatite. J Eur Ceram Soc 36(8):2009–2016. https://doi.org/10.1016/j.jeurc eramsoc.2016.02.041
- Coulon A, Grandjean A, Laurencin D, Jollivet P, Rossignol S, Campayo L (2017) Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129I. J Nucl Mater 484:324– 331. https://doi.org/10.1016/j.jnucmat.2016.10.047
- Craig RG, Rootare HM (1974) Heats of solution of apatites, human enamel and dicalcium-phosphate in dilute hydrochloric acid. In Analytical Calorimetry (pp. 397–405). Springer, Boston, MA
- Cruz FJ, Canongia Lopes JN, Calado JC, Minas da Piedade ME (2005a) A molecular dynamics study of the thermodynamic properties of calcium apatites 1. Hexagonal phases. J Phys Chem B 9(51):24473–24479. https://doi.org/10.1021/jp054304p
- Cruz FJAL, da Piedade MEM, Calado JCG (2005b) Standard molar enthalpies of formation of hydroxy-, chlor-, and bromapatite. J Chem Therm 37:1061–1070. https://doi.org/10.1016/j.jct.2005. 01.010
- Dachs E, Harlov D, Benisek A (2010) Excess heat capacity and entropy of mixing along the chlorapatite-fluorapatite binary

join. Phys Chem Miner 37(9):665-676. https://doi.org/10.1007/ s00269-010-0366-3

- Dai Y, Hughes JM (1989) Crystal structure refinements of vanadinite and pyromorphite. Can Mineral 27(2):189–192
- Dai Y, Hughes JM, Moore PB (1991) The crystal of mimetite and clinomimetite, Pb₅(AsO₄)₃Cl. Can Mineral 29(2):369–376
- Davis RJ (1973) (P.) Eckerlin and (H.) Kandler. Landolt-Börnstein. Numerical data and functional relationships in science and technology New Series. Group III: Crystal and solid state physics. Volume 6. Structure data of elements and intermetallic phases. Berlin, Heidelberg, and New York (Springer-Yerlag), xxviii+ 1019 pp 1971. Price DM 620.00 (\$179.10). Mineral Mag 39(301): 127–128. https://doi.org/10.1017/minmag.1973. 039.301.27
- Dong ZL, White TJ (2004) Calcium–lead fluoro-vanadinite apatites I Disequilibrium Structures. Acta Crystall B-Stru 60(2):138–145. https://doi.org/10.1107/S0108768104001831
- Đordević T, Šutović S, Stojanović J, Karanović L (2008) Sr, Ba and Cd arsenates with the apatite-type structure. Acta Crystall c 64(9):182–186. https://doi.org/10.1107/S0108270108023457
- Driessens FCM, Verbeeck RMH (1982) The probable phase composition of the mineral in sound enamel and dentine. Bull Soc Chim Bel 91(7):573–596. https://doi.org/10.1002/bscb.19820 910702
- Drouet C (2015) A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. J Chem Therm 81:143–159. https://doi. org/10.1016/j.jct.2014.09.012
- Drouet C (2019) Applied predictive thermodynamics (ThermAP). Part 2. Apatites containing Ni²⁺, Co²⁺, Mn²⁺, or Fe²⁺ ions. J Chem Therm 136:182–189. https://doi.org/10.1016/j.jct.2015.06.016
- Duan CJ, Wu XY, Liu W, Chen HH, Yang XX, Zhao JT (2005) X-ray excited luminescent properties of apatitic compounds Ba₅(PO₄)₃X (X: OH⁻, Cl⁻, Br⁻); structure and hydroxyl ion conductivity of barium hydroxylapatite. J Alloy Compd 396(1– 2):86–91. https://doi.org/10.1016/j.jallcom.2004.11.064
- Dunn PJ, Rouse RC (1978) Morelandite, a new barium arsenate chloride member of the apatite group. Can Mineral 16(4):601–604
- Dunn PJ, Peacor DR, Newberry N (1980) Johnbaumite, a new member of the apatite group from Franklin, New Jersey. Am Mineral 65(11–12):1143–1145
- Dunn PJ, Petersen EU, Peacor DR (1985) Turneaureite, a new member of the apatite group from Franklin, New Jersey, Balmat, New York and Långban, Sweden. Can Mineral 23(2):251–254
- Dykes E (1974) Preparation and characterisation of calcium bromapatite. Mater Res Bull 9(9):1227–1236. https://doi.org/10.1016/ 0025-5408(74)90041-5
- Dziura A, Kwaśniak-Kominek M, Manecki M, Bajda T (2012) Low temperature synthesis and thermodynamic stability of fluorpyromorphite Pb₅(PO₄)₃F at 5–65 °C. Geol Geophys Environ 38(4):465
- Egan EP Jr, Wakefield ZT, Elmore KL (1950) High-temperature heat content of hydroxyapatite. J Am Chem Soc 72(6):2418–2421
- Egan EP Jr, Wakefield ZT, Elmore KL (1951) Low-Temperature Heat Capacity and Entropy of Hydroxyapatite1. J Am Chem Soc 73(12):5579–5580
- El Feki H, Amami M, Ben SA, Jemal M (2004) Synthesis of potassium chloroapatites, IR, X-ray and Raman studies. Phys Status Solidi C 1(7):1985–1988. https://doi.org/10.1002/pssc.200304450
- Elasri S, Cherifa AB, Bouhaouss A, Ferhat M, Jemal M (1995) Mécanisme de dissolution du phosphate tricalcique β et de l'hydroxyapatite dans l'acide phosphorique. Thermochim Acta 249:121–126. https://doi.org/10.1016/0040-6031(95)90680-0
- Elliott JC, Dykes E, Mackie PE (1981) Structure of bromapatite and the radius of the bromide ion. Acta Crystall B-Stru 37(2):435–438. https://doi.org/10.1107/S0567740881003208

