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Abstract
The dissolved silica structures in quartz-saturated 0.50 and 1.50 m [mol kg H2O–1] Na2CO3 and 0.47 m NaOH solutions at 
up to 750 °C and 1.5 GPa were investigated by in-situ Raman spectroscopy using a Bassett-type hydrothermal diamond anvil 
cell. The solubility of quartz in the solutions was determined by in-situ observations of the complete dissolution of the grain. 
The Raman spectra of the quartz-saturated Na2CO3 and NaOH solutions at high pressures and temperatures exhibited the 
tetrahedral symmetric stretching band of silica monomers. The lower frequency and broader width of the band than those in 
pure H2O indicated the presence of both neutral and deprotonated monomers. In addition, we newly confirmed the intense 
bridging oxygen band and the tetrahedral symmetric stretching band of Q1 (silicate center having a single bridging oxygen 
atom) in the spectra of the Na2CO3 solutions. The integrated intensity ratios of the bridging oxygen band to the monomer band 
increased with the addition of Na2CO3 and NaOH to fluids, corresponding to an elevation of the measured quartz solubilities. 
These observations indicate that the formation of silica oligomers in addition to neutral and deprotonated monomers explains 
the high dissolved silica concentrations in the solutions. The presence of deprotonated monomers under the experimental 
conditions suggests that deprotonated oligomers exist in the solutions, because the production of the latter more significantly 
reduces the Gibbs free energy. The anionic silica species and oligomers formed in alkaline silicate fluids may act as effective 
ligands for certain metal ions or complexes in deep subduction zones.

Keywords  Hydrothermal diamond anvil cell · In-situ Raman spectroscopy · Quartz solubility · Silica speciation · 
Deprotonated monomer · Silica oligomer

Introduction

Aqueous fluids facilitate the mass transport of elements 
for the deep hydrothermal processes involved in metamor-
phism, metasomatism, and ore formation in the crust and 
upper mantle of the Earth. Silica is a major constituent of 

rock-forming minerals and is abundantly dissolved in the 
deep aqueous fluids. The mobilization of silica by the aque-
ous fluids has been observed as quartz veins and silica meta-
somatic zones of exhumed subduction zone rocks (Bebout 
and Barton 1989; Yardley and Bottrell 1992; Breeding and 
Ague 2002) and quartz-rich regions in the lower forearc 
crust with low Poisson’s ratios (Audet and Bürgmann 2014; 
Hyndman et al. 2015). Understanding the efficiency of silica 
transportation in the deep crust and upper mantle requires 
detailed knowledge of silica solubility and speciation in 
aqueous fluids under high pressure (P) and temperature (T) 
conditions. Because of such importance, a significant num-
ber of experimental studies have been conducted on quartz 
solubility in pure H2O (e.g., Anderson and Burnham 1965; 
Manning 1994), H2O–CO2 (e.g., Newton and Manning 
2000; Shmulovich et al. 2001), and H2O–NaCl fluids (e.g., 
Newton and Manning 2000; Shmulovich et al. 2006).

For SiO2–H2O systems, the solubility of quartz in 
pure H2O increases with higher P and T (e.g., Anderson 
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and Burnham 1965; Manning 1994), and this increase in 
the solubility is associated with the polymerization of 
aqueous silica monomers to form dimers or more polymer-
ized species (e.g., Newton and Manning 2002, 2008; Zotov 
and Keppler 2002; Mysen 2010; Mysen et al. 2013). These 
experiments were conducted at near-neutral pH conditions, 
whereas the solubility behavior of quartz in high pH fluids 
could provide some insights into the nature of alkaline 
fluids in subducting lithologies such as crustal pelite (Gal-
vez et al. 2015, 2016), crustal basalt (Galvez et al. 2016), 
and sediments (Connolly and Galvez 2018). The enhanced 
silica solubility in high pH fluids has been confirmed by 
early and recent studies on supercritical Na2CO3 or NaOH 
solutions (Friedman 1948; Anderson and Burnham 1967; 
Schmidt 2014; Aranovich et al. 2020). Aranovich et al. 
(2020) have systematically investigated quartz solubility 
in Na2CO3 and NaOH solutions at 500–700 °C and 0.4 
and 0.5 GPa using an internally heated pressure vessel 
and a phase assemblage bracketing method. The results 
showed the quartz solubility systematically increased with 
greater salt concentrations, reaching 4.1 m [mol kg H2O–1] 
of silica in 3.5 m Na2CO3 and 2.4 m silica in 2.2 m NaOH. 
To describe the high solubility of quartz based on the 
equilibration between aqueous species, those authors 
considered the presence of deprotonated silica dimers 
[Si2O(OH)5O−], in addition to the known silica monomeric 
and oligomeric species [Si(OH)4, Si(OH)3O−, Si2O(OH)6, 
and Si3O2(OH)8] in the solutions. Till date, there is a 
Raman spectroscopic study on quartz + 1.6 m Na2CO3 
solution up to 600 °C and 1.5 GPa by Schmidt (2014). The 
Raman spectra revealed the presence of neutral monomers 
Si(OH)4 and deprotonated monomers Si(OH)3O− in the 
solutions, but lacked evidence of silica oligomers in the 
spectral region of interest (> ~ 700 cm−1 for the observa-
tion of carbon species). On the other hand, a Raman spec-
troscopy study with SiO2–NaOH–H2O systems by Mysen 
(2018) showed the Q1-species band under high P–T condi-
tions, but the presence of anionic silica species in the solu-
tion is still uncertain. Thus, the information available on 
the Raman observations is insufficient to understand silica 
solubility and speciation in Na2CO3 and NaOH solutions 
under high P–T conditions.

In the present study, we report the dissolved silica struc-
tures in quartz-saturated 0.50 and 1.50 m Na2CO3 and 0.47 m 
NaOH solutions up to 750 °C and 1.5 GPa by in-situ Raman 
spectroscopy in the silicate network vibration frequency 
range. In addition, we measured the solubility of quartz 
by in-situ observations of the complete dissolution of the 
quartz grain, which allowed for comparison with the Raman 
spectroscopy results. This information provides insights into 
silicate speciation and fluid–rock interactions for deep geo-
logical environments with the presence of alkaline hydro-
thermal fluids.