- Elliott JC (1994) Hydroxyapatites and nonstoichiometric apatites. Stud Inorg Chem 18:111–189
- Engel G (1970) Hydrothermalsynthese von bleihydroxylapatiten Pb5(XO4)3OH mit X= P, As, V. Naturwissenschaften. 57(7): 355–355. https://doi.org/10.1007/BF01173112
- Farr TD, Elmore KL (1962) System CaO-P₂O₅-HF-H₂O: thermodynamic properties. J Phys Chem 66:315–318
- Fleche JL (2002) Thermodynamical functions for crystals with large unit cells such as zircon, coffinite, fluorapatite, and iodoapatite from ab initio calculations. Phys Rev B 65(24):245116. https:// doi.org/10.1103/PhysRevB.65.245116
- Flis J, Borkiewicz O, Bajda T, Manecki M, Klasa J (2010) Synchrotronbased X-ray diffraction of the lead apatite series Pb10 (PO4) 6Cl2–Pb10 (AsO4) 6Cl2. J Synchrotron Radiat 17(2):207–214. https://doi.org/10.1107/S0909049509048705
- Flis J, Manecki M, Bajda T (2011) Solubility of pyromorphite Pb₅(PO₄)₃Cl-mimetite Pb₅(AsO₄)₃Cl solid solution series. Geochim Cosmochim Ac 75(7):1858–1868. https://doi.org/10.1016/j. gca.2011.01.021
- Flora NJ, Hamilton KW, Schaeffer RW, Yoder CH (2004a) A comparative study of the synthesis of calcium, strontium, barium, cadmium, and lead apatites in aqueous solution. Syn React Inorg Met 34(3):503–521. https://doi.org/10.1081/SIM-120030437
- Flora NJ, Yoder CH, Jenkins HDB (2004b) Lattice energies of apatites and the estimation of $\Delta H_f^{\circ}(PO_4^{-3-}, g)$. Inorg Chem 43(7):2340– 2345. https://doi.org/10.1021/ic0302550
- Gerke TL, Scheckel KG, Schock MR (2009) Identification and distribution of vanadinite $(Pb_5(V^{5+} O_4)_3Cl)$ in lead pipe corrosion by-products. Environ Sci Technol 43(12):4412–4418. https://doi.org/10.1021/es900501t
- Getman YI, Ardanova LL, Marchenko VI, Grigoreva AA, Vasilenko TA, Ulyanova YV (2001) Substitution of calcium by sodium with neodymium, samarium, gadolinium, and holmium in vanadium hydroxyapatite. Ukr Khim Zh 67(1–2):16–19
- Getman EI, Marchenko VI, Loboda SN, Yablochkova NV, Plehov AL (2007) Isomorphic substitution of samarium for strontium in the $Sr_5(VO_4)_3OH$ structure. Aip Conf Proc 14(3):317–320
- Glasser L (2019) Apatite Thermochemistry: The Simple Salt Approximation. Inorg Chem 58(19):13457–13463. https://doi.org/10. 1021/acs.inorgchem.9b02343
- Glasser L, Jenkins HDB (2000) Lattice energies and unit cell volumes of complex ionic solids. J Am Chem Soc 122(4):632–638. https://doi.org/10.1021/ja992375u
- Glasser L, Jenkins HDB (2008) Internally consistent ion volumes and their application in volume-based thermodynamics. Inorg Chem 47(14):6195–6202. https://doi.org/10.1021/ic702399u
- Glasser L, Jenkins HDB (2009) Single-ion entropies, S_{ion}°, of solids–a route to standard entropy estimation. Inorg Chem 48(15):7408–7412. https://doi.org/10.1021/ic9009543
- Glasser L, Jenkins HDB (2016) Predictive thermodynamics for ionic solids and liquids. Physi Chem Chem Phys 18(31):21226–21240. https://doi.org/10.1039/C6CP00235H
- Gotherstrom A, Collins MJ, Angerbjorn A, Liden K (2002) Bone preservation and DNA amplification. Archaeometry 44(3):395–404. https://doi.org/10.1111/1475-4754.00072
- Gottschall AJ (1958) Heats of formation of hydroxy-, fluor-and chlorapatites. S Afr J Chem 11:45–52
- Gramain P, Voegel JC, Gumpper M, Thomann JM (1987) Surface properties and equilibrium kinetics of hydroxyapatite powder near the solubility equilibrium. J Colloid Interf Sci 118(1):148–157. https://doi.org/10.1016/0021-9797(87)90443-7
- Grisafe DA, Hummel FA (1970) Pentavalent ion substitutions in the apatite structure part B. Color J Solid State Chem 2(2):167–175. https://doi.org/10.1016/0022-4596(70)90065-4
- Gu T, Qin S, Wu X (2020) Thermal behavior of pyromorphite $(Pb_{10}(PO_4)_6Cl_2)$: In situ high temperature powder X-ray

Diffraction Study. Curr Comput-Aided Drug Des 10(12):1070. https://doi.org/10.3390/cryst10121070

- Harouiya N, Chaïrat C, Köhler SJ, Gout R, Oelkers EH (2007) The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 C and pH from 1 to 6. Chem Geol 244(3–4):554–568. https://doi.org/10.1016/j. chemgeo.2007.07.011
- Hartnett TQ, Ayyasamy MV, Balachandran PV (2019) Prediction of new iodine-containing apatites using machine learning and density functional theory. MRS Commun 9(3):882–890. https://doi. org/10.1557/mrc.2019.103
- Hata M, Okada K, Iwai S, Akao M, Aoki H (1978) Cadmium Hydroxyapatite. Acta Crystall B-Stru 34(10):3062–3064. https:// doi.org/10.1107/S0567740878010031
- Hata M, Marumo F, Iwai S, Aoki H (1979) Structure of barium chlorapatite. Acta Crystall B-Stru 35(10):2382–2384. https://doi.org/ 10.1107/S0567740879009377
- Hayek E, Petter H (1959) Hydrothermalsynthese von phosphaten zweiwertiger metalle. Monatsh Chem Verw Tl 90(4):467–472. https:// doi.org/10.1007/BF00903008
- Hazen RM (1985) Comparative crystal chemistry and the polyhedral approach. Rev Mineral 14:317–346
- Henderson CMB, Bell AMT, Charnock JM, Knight KS, Wendlandt RF, Plant DA, Harrison WJ (2009) Synchrotron X-ray absorption spectroscopy and X-ray powder diffraction studies of the structure of johnbaumite [Ca₁₀(AsO₄)₆(OH, F)₂] and synthetic Pb-, Sr- and Ba-arsenate apatites and some comments on the crystal chemistry of the apatite structure type in general. Mineral Mag 73(3):433–455. https://doi.org/10.1180/minmag.2009.073.3.433
- Huang YH, Zhu ZQ, Zhang ZL, Zhu YN, Tan LL, Dai LQ, Wei CC (2014) Characterization, dissolution and solubility of mimetite [Pb5(AsO4)3Cl] at 25 °C. In Appl Mech Mater 448:15–18. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific. net/AMM.448-453.15
- Hughes JM, Rakovan JF (2018) The Crystal Structure of Apatite, Ca₅(PO₄)₃(F, OH, Cl). Rev Mineral Geochem 48(1):1–12. https:// doi.org/10.2138/rmg.2002.48.1
- ICDD PDF (1997) International center for diffraction data. Powder Diffraction File, Newtown Square, Pennsylvania, USA
- ICDD (2004) The powder diffraction file, PDF-2
- Inegbenebor AI, Thomas JH, Williams PA (1989) The chemical stability of mimetite and distribution coefficients for pyromorphitemimetite solid-solutions. Mineral Mag 53:363–371. https://doi. org/10.1180/minmag.1989.053.371.12
- Islam MI (2021) Solid State Synthesis and Characterization of Apatite Based Ceramic Waste Form for the Immobilization of Radioactive Iodine. Ph. D. thesis, Louisiana State University and Agricultural and Mechanical College
- Ito M, Yamagishi T, Yagasaki H, Kafrawy AH (1995) In vitro properties of a chitosan-bonded bone-filling paste: Studies on solubility of calcium phosphate compounds. J Biomed Mater Res 32(1):95–98. https://doi.org/10.1002/(SICI)1097-4636(199609) 32:1%3c95::AID-JBM11%3e3.0.CO;2-H
- Jacques JK (1963) The heats of formation of fluorapatite and hydroxyapatite. J Chem Sci. https://doi.org/10.1039/JR96300038 20
- Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1(1): 011002. https://doi. org/10.1063/1.4812323
- Janicka U, Bajda T, Manecki M (2012) Synthesis and solubility of brompyromorphite Pb₅(PO₄)₃Br. Mineralogia 43(1–2):129–135. https://doi.org/10.2478/v10002-012-0004-4
- Jaynes WF, Moore Jr PA, Miller DM (1999) Solubility and ion activity products of calcium phosphate minerals (Vol. 28, No. 2, pp.

530–536). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2134/jeq1999.00472425002800020018x

- Jemal M, Cherifa AB, Khattech I, Ntahomvukiye I (1995) Standard enthalpies of formation and mixing of hydroxy-and fluorapaties. Thermochim Acta 259(1):13–21. https://doi.org/10.1016/0040-6031(95)02271-3
- Jemal M (2004) Thermochemistry and relative stability of apatite phosphates. Phosph Res Bull 15:119–124. https://doi.org/10.3363/ prb1992.15.0_119
- Jena H, Venkata Krishnan R, Asuvathraman R, Nagarajan K, Govindan Kutty KV (2011) Thermal expansion and heat capacity measurements on Ba10–xCsx(PO4)6Cl2–6, (x=0, 0.5) chloroapatites synthesized by sonochemical process. J Therm Anal Calorim 106(3): 875–879. https://doi.org/10.1007/s10973-011-1715-2
- Jenkins HDB, Roobottom HK, Passmore J, Glasser L (1999) Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem 38(16):3609–3620. https://doi.org/10.1021/ic9812961
- Jenkins DHB, Glasser L (2003) Standard absolute entropy, S°₂₉₈, values from volume or density. 1 inorganic materials. Inorg Chem 42:8702–8708. https://doi.org/10.1021/ic030219p
- Jenkins HDB, Liebman JF (2005) Volumes of solid state ions and their estimation. Inorg Chem 44(18):6359–6372. https://doi.org/10. 1021/ic048341r
- Johnston CD, Feldmann J, Macphee DE, Worrall F, Skakle JM (2004) Synthesis and proposed crystal structure of a disordered cadmium arsenate apatite Cd5 (AsO4) 3Cl1-2x-yOx₆ xOHy. Dalton T 21:3611–3615. https://doi.org/10.1039/b410483h
- Junhui Z, Yonghua D, Lishi M, Runyue L (2016) Structural properties, electronic structure and bonding of Ba₁₀(PO₄)₆X₂ (X= F, Cl and Br). J Alloy Compd 680:121–128. https://doi.org/10.1016/j.jallc om.2016.04.114
- Карбовский В. Л., Сорока А. П., Касияненко В. Х. and Шпак А. П. (2011) Электронно-энергетический ландшафт валентных электронов арсенатных апатитов кальция и кадмия. Доповіді НАН України. (in Russian)
- Karbovsky VL, Soroka AP (2014) Atomic architecture of vanadate and arsenate calcium and cadmium apatites. Nanosyst Nanomater Nanotechnol 12:91–103
- Kelley KK (1960) High-temperature heat-content, heat-capacity, and entropy data for the elements and inorganic compounds. US Bureau of Mines Bull 584:232
- Kelley KK, King EG (1961) Contributions to the data on theoretical metallurgy: XIV. Entropies of the elements and inorganic compounds. In: US Bureau of Mines Bulletin. 592, p. 104. US Government Printing Office, Washington
- Khattech I, Lacout JL, Jemal M (1996) Synthèse et thermochimie des phosphates d'alcalino-terreux. II. Enthalpie standard de formation et de mélange dans les solutions solides d'hydroxyapatites calco-strontiques. In Annales de chimie (Paris. 1914) (Vol. 21, No. 4, pp. 259–270)
- Khattech I, Jemal M (1997) Thermochemistry of phosphate products. Part I: Standard enthalpy of formation of tristrontium phosphate and strontium chlorapatite. Thermochim Acta 298:17–21. https:// doi.org/10.1016/S0040-6031(97)00120-2
- Kim JY, Hunter BA, Fenton RR, Kennedy BJ (1997) Neutron powder diffraction study of lead hydroxyapatite. Aus J Chem 50(11):1061–1066. https://doi.org/10.1071/C97114
- Kim JY, Fenton RR, Hunter BA, Kennedy BJ (2000) Powder diffraction studies of synthetic calcium and lead apatites. Aus J Chem 53(8):679–686. https://doi.org/10.1071/CH00060
- Klement R (1936) Basische phosphate zweiwertiger Metalle. I. Basische Magnesiumphosphate. Z Anorg Allg Chem 228(3):232–240. https://doi.org/10.1002/zaac.19362280307