Experimental methods

Hydrothermal diamond anvil cell experiment

The experiments were performed using a Bassett-type 
hydrothermal diamond anvil cell (HDAC-V; Anderson 
et  al. 2010).  The cell utilized low-fluorescence-grade 
natural diamond anvils with a culet diameter of 800 μm. 
Gaskets with an initial thickness of 125 μm and an initial 
hole diameter of 400 μm, with pure water in the hole, were 
preheated to approximately 600–700 °C to avoid substan-
tial deformation of the gasket at elevated P–T. An Ar + 2% 
H2 mixture was introduced into the gas chamber during 
the experiments to prevent oxidation of the molybdenum 
heating wires and anvils at high T. The temperature was 
measured using K-type thermocouples, with each junction 
close to the upper and lower anvils. The temperature of 
the sample chamber was calibrated by direct observation 
of the melting of Sn (231.9 °C) and NaCl (800.7 °C), and 
the disappearance of the Raman 355 cm−1 band from the 
α-quartz at the α–β transition (574 °C) at ambient pres-
sure. The pressure was calculated from the Raman fre-
quency shift of the ~ 464 cm−1 quartz peak (Schmidt and 
Ziemann 2000) at T < 560 °C, and the ~ 1008 cm−1 zircon 
peak at T > 560 °C (Schmidt et al. 2013). The positions 
of the Raman peaks were normalized to the simultane-
ously obtained neon emission lines. The estimated pres-
sure uncertainties of the reproducibility and random error 
for the quartz and zircon sensors are approximately 25 
and 50 MPa, respectively (Schmidt and Ziemann 2000; 
Schmidt et al. 2013). For one experiment with a quartz-
undersaturated system, the pressure was approximated 
from the isochore corresponding to the liquid–vapor 
homogenization temperature obtained during heating, 
based on the equation of state (EoS) of H2O (Wagner and 
Pruβ 2002).

The present study included three series of experi-
ments: (1) quartz + pure H2O, (2) quartz + 0.50 and 1.50 m 
Na2CO3, and (3) quartz + 0.47 m NaOH. Sodium carbon-
ate and sodium hydroxide (FUJIFILM Wako Pure Chemi-
cal Co. Japan) and deionized distilled water were used 
to prepare the solutions. The NaOH concentration was 
titrated with oxalic acid solution. Natural quartz (Minas 
Gerais, Brazil) and natural zircon (Mud Tank, Australia) 
were used as the starting crystals and the pressure sensors. 
After loading the quartz and zircon, the sample chamber 
was filled with the applicable solution and promptly sealed 
(within several seconds) to avoid concentration changes 
due to evaporation. It should be noted that the volume 
of air bubbles in the sample chamber was not controlled 
by the evaporation process under ambient conditions. We 
measured the volume of the quartz pieces to determine 
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the solubility under the P–T conditions in which quartz 
was completely dissolved (Fig. 1). The surface areas of 
doubly polished sections of quartz were calculated based 
on the optical microscopic images. As the quartz pieces 
were not perfectly rectangular parallelepipeds, because the 
polished section of the quartz were manually broken, as 

shown in Fig. 1a, e, the surface areas were segmented into 
transparent parts and rim parts with weak transparency, 
using the Trainable Weka Segmentation (TWS) plugin of 
the Fiji ImageJ software (Schindelin et al. 2012; Arganda-
Carreras et al. 2017). These processes allowed us to cal-
culate the lower and upper limits of the surface areas of 

100 μm
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Qz

Zrn

pure H2O

22 °C 705 °C603 °C(c) (d)401 °C(b)
Vapor

100 μm

(e) (f)
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Zrn

0.5 m Na2CO3 solution

23 °C 598 °C 699 °C 730 °C

Vapor

(g) (h)

Fig. 1   a Photomicrograph of a sample chamber containing a piece 
of quartz and zircon and pure H2O at 22 °C (QW4). b–d The views 
at 401  °C, 0.51  GPa, 603  °C, 0.70  GPa, and 705  °C, 0.89  GPa, 
respectively. The quartz became smaller with increasing  P and T. 
The quartz was completely dissolved at 728 °C and 0.96 GPa in this 

experiment. e Photomicrograph of a sample chamber containing a 
piece of quartz and zircon and the 0.50 m Na2CO3 solution at 23 °C 
(QCF12). f, g The views at 598 °C, 0.97 GPa and 699 °C, 1.35 GPa, 
respectively. h The quartz dissolution was completed at 730  °C, 
1.52 GPa

Table 1   Experimental 
conditions and solubility results

T, temperature; P, pressure; Qz, quartz; Zr, zircon
a Quartz solubility in H2O and Na2CO3 and NaOH solutions determined by in-situ observations of quartz 
complete dissolution. Solubility ranges are based on the maximum and minimum volume of quartz crys-
tal. Numbers in parentheses reflect the propagation of uncertainty from averaged two standard deviations of 
the solution density residual (see text)
b Quartz solubility in H2O at P and T calculated based on the DEW model (Sverjensky et al. 2014; Huang 
and Sverjensky 2019)

Run# Starting materials T (°C) P (GPa) Measured Qz solubil-
ity (mol kg H2O–1)a

Calculated Qz solubility 
in H2O (mol kg H2O–1)b

QW4 Qz, Zr, H2O 728 0.96 0.72–0.95 0.72
QW5 Qz, Zr, H2O 718 1.04 0.62–0.82 0.77
QCF13 Qz, Zr, 0.50 m Na2CO3 579 0.92 0.81 (13)–0.93 (15) 0.29
QCF15 Qz, Zr, 0.50 m Na2CO3 635 0.84 1.00 (12)–1.31 (15) 0.40
QCF20 Qz, Zr, 0.50 m Na2CO3 695 1.42 1.26 (41)–1.39 (45) 0.77
QCF12 Qz, Zr, 0.50 m Na2CO3 730 1.52 2.40 (31)–2.70 (35) 1.00
QCF18 Qz, Zr, 1.50 m Na2CO3 558 1.20 1.70 (11)–1.88 (12) 0.29
QCF19 Qz, Zr, 1.50 m Na2CO3 629 1.41 2.22 (52)–2.38 (56) 0.51
QCF11 Qz, Zr, 1.50 m Na2CO3 648 1.31 3.13 (35)–3.48 (38) 0.55
QSH3 Qz, Zr, 0.47 m NaOH 751 1.39 1.50 (38)–1.91 (48) 1.07
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the quartz piece, resulting in the solubility ranges shown 
in Table 1. To measure the quartz piece thickness, the 
other face of the fractured surface of each broken start-
ing piece was imaged by tilting it at 20° or 25° in a field 
emission scanning electron microscope (FE-SEM; JEOL 
JSM-7001F). The fluid mass calculation was based on the 
method of Audétat and Keppler (2005), and the bubble 
volume was calculated using optical microscopic images 
obtained below liquid–vapor homogenization tempera-
tures. The densities of the studied fluids at a given T and 
vapor-saturated P were calculated from the EoS of H2O 
(Wagner and Pruβ 2002) or a model with empirical coeffi-
cients for complex aqueous solutions (Laliberté 2009). We 
considered that the density of the Na2CO3 and NaOH solu-
tion is within the model value plus or minus twice the 
average standard deviation of the solution density residual 
(experimental–calculated density; 0.73 and 1.50 kg m−3 
for Na2CO3 and NaOH solution, respectively; Laliberté 
2009). This creates uncertainty in the lower and upper 
limits of the solubility values (Table 1). For the experi-
ments with Na2CO3 and NaOH solution, we considered 
the air bubble volume during the sample loading to attain 
liquid–vapor homogenization at a temperature that does 
not significantly exceed ~ 100 and ~ 120 °C, as per the data 
used in Laliberté (2009). The solubility of quartz deter-
mined in the present study is shown in units of molality 
m (moles of solute per kg of H2O, not of aqueous salt 
solution).

The sample chamber was heated at 30–40 °C min−1. The 
Raman spectra of the fluids were acquired at 50 or 100 °C 
increments after holding the sample at each temperature for 
a few minutes. Before the quartz dissolution was completed, 
the heating rate was reduced to ~ 15 °C min−1. Previous 
time-dependent measurements indicated that quartz and H2O 
in a sample chamber with a similar hole size attained equi-
librium within a few minutes at 600 °C (Zotov and Keppler 
2002).

Raman spectroscopy

Raman analyses were performed using a HORIBA Jobin 
Yvon LabRAM 300 Laser Raman microspectrometer con-
nected to a 1024 × 256-pixel charge-coupled device (CCD) 
detector. Unpolarized Raman spectra of the fluids were 
recorded using a 632.82  nm He–Ne laser with default 
power and with a confocal hole of 500 μm, a slit width of 
100 μm, 1800 lines mm−1 grating, and 2 or 3 accumulations 
of 240 s in the single spectral window (159.9–1194.8 cm−1). 
The laser power measured at the sample surface with an 
Olympus SLMPLN 50 × objective lens (numerical aperture 
0.35) was approximately 7 mW. The mechanical focus posi-
tion was consistently at the culet surface of the upper dia-
mond anvil. To compare the relative integrated intensities 

between the Raman spectra obtained under different P–T 
conditions, the spectra were corrected for the temperature 
factor of the Boltzmann distribution and the frequency 
and scattering factor (Brooker et al. 1988; Schmidt 2009). 
The spectra were further normalized by the density of the 
fluid and the factor for intensity decrease due to reflec-
tion at the diamond-fluid interface, according to the pro-
cedures described by Schmidt (2009) and Steele-MacInnis 
and Schmidt (2014). The density of supercritical H2O flu-
ids (Zhang and Duan 2005) was used for the supercritical 
Na2CO3 and NaOH solutions because of the lack of the EoS 
for the solutions at high P–T conditions. The corrected spec-
tra were baseline-corrected using linear or polynomial func-
tions and fitted by the Gaussian–Lorentzian area function 
using the software package PeakFit v4.12 (HULINKS Inc.).

Results

Solubility of quartz

Figure 1 shows the gradual dissolution of quartz in pure 
H2O and 0.50 m [mol kg H2O−1] Na2CO3 solution along the 
experimental heating paths. A larger crystal was dissolved in 
the Na2CO3 solution than in pure H2O at similar P–T values. 
The dissolution etch pits were characteristically observed on 
the crystal surface (Fig. 1f, g).

Table 1 and Fig. 2 summarize the results of quartz sol-
ubility in pure H2O and Na2CO3 and NaOH solutions. In 
pure H2O at 718 °C and 728 °C, and 1.0 GPa, the quartz 
solubilities fell in the range of 0.62–0.82 and 0.72–0.95 m, 
respectively. Although there was considerable uncertainty 
in the estimated quartz volume, the measured solubilities 
agreed, within the errors, with the values calculated based 
on the Deep Earth Water (DEW) model (0.72 and 0.77 m, 
respectively; Sverjensky et al. 2014; Huang and Sverjensky 
2019) that used the solubility and speciation data for aque-
ous silica from high pressure experiments for characterizing 
the HKF coefficients. This agreement confirms the validity 
of the crystal-volume measurements in the present study.

The quartz solubilities determined for 0.50 and 1.50 m 
Na2CO3 solutions at 558–730 °C and 0.8–1.5 GPa were 
greater than those for pure H2O at similar P–T conditions 
(Table 1). Even using the lowest estimation, the enhanc-
ing effect of the Na2CO3 on quartz solubility in aqueous 
fluids was confirmed. The quartz solubility increased at 
greater Na2CO3 concentrations, which is consistent with 
previous experimental data for up to approximately 4.7 m 
Na2CO3 solutions obtained at 300–450 °C and an unspeci-
fied P (Friedman 1948), and for 0.3–3.5 m Na2CO3 solutions 
obtained at 500–700 °C, and 0.4 and 0.5 GPa (Aranovich 
et al. 2020). The measured solubilities were generally similar 
to the values for 0.50 and 1.50 m Na2CO3 solution at 0.4 or 
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0.5 GPa calculated by linear interpolation of the Aranovich 
et al.’s (2020) data, except for the slightly higher results at 
648 °C (1.3 GPa) and 730 °C (1.5 GPa) (Fig. 2). The quartz 
solubility in 0.47 m NaOH solution at 751 °C and 1.4 GPa 
overlapped within the errors with the value for 0.47 m NaOH 
solution at 0.4 GPa calculated by linear extrapolation of the 
Aranovich et al.’s (2020) data (Fig. 2).

Raman spectra and band assignments

Table 2 summarizes the results of Raman spectroscopic 
measurements. Figure 3 shows the unprocessed Raman 
spectra of the quartz-saturated and -undersaturated 
1.50 m Na2CO3 solutions, and Fig. 4 presents those of 
the quartz-saturated 0.50 m Na2CO3 and 0.47 m NaOH 
solutions. The spectra, corrected for the frequency and 

temperature factors (Brooker et al. 1988; Schmidt 2009), 
were baseline-corrected by polynomial functions using 
the ~ 450–500 cm−1, ~ 730 cm−1, and ~ 900 or ~ 950 cm−1 
regions as anchors. We did not include the higher fre-
quency regions, in which the intensity increased due to 
the strong fluorescence of the diamond. In the spectra of 
the Na2CO3 solution, a simple linear baseline correction 
was applied to remove the background in the range of 
~ 950–1150 cm−1 to obtain the relative intensities of the 
vibrational modes of the carbon species. Figure 5 shows 
the representative baseline-corrected Raman spectra fitted 
by the Gaussian–Lorentzian area function and the assign-
ment of the vibrations of silicate species. In the following 
sections, we use the Qn terminology, which represents the 
tetrahedral silicate center connected to n bridging oxygen 
atoms.