- Klement R (1939) Basische Phosphate zweiwertiger Metalle. IV. Strontium-Hydroxylapatit. Z Anorg Allg Chem 242(2):215–221. https://doi.org/10.1002/zaac.19392420211
- Klement R, Zureda F (1940) Basische Phosphate zweiwertiger Metalle V. phosphate und hydroxylapatit des cadmiums. Z Anorg Allg Chem 245(3):229–235. https://doi.org/10.1002/zaac.19402 450301
- Knyazev AV, Bulanov EN, Korokin VZ (2015) Synthesis, structure, and thermal expansion of the Sr₅(AO₄)₃L (A= P, V, Cr; L= F, Cl, Br) apatites. Inorg Mater 51(3):245–256. https://doi.org/10. 1134/S0020168515020107
- Krause J, Bariummanganat V (1955) In Über neue Sauerstoffund Fluor-haltige Komplexe. VS Verlag für Sozialwissenschaften, Wiesbaden, pp 6–20. https://doi.org/10.1007/ 978-3-663-04470-3_1
- Kreidler ER, Hummel FA (1970) The crystal chemistry of apatite: structure fields of fluor- and chlorapatite. Am Mineral J Earth Planet Mater 55(1–2):170–184
- Krishnan RV, Jena H, Kutty KG, Nagarajan K (2008) Heat capacity of $Sr_{10}(PO_4)_6Cl_2$ and $Ca_{10}(PO_4)_6Cl_2$ by DSC. Thermochim Acta 478(1–2):13–16. https://doi.org/10.1016/j.tca.2008.08.009
- Krivtsov NV, Orlovskii VP, Ezhova ZA, Koval EM (1997) Thermochemistry of hydroxyapatite Ca₁₀(PO₄)₆(OH)₂. Russ J Inorg Chem 42(6):791–793
- Kwaśniak-Kominek M, Matusik J, Bajda T, Manecki M, Rakovan J, Marchlewski T, Szala B (2015) Fourier transform infrared spectroscopic study of hydroxylpyromorphite Pb10 (PO4) 6OH2– hydroxylmimetite Pb10 (AsO4) 6 (OH) 2 solid solution series. Polyhedron 99:103–111. https://doi.org/10.1016/j.poly.2015.07. 002
- La Iglesia A, Felix JF (1994) Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions. Geochim Cosmochim Acta 58(19):3983–3991. https://doi.org/10.1016/0016-7037(94)90261-5
- La Iglesia A (2009) Estimating the thermodynamic properties of phosphate minerals at high and low temperature from the sum of constituent units. Estud Geol 65(2):109–119. https://doi.org/ 10.3989/egeol.39849.060
- Latimer WM (1951) Methods of estimating the entropies of solid compounds. J Am Chem Soc 73(4):1480–1482
- Latimer WM (1952) Oxidation potentials (Vol. 74, No. 4, p. 333). Prentice-Hall Inc., New York
- Lee YJ, Stephens PW, Tang Y, Li W, Phillips BL, Parise JB, Reeder RJ (2009) Arsenate substitution in hydroxylapatite: structural characterization of the Ca₅(P_xAs_{1-x}O₄)₃OH solid solution. Am Mineral 94(5–6):666–675. https://doi.org/10.1159/000419238
- LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Mon Oral Sci 15:109–111. https://doi.org/10.1159/00041 9238
- Lei P, Yao T, Gong B, Zhu W, Ran G, Lian J (2020) Spark plasma sintering-densified vanadinite apatite-based chlorine waste forms with high thermal stability and chlorine confinement. J Nucl Mater 528:151857. https://doi.org/10.1016/j.jnucmat.2019. 151857
- Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical substances. McGraw-Hill, New York
- Li J, Zhu ZQ, Zhu YN, Zhao X, Zhu T (2012) Research progress on solubility of Ca5(PxAs1-xO4)3(OH) and Ca5(PxAs1-xO4)3F. In Adv Mat Res (Vol. 518, pp. 888–892). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.518-523. 888
- Lim SC, Baikie T, Pramana SS, Smith R, White TJ (2011) Apatite metaprism twist angle (φ) as a tool for crystallochemical diagnosis. J Solid State Chem 184(11):2978–2986. https://doi.org/ 10.1016/j.jssc.2011.08.031