The ~ 600 cm−1 band region

In the ~ 500–700  cm−1 region, we observed an intense 
broad band in the Raman spectra of quartz-saturated 0.50 
and 1.50 m Na2CO3 solutions (Figs. 3a and 4a), as well 
as in the quartz-undersaturated 1.50 m Na2CO3 solution 
(Fig. 3b). The observation of this band in the NaOH solution 
(Fig. 4b) was consistent with that reported by Mysen (2018). 
The band was detected above ~ 300–400 °C in the Na2CO3 
solution, ~ 500 °C in the NaOH solution, and ~ 600 °C in 
pure H2O. The band showed increased intensities and broad-
ening to a lower frequency of ~ 500 cm−1 with increasing P 
and T. In some spectra, the band could be separated into at 
least two components, with a main band at ~ 600 cm−1 and a 
weaker band at ~ 650 cm−1 in the Na2CO3 solution (Fig. 5). 
Experimental and ab initio molecular dynamics studies have 
shown that the band near 600 cm−1 represents the vibrations 
of bridging oxygen Si–O–Si of weakly polymerized silica 
species such as dimers and trimers (e.g., Lasaga and Gibbs 
1988; Zotov and Keppler 2000; Hunt et al. 2011; Spieker-
mann et al. 2012a, b). Spiekermann et al. (2012a) showed 
that the bridging oxygen symmetric stretching appeared as a 
major band at ~ 620 cm−1 and a shoulder band at ~ 680 cm−1 
for dimers, and a major band at ~ 680 cm−1 for linear trim-
ers. The ring trimer displays a band at ~ 500–600  cm−1 
from the ring breathing mode, in addition to the promi-
nent bridging oxygen band at ~ 600 cm−1 (Dutta and Shieh 
1985; Hunt et al. 2011; Spiekermann et al. 2012b). These 
frequency ranges can cover the observed band in the 
500–700 cm−1 region, which is interpreted as resulting from 
a dimer ± trimer formation. However, it may be challeng-
ing to assign the separated bands to individual oligomeric 
species, as the Si–O–Si vibrational frequencies may show 
a significant variability owing to the structural degree of 
freedom of the Si–O–Si bending angle (Kubicki and Sykes 
1993; Hunt et al. 2011).
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0.92
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1.5
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1.04
0.96
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H2OH2O
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0.47 m NaOH
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Aranovich et al. 2020)
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5

Fig. 2   Experimental results of quartz solubility in  pure H2O (black 
diamond), 0.50 m Na2CO3 (red circle), 1.50 m Na2CO3 (blue circle), 
and 0.47 m NaOH (black square) as a function of temperature. Each 
symbol represents the average of the upper and lower limits solubil-
ity, with the error bars including the uncertainties from the volume of 
the quartz crystal and the density of the solution. The values accom-
panying each symbol correspond to the pressure at which the quartz 
was completely dissolved. Filled square symbols are quartz solubility 
values in 0.50 and 1.50  m Na2CO3 and 0.47 m NaOH at 0.4 or 0.5 
GPa, which are linearly interpolated or extrapolated from the data of 
Aranovich et  al. (2020). Quartz solubilities in H2O, 0.5  m Na2CO3, 
and 1.5 m Na2CO3 at 1.0 and 1.5 GPa calculated based on the DEW 
model (Sverjensky et al. 2014; Huang and Sverjensky 2019) and the 
EQ3NR code (Wolery 1992) are shown as dashed and solid lines for 
comparison
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Table 2   Raman spectroscopy measurement conditions and results

Run# Solution composition Th (°C) T (°C) P (GPa) Phase ω770 (cm-1)a FWHM770 (cm-1)b A600/A770
c A1000/A1060

d

QW6 H2O 179.6 650 1.45 Qz + F 776.0 (0.2) 20.2 (0.7) 0.11 (3) –g

702 1.63 Qz + F 776.3 (0.2) 22.6 (0.8) 0.15 (3) –
QW10 H2O 184.9 603 0.76 Qz + F 773.5 (0.2) 18.1 (0.9) 0.13 (4) –

651 0.88 Qz + F 773.2 (0.2) 18.9 (0.9) 0.13 (4) –
702 1.02 Qz + F 772.9 (0.2) 20.4 (0.7) 0.11 (2) –
753 1.25 Qz + F 772.6 (0.3) 21.6 (0.8) 0.17 (5) –
801 1.47 Qz + F 772.7 (0.3) 21.9 (0.8) 0.26 (4) –

QW12 H2O 49.9 300 0.59 Qz + F 778.1 (1.2) 18.4 (4.8) – –
400 0.83 Qz + F 777.5 (0.8) 18.0 (3.1) – –
500 1.00 Qz + F 776.6 (0.5) 19.4 (1.9) – –
592 1.11 Qz + F 776.0 (0.4) 19.7 (1.3) 0.27 (7) –

QCF13 0.50 m Na2CO3 73.9 401 0.64 Qz + F 768.3 (1.0) 29.2 (2.7) n.d.h n.d.
499 0.89 Qz + F 769.3 (0.7) 34.2 (2.2) 0.44 (9) –
579e 0.92e F 769.6 (0.5) 31.2 (1.4) 0.42 (8) –

QCF15 0.50 m Na2CO3 83.6 400 0.67 Qz + F 768.4 (0.9) 30.9 (2.5) n.d. n.d.
499 0.59 Qz + F 765.6 (0.8) 33.0 (2.1) n.d. n.d.
600 0.89 Qz + F 767.2 (0.5) 30.8 (1.5) 0.46 (9) –
635e 0.84e F 767.6 (0.4) 31.4 (1.2) 0.40 (6) –

QCF20 0.50 m Na2CO3 35.9 200 0.46 Qz + F – – – 0.19 (4)
300 0.72 Qz + F 772.6 (0.7) 26.0 (2.5) 0.41 (13) 0.65 (9)
400 0.96 Qz + F 774.4 (0.3) 28.2 (1.1) 0.38 (9) 1.14 (12)
500 1.32 Qz + F 774.4 (0.3) 28.3 (1.1) 0.45 (10) 1.43 (21)
600 1.11 Qz + F 772.6 (0.3) 29.1 (1.0) 0.43 (4) –
695e 1.42e F 773.7 (0.3) 28.5 (0.9) 0.52 (6) –

QCF12 0.50 m Na2CO3 103.0 300 0.53 Qz + F 768.3 (1.4) 31.1 (4.5) n.d. n.d.
400 0.76 Qz + F 769.7 (0.8) 29.4 (2.6) 0.56 (14) n.d.
500 0.96 Qz + F 770.3 (0.5) 30.9 (1.7) 0.58 (9) n.d.
598 0.97 Qz + F 771.5 (0.5) 29.7 (1.3) 0.52 (9) –
649 1.15 Qz + F 771.8 (0.4) 27.7 (1.2) 0.59 (7) –
699 1.35 Qz + F 772.9 (0.3) 27.8 (1.0) 0.49 (5) –
730e 1.52e F 773.5 (0.3) 28.1 (0.9) 0.54 (6) –

QCF18 1.50 m Na2CO3 83.3 200 0.38 Qz + F – – – 0.16 (3)
300 0.62 Qz + F 771.5 (0.8) 25.3 (2.7) n.d. 0.45 (5)
400 0.87 Qz + F 771.0 (0.5) 27.6 (1.2) 0.69 (14) 0.62 (5)
500 1.07 Qz + F 770.9 (0.4) 29.4 (1.2) 0.76 (10) 0.85 (6)
558e 1.2e F 772.1 (0.3) 29.4 (0.9) 0.80 (8) 0.90 (6)

QCF19 1.50 m Na2CO3 41.3 100 0.25 Qz + F – – – 0.07 (11)
200 0.54 Qz + F – – – 0.09 (2)
300 0.81 Qz + F 774.1 (0.6) 23.3 (2.1) 0.53 (14) 0.31 (5)
400 1.08 Qz + F 773.5 (0.4) 27.0 (1.2) 0.72 (12) 0.61 (4)
500 1.32 Qz + F 773.1 (0.4) 28.3 (1.0) 0.71 (13) 0.87 (5)
600 1.48 Qz + F 771.8 (0.3) 29.9 (0.8) 1.04 (9) 0.79 (5)
629e 1.41e F 771.9 (0.4) 29.8 (0.9) 1.00 (12) 0.71 (5)

QCF11 1.50 m Na2CO3 65.4 200 0.43 Qz + F – – – 0.23 (3)
300 0.67 Qz + F – – – 0.67 (9)
400 0.85 Qz + F 771.1 (0.4) 25.7 (1.6) n.d. 0.61 (5)
498 1.02 Qz + F 771.1 (0.5) 28.6 (1.5) 0.75 (12) 0.79 (9)
600 1.25 Qz + F 771.3 (0.4) 31.3 (1.1) 0.95 (15) 0.81 (14)
648e 1.31e F 771.3 (0.4) 29.7 (1.1) 1.05 (11) 0.73 (8)
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The ~ 770 cm−1 band region

The Raman spectra of quartz-saturated 0.50 and 1.50 m 
Na2CO3 and 0.47 m NaOH solutions showed prominent 
bands at ~ 770 cm−1 (Figs. 3a and 4). The intensities of the 
band increased with increasing P–T conditions in the quartz-
saturated systems and were greater than those observed with 
pure H2O (Fig. 5). This band can be readily assigned to the 
tetrahedral symmetric Si–O stretching of monomeric silica 
species (Lasaga and Gibbs 1988; Zotov and Keppler 2000; 
Spiekermann et al. 2012a, b). Figure 6 shows the frequency 
and full width at half maximum (FWHM) of the band in 
the quartz-saturated H2O, Na2CO3, and NaOH solutions 
as a function of T (and P). The frequency in the Na2CO3 
and NaOH solutions was lower than that in H2O at simi-
lar P–T conditions (Fig. 6a). The FWHM of the band in 
H2O increased with increasing P and T up to ~ 23 cm−1. In 
contrast, the FWHM in the Na2CO3 and NaOH solutions 
exhibited greater values than ~ 25  cm−1 with all experi-
mental conditions (Fig. 6b). The overall trends were simi-
lar for the Na2CO3 and NaOH solutions. Hunt et al. (2011) 
showed that the frequency of the tetrahedral symmetric 
stretching of deprotonated monomers [Si(OH)3O−] and 
doubly deprotonated monomers [Si(OH)2O2

2−] shifted to 
the lower frequency regions. The second deprotonation 

requires extremely high pH (> 13) under ambient condi-
tions (Bergna and Roberts 2005); therefore, the observed 
low frequency and broad FWHM features of the band can be 
an indication of deprotonated monomers in addition to the 
presence of neutral monomers [Si(OH)4]. Schmidt (2014) 
similarly assigned the two separated peaks of the broad band 
at ~ 770 cm−1 to the tetrahedral symmetric stretching of neu-
tral and deprotonated monomers for quartz + 1.6 m Na2CO3 
experiments up to 600 °C and 1.5 GPa. The present study 
indicated the prevalence of the deprotonated species in 0.50 
and 1.50 m Na2CO3 and 0.47 m NaOH solutions equilibrated 
with quartz up to 750 °C and 1.5 GPa.

The ~ 800–900 cm−1 band regions

The Raman spectra of quartz-saturated 0.50 and 1.50 m 
Na2CO3 and 0.47 m NaOH solutions showed very weak 
band centered at ~ 830 cm−1 as a shoulder of the 770 cm−1 
band (Figs. 3a and 4). This band can be attributed to the 
tetrahedral Si–O symmetric stretching of Q1 units, i.e., 
dimeric silicates or chain silicate species, and the asymmet-
ric stretching of the ethane-like dimer Si2O(OH)6, which 
appeared at 793 cm−1 and 783 cm−1, respectively (Spieker-
mann et al. 2012a). The previous work by Schmidt (2014) 

Table 2   (continued)

Run# Solution composition Th (°C) T (°C) P (GPa) Phase ω770 (cm-1)a FWHM770 (cm-1)b A600/A770
c A1000/A1060

d

QCF21 1.50 m Na2CO3 30.7 200f 0.28f F n.d. n.d. n.d. 0.14 (2)

300f 0.50f F n.d. n.d. n.d. 0.20 (3)

400f 0.72f F 771.2 (1.8) 26.8 (5.3) 1.39 (53) 0.18 (4)

500f 0.93f F 771.0 (1.3) 33.6 (4.8) 1.63 (29) 0.30 (2)

603f 1.14f F 767.9 (1.4) 34.6 (5.0) 1.51 (31) 0.29 (3)

705f 1.35f F 766.0 (1.1) 28.3 (3.9) 1.69 (27) 0.46 (3)
QSH3 0.47 m NaOH 115.0 300 0.51 Qz + F 768.6 (0.7) 25.3 (2.5) n.d. –

400 0.72 Qz + F 768.6 (0.5) 28.6 (1.6) n.d. –
500 0.88 Qz + F 770.2 (0.6) 30.3 (2.0) n.d. –
599 1.00 Qz + F 770.2 (0.5) 29.4 (1.2) 0.27 (5) –
650 1.12 Qz + F 771.1 (0.4) 29.2 (1.2) 0.27 (4) –
701 1.27 Qz + F 771.9 (0.3) 27.6 (0.9) 0.32 (4) –
751e 1.39e F 772.6 (0.3) 26.4 (0.9) 0.36 (4) –

T, temperature; P, pressure; Th, liquid–vapor homogenization temperature; Qz, quartz; F, fluid; V, vapor
a Frequency of the 770 cm−1 band assigned to the tetrahedral symmetric stretch of silica monomers. Numbers in parentheses represent two stand-
ard deviations
b Full width half at maximum (FWHM) of the 770 cm−1 band. Numbers in parentheses represent two standard deviations
c,d Ratio of the integrated intensities. Numbers in parentheses represent the uncertainty from the propagation of two standard deviation
e Qz dissolution was completed at this P and T
f Qz was undersaturated at this P and T 
g The signals of the band were not observed
h n.d. represents that the integrated intensities or their ratios were not determined due to the poor signal to noise ratios
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did not separate the band at ~ 830 cm−1, possibly because of 
its low intensity.