- Lin J, Zhu Z, Zhu Y, Liu H, Zhang L, Jiang Z (2018) Dissolution and solubility product of Cd-fluorapatite $[Cd_5(PO_4)_3F]$ at pH of 2–9 and 25–45 C. J Chem. https://doi.org/10.1155/2018/3109047
- Lindsay WL (1979) Chemical equilibria in soils. John Wiley and Sons Ltd., New York
- Lindsay WL, Moreno EC (1960) Phosphate phase equilibria in soils. Soil Sci Soc Am J 24(3):177–182. https://doi.org/10.2136/sssaj 1960.03615995002400030016x
- Liu HL, Zhu YN, Yu HX (2009) Solubility and stability of lead arsenates at 25 C. J Environ Sci Heal a 44(13):1465–1475. https:// doi.org/10.1080/10934520903217856
- Lu F, Yao T, Xu J, Wang J, Scott S, Dong Z, Ewing RC, Lian J (2014) Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling. RSC Adv 4(73):38718–38725. https:// doi.org/10.1039/C4RA05320F
- Mackie PE, Elliot JC, Young RA (1972) Monoclinic structure of synthetic Ca₅(PO₄)₃Cl, chlorapatite. Acta Crystall B-Stru 28(6):1840–1848. https://doi.org/10.1107/S0567740872005114
- Mahapatra PP, Mishra H, Chickerur NS (1982) Solubility and thermodynamic data of cadmium hydroxyapatite in aqueous media. Thermochim Acta 54(1–2):1–8. https://doi.org/10.1016/0040-6031(82)85059-4
- Mahapatra PP, Mahapatra LM, Mishra B (1987) Arsenate hydroxyapatite: A physico-chemical and thermodynamic investigation. Polyhedron 6(5):1049–1052. https://doi.org/10.1016/S0277-5387(00) 80953-5
- Mahapatra PP, Mahapatra LM, Mishra B (1989) Physicochemical studies on solid solutions of calcium phosphorus arsenic hydroxyapatites. Bull Chem Soc Jpn 62(10):3272–3277. https://doi.org/10. 1246/bcsj.62.3272
- Manca SG, Botto IL, Baran EJ (1980) Die IR-Spektren einiger Arsenat-Halogen-Apatite. Monatsh Chem. 111(4): 949-955. https://doi. org/10.1007/BF00899261
- Manecki M, Maurice PA (2008) Siderophore promoted dissolution of pyromorphite. Soil Sci 173(12):821–830. https://doi.org/10. 1097/SS.0b013e31818e8968
- Manecki M, Maurice PA, Traina SJ (2000) Uptake of aqueous Pb by Cl-, F-, and OH- apatites: mineralogic evidence for nucleation mechanisms. Am Mineral 85(7–8):932–942. https://doi.org/10. 2138/am-2000-0707
- Marchenko VI, Getman EI, Parikina AV (2003) Solid-state synthesis of $Sr_5(VO_4)_3OH$ and its interaction with $Ca_5(VO_4)_3OH$. Украинский Химический Журнал 69(11–12):70–74
- Marcus Y (1987) The thermodynamics of solvation of ions. Part 2.— The enthalpy of hydration at 298.15 K. J Chem Soc Farad T 83(2):339–349. https://doi.org/10.1039/F19878300339
- Mathew M, Mayer I, Dickens B, Schroeder LW (1979) Substitution in barium-fluoride apatite: the crystal structures of Ba₁₀(PO₄)₆F₂. Ba₆La₂Na₂(PO₄)₆F₂ and Ba₄Nd₃Na₃(PO₄)₆F₂. J Solid State Chem 28(1):79–95. https://doi.org/10.1016/0022-4596(79)90061-6
- Mayer I, Wahnon S, Cohen S (1979) Preparation of hydroxyapatites via the MSO4 sulphates (M= Ca, Sr, Pb and Eu). Mater Res Bull 11:1479–1483. https://doi.org/10.1016/0025-5408(79)90092-8
- McCann HG (1968) The solubility of fluorapatite and its relationship to that of calcium fluoride. Arch Oral Biol 13(8):987–1001. https:// doi.org/10.1016/0003-9969(68)90014-9
- McConnell D (1974) The crystal chemistry of apatite. B Mineral 97(2):237–240
- McDowell H, Gregory TM, Brown WE (1977) Solubility of $Ca_5(PO_4)_3OH$ in the system $Ca(OH)_2-H_3PO_4-H_2O$ at 5, 15, 25, and 37 C. J Res NBS a 81:273–281. https://doi.org/10.6028/jres. 081A.017
- Mercier PH, Dong Z, Baikie T, Le Page Y, White TJ, Whitfield PS, Mitchel LD (2007) Ab initio constrained crystal-chemical Rietveld refinement of Ca10 (VxP1- xO4) 6F2 apatites. Acta

Crystallogr Section b 63(1):37–48. https://doi.org/10.1107/ S0108768106045538

- Merker L, Wondratschek H (1957) Neue Verbindungen mit apatitartiger Struktur II. Die Gruppe der Alkali-Blei-Verbindungen. Z. Krist-Cryst. Mater. 109(1–6): 110–114. https://doi.org/10.1524/ zkri.1957.109.16.110
- Merker L, Wondratschek H (1959) Bleiverbindungen mit Apatitstruktur, insbesondere Blei–Jod-und Blei–Brom-Apatite. Z Anorg All Chem 300(1–2):41–50. https://doi.org/10.1002/zaac.19593 000104
- Mooney RW, Aia MA (1961) Alkaline Earth Phosphates. Chem Rev 61(5):433–462
- Moreno EC, Gregory TM, Brown WE (1968) Preparation and solubility of hydroxyapatite. J Res NBS a Phys Ch 72(6):773. https:// doi.org/10.6028/jres.072A.052
- Moreno EC, Aoba T (1991) Comparative solubility study of human dental enamel, dentin, and hydroxyapatite. Calcified Tissue Int 49(1):6–13. https://doi.org/10.1007/BF02555895
- Mungmode CD, Gahane DH, Moharil SV (2018) Wet chemical synthesis and luminescence in Ca5(PO4)3M: Eu2+ (M= Br, I) phosphors for solid state lighting. In AIP Conference Proceedings (Vol. 1953, No. 1, p. 060037). AIP Publishing LLC. https://doi.org/10.1063/1.5032768
- Nakamura M, Oqmhula K, Utimula K, Eguchi M, Oka K, Hongo K, Maeda K (2020) Light absorption properties and electronic band structures of lead-vanadium oxyhalide apatites Pb5(VO4)3X (X= F, Cl, Br, I). Chem Asian J 15(4): 540–545. https://doi.org/ 10.1002/asia.201901692
- Narasaraju TSB, Rao KK, Rai US (1979) Determination of solubility products of hydroxylapatite, chlorapatite, and their solid solutions. Can J Chem 57(15):1919–1922. https://doi.org/10.1139/ v79-307
- Newberry NG, Essene EJ, Peacor DR (1981) Alforsite, a new member of the apatite group: the barium analogue of chlorapatite. Am Mineral 66(9–10):1050–1053
- Noel MC (2018) Aqueous precipitation of crystalline svabite $(Ca_5(AsO_4)_3F)$ and svabite/fluorapatite $(Ca_5(AsO_4)_X(PO_4)_{3-X}F)$ compounds and evaluation of their stability. Ph. D. thesis, McGill University
- Nötzold D, Wulff H, Herzog G (1994) Differenzthermoanalyse der Bildung des Pentastrontiumchloridphosphats und röntgenographische Untersuchungen seiner Struktur. J Alloys Compd 215:281–288. https://doi.org/10.1016/0925-8388(94)90855-9
- Nriagu JO (1973) Lead orthophosphates—II. Stability of cholopyromophite at 25 C. Geochim. et Cosmochim. Ac. 37(3): 367–377. https://doi.org/10.1016/0016-7037(73)90206-8
- Ntahomvukiye I, Khattech I, Jemal M (1997) Synthése, charactérization et thermochimie d'apatites calco-plombeuses fluorées $Ca_{(10-x)}Pb_x(PO_4)_6F_2$, $0 \le x \le 10$. Annales De Chimie Science Des Matériaux 22:435–446 ((**in French**))
- O'Donnell MD, Hill RG, Fong SK (2009) Neutron diffraction of chlorine substituted fluorapatite. Mater Lett 63(15):1347–1349. https://doi.org/10.1016/j.matlet.2009.03.020
- Oelkers EH, Montel JM (2008) Phosphates and nuclear waste storage. Elements 4(2):113–116. https://doi.org/10.2113/GSELE MENTS.4.2.113
- Oelkers EH, Valsami-Jones E (2008) Phosphate mineral reactivity and global sustainability. Elements 4(2):83–87. https://doi.org/10. 2113/GSELEMENTS.4.2.83
- Oelkers EH, Schott J (Eds.). (2018) Thermodynamics and kinetics of water-rock interaction (Vol. 70). Walter de Gruyter GmbH & Co KG
- Oka K, Takasu M, Nishiki W, Nishikubo T, Azuma M, Noma N, Iwasaki M (2022) Negative thermal expansion in fluoroapatite Pb5 (VO4) 3F enhanced by the steric effect of Pb2+. Inorg Chem