In the Raman spectra of the quartz-saturated NaOH 
solution, the ~ 830 cm−1 band showed broadening to the 
frequency at ~ 950 cm−1 (Fig. 4b). The band at ~ 900 cm−1 
was observed in the SiO2–H2O system (Zotov and Keppler 
2002), but hardly detected in the 0.50 and 1.50 m Na2CO3 
solutions, possibly because it overlapped with the stretch-
ing band of carbon species in the 1.50 m Na2CO3 solution. 
The ~ 900 cm−1 band has been assigned to Q2 units, i.e., the 
cyclic silicate or middle group in silicate chains, in several 
studies, but using only this explanation could cause over-
estimation of the degree of polymerization, because there 
are several potential species that could be responsible for 
this band. Spiekermann et al. (2012a) showed that the tet-
rahedral symmetric stretching of Q2 appears at 888 cm−1, 
coupled with 1081 cm−1. The presence of the broad band 
at ~ 950–1050 cm−1 in the NaOH solution is not likely to 
result only from the coupled features of Q2, because the 
bridging oxygen Si–O–Si asymmetric stretching of Qn or 
the Si–O− stretching of the deprotonated species appears 

in these regions, as described below. The ~ 900 cm−1 band 
may include a contribution from the symmetric stretching 
of the ethane-like dimer Si2O(OH)6, which shows a band at 
870 cm−1 (Spiekermann et al. 2012a). In addition, the tet-
rahedral asymmetric stretching of Q0 and Q1 and the single 
non-bridging Si–OH stretching of various Qn units (n = 0–3) 
appear between 915 cm−1 and 936 cm−1 (Spiekermann et al. 
2012a).

The ~ 1000 cm−1 band region

The Raman spectra of the quartz-saturated and -undersatu-
rated 1.50 m Na2CO3 solutions showed prominent bands 
at ~ 1000 cm–1 and ~ 1060 cm−1 (Fig. 3). The ~ 1060 cm−1 
bands in the quartz-saturated solution exhibited broader 
features than those of the quartz-undersaturated solution. 
These bands diminished to ~ 600–700 °C in the quartz-satu-
rated 0.50 m Na2CO3 solution (Fig. 4a). These bands can be 
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mainly assigned to the C–OH stretching of HCO3
− and the 

C–O symmetric stretching of CO3
2−, respectively (Frantz 

1998; Rudolph et al. 2008; Schmidt 2014). Figure 7 shows 
that the relative intensities of the ~ 1000  cm−1 band to 
the ~ 1060  cm−1 band (A1000/A1060) were higher in the 
quartz-saturated system than in the undersaturated system. 
At ~ 600 °C, the relative intensities in the quartz-saturated 
system remained constant or decreased. This is likely attrib-
uted to an intensity increase at ~ 1060 cm−1 owing to the con-
tributions from the silicate species vibrations, as described 
below.

Broad, weak signals were detected in the high-frequency 
regions at ~ 950–1150 cm−1 in the quartz-saturated NaOH 
solution spectra (Fig. 4b). The ~ 1060 cm−1 region of the 
quartz-saturated 1.50 m Na2CO3 solution spectra also indi-
cated the contribution from silicate species. The bands are 
likely attributed to the bridging oxygen Si–O–Si asymmet-
ric stretching of Qn (n = 1–4) at ~ 1070 cm−1 (Spiekermann 
et al. 2012a), because of the presence of the bridging oxy-
gen vibrations at ~ 600 cm−1. In addition, Spiekermann et al. 
(2012a) showed that the tetrahedral symmetric stretching of 
Q2 and Q3 units displays bands at 1081 cm−1 and 1103 cm−1, 
respectively. Moreover, the tetrahedral asymmetric stretching 
of Q2, Q3, and Q4 units exhibits bands centered at 970, 1015, 
and 1062  cm−1, respectively. However, we may exclude 
contributions from the vibrations of Q4 units, because those 
species were not detected in aqueous solutions of up to 
40 mol% SiO2 concentrations in Na2O⋅2SiO2 (NS2)–H2O 
and Na2O⋅3SiO2 (NS3)–H2O systems at high P–T conditions 
(Steele-MacInnis and Schmidt 2014). Another possibility is 

a contribution from the Si–O− stretching of the deprotonated 
species centered at ~ 1050 cm−1 (Hunt et al. 2011). Although 
the high-frequency bands were not as prominent as those 
observed in highly alkaline silicate solutions at ambient T 
and up to 2.0 GPa (Dutta and Shieh 1985; Gout et al. 2000; 
Hunt et al. 2011), the bands may include contributions from 
the deprotonated species, because of the presence of the 
deprotonated monomer Si(OH)3O−.

Discussion

Comparisons with previous solubility data in Na2CO3 
solutions

Aranovich et al. (2020) determined the quartz solubility in 
0.2–3.5 m Na2CO3 solutions at conditions of 500, 600, and 
700 °C and 0.4 GPa, and 600 °C and 0.5 GPa, using an 
internally heated pressure vessel and a phase assemblage 
bracketing method. Those authors showed a slight increase 
of quartz solubility in the Na2CO3 solutions with increas-
ing P and T. Figure 2 shows that our measured solubilities 
in 0.50 m Na2CO3 solutions at 579 °C (0.92 GPa), 635 °C 
(0.84 GPa), and 695 °C (1.42 GPa), and 1.50 m Na2CO3 
solutions at 558 °C (1.20 GPa) and 629 °C (1.41 GPa) over-
lapped, within errors, with the calculated values from the 
Aranovich et al. (2020) experiments at 0.4 and 0.5 GPa. 
This agreement indicates that the pressure dependence of 
the quartz solubility is negligible at these temperature and 
compositional ranges. In contrast, our measured solubili-
ties in the 0.50 m Na2CO3 solution at 730 °C (1.52 GPa) 
and the 1.50 m Na2CO3 solution at 648 °C (1.31 GPa) were 
higher than the values extrapolated from the lower tempera-
ture results. This might suggest that the solubility of quartz 
becomes more dependent on temperature at higher P as P–T 
conditions approach the critical curve.