61(32):12552–12558. https://doi.org/10.1021/acs.inorgchem. 2c01300

- Okudera H (2013) Relationships among channel topology and atomic displacements in the structures of Pb₅(BO₄)₃Cl with B= P (pyromorphite), V (vanadinite), and As (mimetite). Am Mineral 98(8–9):1573–1579. https://doi.org/10.2138/am.2013.4417
- Olds TA, Kampf AR, Rakovan JF, Burns PC, Mills OP, Laughlin-Yurs C (2021) Hydroxylpyromorphite, a mineral important to lead remediation: Modern description and characterization. Am Mineral 106(6):922–929. https://doi.org/10.2138/am-2021-7516
- Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48(2):13–49. https://doi.org/10.2138/rmg.2002.48.2
- Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22(2):163–179. https://doi.org/10.1127/0935-1221/ 2010/0022-2022
- Pekov IV, Koshlyakova NN, Zubkova NV, Krzątała A, Galuskina IO, Belakovskiy DI, Galuskin EV, Britvin SN, Sidorov EG, Vapnik Y, Pushcharovsky DY (2021) Pliniusite, Ca₅(VO₄)₃F, a new apatite-group mineral and the novel natural ternary solid-solution system pliniusite–svabite–fluorapatite. Am Mineral (in Press). https://doi.org/10.2138/am-2022-8100
- Phebe DE, Narasaraju TSB (1995) Preparation and characterization of hydroxyl and iodide apatites of calcium and their solid solutions. J Mater Sci Lett 14(4):229–231. https://doi.org/10.1007/ BF00275606
- Pieczka A, Biagioni C, Gołębiowska B, Jeleń P, Pasero M, Sitarz M (2018) Parafiniukite, $Ca_2Mn_3(PO_4)_3Cl$, a new member of the apatite supergroup from the Szklary pegmatite, Lower Silesia, Poland: description and crystal structure. Minerals 8(11):485. https://doi.org/10.3390/min8110485
- Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Crystallog 11(4):308–309. https://doi.org/10. 1107/S0365110X58000815
- Ptáček P (2016) Synthetic phase with the structure of apatite. In Chemistry: Apatites and their synthetic analogues-synthesis, structure, properties and applications (pp. 177–244). INTECH
- Puzio B, Manecki M, Kwaśniak-Kominek M (2018) Transition from endothermic to exothermic dissolution of hydroxyapatite Ca₅(PO₄)₃OH–johnbaumite Ca₅(AsO₄)₃OH solid solution series at temperatures ranging from 5 to 65°C. Minerals 8:281. https:// doi.org/10.3390/min8070281
- Puzio B, Solecka U, Topolska J, Manecki M, Bajda T (2021) Solubility and dissolution mechanisms of vanadinite Pb₅(VO₄)₃Cl: effects of temperature and PO₄ substitutions. Appl Geochem 131:105015. https://doi.org/10.1016/j.apgeochem.2021.105015
- Puzio B, Zhang L, Szymanowski JES, Burns PC, Manecki M (2022) Thermodynamic characterization of synthetic lead-arsenate apatites with different halogen substitutions. Am Mineral. https:// doi.org/10.2138/am-2020-7452
- Rakovan JF, Hughes JM (2000) Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Can Mineral 38(4):839– 845. https://doi.org/10.2113/gscanmin.38.4.839
- Rakovan JF, Pasteris JD (2015) A technological gem: Materials, medical, and environmental mineralogy of apatite. Elements 11(3):195–200. https://doi.org/10.2113/gselements.11.3.195
- Rakovan J, Scovil JA (2021) Apatite and the apatite supergroup. Rocks Miner 96(1):13–19. https://doi.org/10.1080/00357529.2021. 1827906
- Robie RA, Hemingway BS, Fischer JR (1979) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. Geol Survey Bull 1452: 456

- Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, 2131, 461 p. US Government Printing Office, Washington
- Roh YH, Hong ST (2005) Apatite-type Ba₅(VO₄)₃Cl. Acta Crystallogr e 61(8):i140–i142. https://doi.org/10.1107/S1600536805018854
- Roine A (1994) Outokumpu HSC chemistry for windows. Chemical Reaction and Equilibrium Software with Extensive Ther-Mochemical Database
- Rollin-Martinet S, Navrotsky A, Champion E, Grossin D, Drouet C (2013) Thermodynamic basis for evolution of apatite in calcified tissues. Am Mineral 98:2037–2045. https://doi.org/10.2138/am. 2013.4537
- Rossini FD, Gucker FT Jr, Johnston HL, Pauling L, Vinal GW (1952) Status of the values of the fundamental constants for physical chemistry as of July 1, 19511. J Am Chem Soc 74(11):2699–2701
- Santillan-Medrano J, Jurinak JJ (1975) The chemistry of lead and cadmium in soil: solid phase formation. Soil Sci Soc Am J 39(5):851–856. https://doi.org/10.2136/sssaj1975.0361599500 3900050020x
- Sassani DC, Shock EL (1992) Estimation of standard partial molal entropies of aqueous ions at 25 C and 1 bar. Geochim Cosmochim Acta 56(11):3895–3908. https://doi.org/10.1016/0016-7037(92)90004-3
- Shellis RP, Wahab FK, Heywood BR (1993) The hydroxyapatite ion activity product in acid solutions equilibrated with human enamel at 37 C. Caries Res 27(5):365–372. https://doi.org/10. 1159/000261566
- Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta 61(5):907–950. https://doi. org/10.1016/S0016-7037(96)00339-0
- Smirnova ZG, Illarionov VV, Volfkovich SI (1962) Heats of formation of fluorapatite and hydroxyl apatite and the α and β modifications of tricalcium phosphate. Zhur Neorg Khim 7:1779–1782
- Solecka U, Bajda T, Topolska J, Zelek-Pogudz S, Manecki M (2018) Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochim Acta a 190:96–103. https://doi.org/10.1016/j.saa.2017.08.061
- Sordyl J, Puzio B, Manecki M, Borkiewicz O, Topolska J, Zelek-Pogudź S (2020) Structural assessment of fluorine, chlorine, bromine, iodine, and hydroxide substitutions in lead arsenate apatites (Mimetites)–Pb₅(AsO₄)₃X. Minerals 10(6):494. https:// doi.org/10.3390/min10060494
- Stefánsson A (2001) Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0 C to 350 C. Chem Geol 172(3–4):225–250. https://doi.org/10.1016/ S0009-2541(00)00263-1
- Stennett MC, Pinnock IJ, Hyatt NC (2011) Rapid synthesis of Pb₅(VO₄)₃I, for the immobilisation of iodine radioisotopes, by microwave dielectric heating. J Nucl Mater 414(3):352–359. https://doi.org/10.1016/j.jnucmat.2011.04.041
- Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons, New York
- Sudarsanan KT, Young RA (1969) Significant precision in crystal structural details Holly Springs Hydroxyapatite. Acta Crystall B-Stru 25(8):1534–1543. https://doi.org/10.1107/S056774086 9004298
- Sudarsanan K, Mackie PE, Young RA (1972) Comparison of synthetic and mineral fluorapatite, Ca₅(PO₄)₃F, in crystallographic detail. Mater Res Bull 7(11):1331–1337. https://doi.org/10.1016/0025-5408(72)90113-4
- Sudarsanan K, Young RA (1974) Structure refinement and random error analysis for strontiumchlorapatite, Sr₅(PO₄)₃Cl. Acta

Crystall B-Stru 30(6):1381–1386. https://doi.org/10.1107/S0567 740874004936

- Sudarsanan K, Young RA, Wilson AJC (1977) The structures of some cadmiumapatites Cd5(MO4)3X. I. determination of the structures of Cd5(VO4)3I, Cd5(PO4)3Br, Cd3(AsO4)3Br and Cd5(VO4)3Br. Acta Crystall B Stru 33(10):3136–3142. https:// doi.org/10.1107/S0567740877010413
- Sudarsanan K, Young RA (1978) Structural interactions of F, Cl and OH in apatites. Acta Crystall B-Stru 34(5):1401–1407. https:// doi.org/10.1107/S0567740878005798
- Suetsugu Y (2014) Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process. J Nucl Mater 454(1–3):223–229. https://doi.org/10.1016/j.jnucmat.2014.07.073
- Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb. Geochim Cosmochim Acta 61(7):1359–1412. https:// doi.org/10.1016/S0016-7037(97)00009-4
- Swafford SH, Holt EM (2002) New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na₂Mg(PO₄)F and Sr₅(PO₄)₃F. Solid State Sci 4(6):807–812. https://doi.org/10.1016/S1293-2558(02)01297-9
- Tacker RC, Stormer JC (1989) A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. Am Mineral 74:877–888
- Tait K, Ball NA, Hawthorne FC (2015) Pieczkaite, ideally Mn₅(PO₄)₃Cl, a new apatite-supergroup mineral from Cross Lake, Manitoba, Canada: Description and crystal structure. Am Mineral 100(5–6):1047–1052. https://doi.org/10.2138/ am-2015-5117
- Tardy Y, Vieillard P (1977) Relationships among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions. Contrib Mineral Petr 63(1):75–88. https://doi.org/10.1007/ BF00371677
- Topolska J, Manecki M, Bajda T, Borkiewicz O, Budzewski P (2016) Solubility of pyromorphite Pb₅(PO₄)₃Cl at 5–65°C and its experimentally determined thermodynamic parameters. J Chem Therm 98:282–287. https://doi.org/10.1016/j.jct.2016.03.031
- Topolska J, Puzio B, Borkiewicz O, Sordyl J, Manecki M (2021) Solubility product of vanadinite Pb₅(VO₄)₃Cl at 25 °C—a comprehensive approach to incongruent dissolution modeling. Minerals 11(2):135. https://doi.org/10.3390/min11020135
- Trotter J, Barnes WH (1958) The structure of vanadinite. Canad Mineral 6(2):161–173
- Valsami-Jones E, Ragnarsdottir KV, Putnis A, Bosbach D, Kemp AJ, Cressey G (1998) The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chem Geol 151(1–4):215–233. https://doi.org/10.1016/S0009-2541(98)00081-3
- Valyashko VM, Kogarko LN, Khodakovskiy IL (1968) Stability of fluorapatite, chlorapatite, and hydroxyapatite in aqueous solutions at different temperatures. Geochem Int 5:21–30
- Verbeeck RM, Hauben M, Thun HP, Verbeek F (1977) Solubility and solution behaviour of strontiumhydroxyapatite. Z Phys Chem 108(2):203–215. https://doi.org/10.1524/zpch.1977.108.2.203
- Vieillard P, Tardy Y (1984) Thermochemical properties of phosphates. In: Nriagu JO, Moore PB (eds) Phosphate Minerals. Springer, Berlin, pp 171–198
- Vieillard P (2000) A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale. Clay Clay Miner 48(4):459–473. https://doi. org/10.1346/CCMN.2000.0480406
- Vieillard P, Tardy Y (1988) Estimation of enthalpies of formation of minerals based on their refined crystal structures. Am J Sci 288(10):997–1040. https://doi.org/10.2475/ajs.288.10.997
- Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1

and C2 organic substances in SI units. National Standard Reference Data System, New York