Schmidt (2014) reported the silica solubility in 1.6 m 
Na2CO3 solution at 600 °C and 1.5 GPa based on the in-situ 
Raman spectroscopic study to be ~ 1 m, which is approxi-
mately two times lower than our lowest estimation of 
the solubility in 1.50 m Na2CO3 at 629 °C and 1.41 GPa 
(2.22 ± 0.52 m). This discrepancy likely relates to the cal-
culation used by Schmidt (2014) being based on the inte-
grated intensities of the monomeric silica band. In the pre-
sent study, the in-situ Raman spectroscopy in the frequency 
regions of silicate newly revealed the strong bridging oxygen 
band and the tetrahedral symmetric stretching band of the Q1 
unit in the quartz-saturated 1.50 m Na2CO3 solution spectra 
(Figs. 3 and 5), indicating the presence of silica oligom-
ers in the solution. Therefore, basing the total silica solu-
bility calculation solely on the integrated intensities of the 
monomeric silica band could lead to underestimation in this 
system. The present study shows the effect of the alkaline 
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Na2CO3 solution on enhancing silica solubility at high P 
conditions becomes clearer.

Comparison with thermodynamic modeling

We compared the measured quartz solubilities in 0.50 and 
1.50 m Na2CO3 with thermodynamically predicted solu-
bilities at similar P and T conditions based on the equili-
bration between aqueous silica species, using an equilib-
rium constant database for aqueous species from the DEW 
model (Sverjensky et  al. 2014; Huang and Sverjensky 
2019) and the EQ3NR code (Wolery 1992). In this calcu-
lation, we assumed that the oxygen fugacity was near the 
fayalite–magnetite–quartz (FMQ) buffer, because Schmidt 
(2014) reported no CH4 formation in Na2CO3 solutions in 
equilibrium with quartz using an experimental setup similar 
to ours. We also confirmed that the calculated solubilities 
were not significantly changed by carbon speciation under 
more oxidized conditions than that of the FMQ buffer. It 
should be noted that carbon species were predicted to be 
mainly electrically neutral under these conditions, which is 
not consistent with the observed Raman band. In Fig. 2, we 
showed the thermodynamically predicted silica solubility 
curves in 0.5 and 1.5 m Na2CO3 solutions at 1.0 and 1.5 GPa, 
where the aqueous silica species were Si(OH)4, Si(OH)3O−, 
Si2O(OH)6, and Si3O2(OH)8. These curves were lower than 
our lowest estimation of quartz solubility. Aranovich et al. 
(2020) also reported that the quartz solubility in Na2CO3 
solutions based only on the above species underestimated the 
values at lower pressure ranges (0.4 and 0.5 GPa). Our solu-
bility data, together with those of Aranovich et al. (2020), 
indicated that the available speciation modeling was insuf-
ficient to explain the high quartz solubilities and aqueous 
speciation in the Na2CO3 solution at high P–T conditions.

High quartz solubility associated with the formation 
of oligomers

The solubility of silica in aqueous solutions rapidly increases 
at levels of pH > 9 under ambient conditions (Iler 1979). 
The studied Na2CO3 and NaOH solutions were alkaline, 
involving the hydrolysis reaction of aqueous carbonate spe-
cies (CO3

2− + H2O = HCO3
− + OH−) or the dissociation of 

NaOH (NaOH = Na+ + OH−). The present study showed 
the favorable formation of HCO3

− in Na2CO3 solutions 
in the quartz-saturated condition compared to the quartz-
undersaturated condition (Fig. 7), which can readily be 
explained by the consumption of OH− through the reaction 
with quartz. Schmidt (2014) demonstrated that the forma-
tion of the deprotonated silica monomers in the solutions 
(SiO2(s) + H2O + OH− = SiO(OH)3

−) reflected the higher 
quartz solubility in Na2CO3 solutions than that in pure 
H2O. Our Raman spectroscopic studies confirmed the higher 

intensities of the monomer bands in the Na2CO3 and NaOH 
solutions than those in pure H2O (Fig. 5), with the presence 
of deprotonated monomers up to our highest experimental 
conditions of 750 °C and 1.5 GPa. Together with the results 
of Schmidt (2014), we have verified that the formation of 
deprotonated monomers contributed to the high quartz solu-
bility in the Na2CO3 solutions.

Furthermore, the present study newly observed the bridg-
ing oxygen band in the Raman spectra of the Na2CO3 solu-
tions, which indicates the formation of silica oligomers 
(Figs. 3, 4, and 5). In particular, the Raman band regions 
of the tetrahedral symmetric Si–O stretching of structural 
Qn units indicate that at least dimeric silicates or chain sili-
cate species, including Q1 units, are present in the solutions 
(Fig. 5). To quantify the relative concentrations of species 
in aqueous solutions and melts, the previous studies con-
sidered the ratios of the tetrahedral symmetric stretching 
band of Qn species, which are assumed to have the same 
Raman scattering cross-sectional area (e.g., Mysen 2010; 
Mysen et al. 2013; Steele-MacInnis and Schmidt 2014). 
However, the intensities of the detected tetrahedral symmet-
ric stretching bands of Q1 units in our Na2CO3 and NaOH 
solutions were too low to detect differences in the Q1/Q0 
ratios between the solutions. Instead, we used the ratio of 
the intense bridging oxygen Si–O–Si symmetric stretch-
ing band to the tetrahedral symmetric stretching band of Q0 
(A600/A770) in a similar manner to Hunt et al. (2011). Com-
parison of the A600/A770 obtained under different P–T condi-
tions requires the assumption that the ratios of the relative 
Raman scattering cross-sectional factors are independent 
of P and T. Steele-MacInnis and Schmidt (2014) reported 
no detectable change in the silicate band intensities with 
increasing P at constant T and SiO2 concentrations. Thus, 
we compared the ratios among spectra of different solutions 
under similar T conditions. Figure 8a shows the integrated 
intensity ratios, A600/A770, in the quartz-saturated Na2CO3, 
NaOH, and H2O solutions at P = 0.8–1.5 GPa as a function 
of T. The ratios generally increased in the following order: 
H2O < 0.47 m NaOH < 0.50 m Na2CO3 < 1.50 m Na2CO3. 
In addtion, the increase in the ratios corresponded to the 
elevation of silica solubility determined by the in-situ obser-
vations of the complete dissolution of quartz (Fig. 8b). If the 
ratios were simply proportional to the concentration ratios 
of oligomeric species to monomers, the increase in silica 
oligomers in the solutions would account for the observed 
high quartz solubilities in the Na2CO3 and NaOH solutions. 
The ratios could also be increased by the formation of silica 
oligomers with different Raman scattering cross-sectional 
factors with increasing silica concentration. Therefore, the 
observed high solubility of quartz in the Na2CO3 and NaOH 
solutions is assumed to have resulted from the formation of 
silica oligomers in addition to the neutral and deprotonated 
monomers.
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Silica speciation in alkaline high P–T solutions

Based on our solubility data and Raman observations, the 
oligomeric silica species contribute to the high quartz solu-
bility in alkaline Na2CO3 and NaOH solutions under high 
P–T conditions. In particular, the Raman band regions of the 
tetrahedral symmetric Si–O stretching of structural units Qn 
indicate that at least dimeric silicates or chain silicate spe-
cies, including Q1 units, are present in the solutions. This 
suggests that the deprotonated dimer, Si2O(OH)5O−, could 
be present in quartz-saturated alkaline solutions at high 
P–T conditions, as proposed by Aranovich et al. (2020). 
However, we could not infer the presence of the deproto-
nated dimers from the Si–O− stretching Raman band, which 
appears at ~ 1050  cm−1 in the alkaline silicate solutions 

under ambient conditions and up to 2 GPa (e.g., Hunt et al. 
2011). On the other hand, our experiments confirmed the 
presence of deprotonated monomers in the quartz-saturated 
Na2CO3 and NaOH solutions under all experimental con-
ditions. As the deprotonation of silica dimers and trimers 
lowers the Gibbs free energy more efficiently than that of the 
silica monomers in aqueous solutions at room temperature 
to 450 K (Tossell and Sahai 2000; Mora-Fonz et al. 2007), 
the deprotonated oligomers could be favorably present in 
the solutions even at elevated P–T conditions. Other pos-
sible stable silica oligomers are ion pairs between sodium 
cations and deprotonated silica oligomers or sodium–silicate 
complexes, as observed in alkali–silicate solutions under 
ambient conditions by NMR spectroscopy (Kinrade and 
Swaddle 1986; McCormick et al. 1989) and fast atom bom-
bardment mass spectroscopy (FAB-MS; Tanaka and Taka-
hashi 1999). Manning et al. (2010) and Wohlers et al. (2011) 
demonstrated the presence of polymerized Na–Al–Si com-
plexes in aqueous fluids in equilibrium with albite + parago-
nite + quartz or jadeite + paragonite + quartz at 350–600 °C 
and 1–2.25 GPa. Although evidence for oligomers involv-
ing alkali metals was not directly inferred from the in-situ 
Raman spectroscopic studies, the effect of alkali metal cati-
ons on aqueous silicate equilibria is indicated by the differ-
ences in the Raman spectra and integrated intensity ratios 
between the quartz-saturated 0.50 m Na2CO3 and 0.47 m 
NaOH solutions. The equilibria involving such oligomers 
at elevated P–T conditions will accurately describe silicate 
solubility in alkaline fluids.

Implications for element transfer in deep 
subduction zones

The present study suggests that alkaline fluids can dissolve 
a significant amount of silica compared to pure H2O at 
elevated P–T conditions, which is explained by the forma-
tion of neutral and deprotonated monomers and the subse-
quent formation of oligomers. The presence of deprotonated 
monomers under all experimental conditions suggested the 
presence of deprotonated and other possible oligomers such 
as ion pairs between sodium cations and anionic deproto-
nated silica oligomers. The presence of anionic silica species 
in alkaline fluids enhances the attractive electrostatic force 
between opposite ions, which acts as an effective ligand for 
certain metal ions or complexes. For example, the interac-
tion energies of gold complexes with silica species depend 
on the pH conditions (Mohammadnejad et al. 2017). Addi-
tional examples are Zr and Ti, which are representatives of 
nominally insoluble high field strength elements. Only SiO2 
components in aqueous fluids did not significantly enhance 
the solubility of Ti and Zr (Antignano and Manning 2008; 
Bernini et al. 2013), while the addition of NS2 or NS3 glass 
or albite components to pure H2O enhanced the solubility 
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Fig. 8   a The integrated intensity ratios of the oligomeric silica spe-
cies band area to the monomer band area (A600/A770) as a function of 
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of Ti and Zr by producing alkaline silicate-rich fluids simi-
lar to our experimental system (Antignano and Manning 
2008; Manning et al. 2008; Wilke et al. 2012; Louvel et al. 
2013). Based on X-ray absorption spectroscopy, Louvel 
et al. (2013) found that Zr dissolved by forming alkali–zir-
conosilicate clusters via octahedral coordination with oxy-
gen and Si(Na) second neighbors. The anionic silica species 
and subsequently formed silica oligomers in alkaline fluids 
are thus assumed to affect the solubility of these metals by 
forming complexes.

Conclusions

1.	 The solubilities of quartz in 0.50 and 1.50 m Na2CO3 
solutions at 558–730 °C and 0.84–1.52 GPa indicated 
the enhancing effect of Na2CO3 on quartz solubility at 
elevated P–T conditions. The present study, together 
with Aranovich et al. (2020), showed that the conven-
tional aqueous silica species [Si(OH)4, Si(OH)3O−, 
Si2O(OH)6, and Si3O2(OH)8] alone were insufficient to 
describe the observed high solubility.

2.	 The Raman spectra of the quartz-saturated Na2CO3 
and NaOH solutions exhibited tetrahedral symmetric 
stretching bands under the experimental conditions. 
The low frequency and broad FWHM of the bands were 
interpreted to be due to the deprotonated monomer 
Si(OH)3O− in addition to the neutral monomer Si(OH)4.

3.	 We newly confirmed the intense bridging oxygen band 
and the tetrahedral symmetric stretching band of Q1 
units, suggesting the formation of silica oligomers in the 
solutions. The integrated intensity ratios of the bridging 
oxygen band area to the monomer band area increased 
in the following order: H2O < 0.47 m NaOH < 0.50 m 
Na2CO3 < 1.50 m Na2CO3. The increase in the ratios cor-
responded to the elevation of quartz solubilities, sug-
gesting that oligomers contributed to the high solubility.

4.	 Considering the presence of deprotonated monomers 
under all experimental conditions, we assumed that 
energetically favorable oligomer deprotonation occurred 
in the solutions. Sodium–silicate complexes or ion 
pairs between sodium cations and deprotonated silica 
oligomers were also possible, although these were not 
confirmed by in-situ Raman spectroscopic studies. The 
anionic silica species or oligomers formed in alkaline 
silicate fluids may act as effective ligands for certain 
metal ions or complexes in deep subduction zones.
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