- Wang J (2015) Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network. Front Earth Sci 3:20. https://doi.org/10.3389/feart.2015.00020
- Wardojo TA, Hwu SJ (1996) Chlorapatite: Ca₅(AsO₄)₃Cl. Acta Crystall c 52:2959–2960. https://doi.org/10.1107/S0108270196011006
- Weil M, Đorđević T, Lengauer CL, Kolitsch U (2009) Investigations in the systems Sr–As–O–X (X=H, Cl): Preparation and crystal structure refinements of the anhydrous arsenates (V) Sr₃(AsO₄)₂, Sr₂As₂O₇, α-and β-SrAs₂O₆, and of the apatite-type phases Sr₅(AsO₄)₃OH and Sr₅(AsO₄)₃Cl. Solid State Sci 11(12):2111– 2117. https://doi.org/10.1016/j.solidstatesciences.2009.08.019
- White TJ, Dong Z (2003) Structural derivation and crystal chemistry of apatites. Acta Crystall B-Stru 59(1):10–16. https://doi.org/10. 1107/S0108768102019894
- Witkowska M, Motyka J, Kwaśniak-Kominek M, Manecki M (2014) Halogen substitution in synthetic lead apatite compounds Raman spectroscopy study. Geol Geophys Environ 40(1):141–142
- Wołowiec M, Tuchowska M, Kudła P, Bajda T (2019) Synthesis and characterization of cadmium chlorapatite Cd 5(PO4)3Cl. Mineralogia 50(1–4):3–12
- Xie L, Giammar DE (2007) Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environ Sci Technol 41(23):8050–8055. https://doi.org/10.1021/es071517e
- Yan Q, Zhu Y, Feng G, Zhu Z, Zhang L, Liu J, He H (2020) Characterization, dissolution and solubility of lead fluorapatite at 25–45 °C. Appl Geochem 120:104659–104668. https://doi.org/10.1016/j. apgeochem.2020.104659
- Yoder CH, Flora NJ (2005) Geochemical applications of the simple salt approximation to the lattice energies of complex materials. Am Mineral 90(2–3):488–496. https://doi.org/10.2138/am.2005.1537
- Yoder CH, Rowand JP (2006) Application of the simple salt lattice energy approximation to the solubility of minerals. Am Mineral 91(5–6):747–752. https://doi.org/10.2138/am.2006.2073
- Yuan Z, Gao T, Zheng Y, Ma S, Yang M, Chen P (2017) First-principles study on structural, electronic, vibrational and thermodynamic properties of $Sr_{10}(PO_4)_6X_2$ (X= F, Cl, Br). RSC Adv 7(48):30310–30319. https://doi.org/10.1039/C7RA04359G
- Zhang X, Zhu Y, Zeng H, Wang D, Liu J, Liu H, Xu L (2011) Dissolution and solubility of the arsenate–phosphate hydroxylapatite solid solution [Ca₅(P_xAs_{1-x}O₄)₃(OH)] at 25 °C. Environ Chem 8(2):133–145. https://doi.org/10.1071/EN10102
- Zhang F, Zhang F, Jing Q, Pan S, Yang Z, Jia D (2015) Synthesis, crystal structure and properties of the strontium vanadate fluoride Sr₅(VO₄)₃F. Z Anorg Allg Chem 641(7):1211–1215. https://doi. org/10.1002/zaac.201500079
- Zheng Y, Gao T, Gong Y, Ma S, Yang M, Chen P (2015) Electronic, vibrational and thermodynamic properties of Ca₁₀(AsO₄)₆(OH)₂: first principles study. Eur Phys J Appl Phys. https://doi.org/10. 1051/epjap/2015150301
- Zhu C, Sverjensky DA (1991) Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim Cosmochim Ac 55:1837– 1858. https://doi.org/10.1016/0016-7037(91)90028-4
- Zhu YN, Zhang XH, Xie QL, Wang DQ, Cheng GW (2006) Solubility and stability of calcium arsenates at 25 °C. Water Air Soil Poll 169(1):221–238. https://doi.org/10.1007/s11270-006-2099-y
- Zhu Y, Zhang X, Chen Y, Xie Q, Lan J, Qian M, He N (2009) A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25 C and 45 C. Chem Geol 268(1–2):89–96. https://doi.org/10.1016/j.chemgeo.2009.07.014
- Zhu Y, Zhang X, Zeng H, Liu H, He N, Qian M (2011) Characterization, dissolution and solubility of synthetic svabite [Ca₅(AsO₄)₃F] at 25–45°C. Environ Chem Lett 9:339–345. https://doi.org/10. 1007/s10311-010-0284-0

- Zhu Y, Zhu Z, Zhao X, Liang Y, Huang Y (2015a) Characterization, dissolution, and solubility of lead hydroxypyromorphite [Pb₅(PO₄)₃OH] at 25–45 °C. J Chem-NY. https://doi.org/10. 1155/2015/269387
- Zhu Y, Zhu Z, Zhao X, Liang Y, Dai L, Huang Y (2015b) Characterization, dissolution and solubility of synthetic cadmium hydroxylapatite [Cd5 (PO4) 3OH] at 25–45° C. Geochem Trans 16(1):1–11. https://doi.org/10.1186/s12932-015-0025-1
- Zhu Y, Huang B, Zhu Z, Liu H, Huang Y, Zhao X, Liang M (2016) Characterization, dissolution and solubility of

the hydroxypyromorphite-hydroxyapatite solid solution $[(Pb_xCa_{1-x})_5(PO_4)_3OH]$ at 25 °C and pH 2–9. Geochem Trans 17(1):1–18. https://doi.org/10.1186/s12932-016-0034-8

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.