Skip to main content

Advertisement

Log in

Thermal diffusivity and thermal conductivity of alkali feldspar at 0.8–3 GPa and 300–873 K

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The heat transport properties of feldspar, one of the major minerals of the crust, are important for constraining the thermal state of the Earth’s crust. The thermal diffusivity (D) and thermal conductivity (κ) of two natural alkali feldspars, namely, perthite and albite (Ab), were simultaneously measured at high temperatures (300–873 K) and high pressures (0.8–3 GPa) using a transient plane-source method. The present results show that the D and κ of these alkali feldspars decreased with the increase in temperature, whereas the κ of perthite remained almost constant at above 450 K. The D and κ of these samples decreased by 24–35% and 8–21% when the temperature increased from 300 to 873 K, respectively, suggesting that phonon conduction may be the dominant mechanism. The D and κ of these samples also exhibited a positive pressure dependence as indicated by their positive pressure coefficients: 0.052–0.098 mm2s−1GPa−1 for D and 0.189–0.325 Wm−1K−1GPa−1 for κ. Combining previous data with the results of this study, the D and κ of an intermediate albite-orthoclase solid solution can be reasonably estimated by an empirical model. Furthermore, the average κ of the crust was recalculated to accurately constrain the thermal thickness and temperature of the lithosphere. The present estimate suggests that partial melting can occur at shallow depths of the middle and lower crust, which may provide a new understanding of the low-velocity and high-conductivity anomalies revealed by geophysical observations in the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akaogi M, Kamii N, Kishi A, Kojitani H (2004) Calorimetric study on high-pressure transitions in KAlSi3O8. Phys Chem Mineral 31:85–91

  • Anderson OL (1999) Mantle convection: a thermal balancing act. Science 283:1652–1653

    Google Scholar 

  • Anderson OL, Isaak DG (1995) Elastic constants of mantle minerals at high temperature. Mineral Phys Crystallogr Handb Phys Constants 2:64–97

    Google Scholar 

  • Benisek A, Dachs E, Kroll H (2009) Excess heat capacity and entropy of mixing in high structural state plagioclase. Am Mineral 94:1153–1161

  • Benusa MD, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120

    Google Scholar 

  • Branlund JM, Hofmeister AM (2012) Heat transfer in plagioclase feldspars. Am Mineral 97:1145–1154

    Google Scholar 

  • Chapman DS (1986) Thermal gradients in the continental crust. Geol Soc Lond Spec Publ 24:63–70

    Google Scholar 

  • Chapman DS, Furlong KP (1992) Thermal state of the continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp 179–199

    Google Scholar 

  • Dzhavadov LN (1975) Measurement of thermophysical properties of dielectrics under pressure. High Temp High Press 7:49–54

    Google Scholar 

  • Fu HF, Zhang BH, Ge JH, Xiong ZL, Zhai SM, Shan SM, Li HP (2019) Thermal diffusivity and thermal conductivity of granitoids at 283–988 K and 0.3–1.5 GPa. Am Mineral 104:1533–1545

    Google Scholar 

  • Furlong KP, Chapman DS (2013) Heat flow, heat generation, and the thermal state of the lithosphere. Annu Rev Earth Planet Sci 41:385–410

    Google Scholar 

  • Ge JH, Zhang BH, Xiong ZL, He LF, Li HP (2021) Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet. Geosci Front 12:947–956

  • Gibert B, Mainprice D (2009) Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature. Tectonophysics 465:150–163

    Google Scholar 

  • Hacker BR, Ritzwoller MH, Xie J (2014) Partially melted, mica-bearing crust in Central Tibet. Tectonics 33:1408–1424

    Google Scholar 

  • Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70

    Google Scholar 

  • Höfer M, Schilling FR (2002) Heat transfer in quartz, orthoclase, and sanidine at elevated temperature. Phys Chem Mineral 29:571–584

    Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283:1699–1706

  • Hofmeister AM (2007) Pressure dependence of thermal transport properties. Proc Natl Acad Sci USA 104:9192–9197

    Google Scholar 

  • Hofmeister AM (2010) Thermal diffusivity of oxide perovskite compounds at elevated temperature. J Appl Phys 107:103532

    Google Scholar 

  • Hofmeister AM, Branlund JM, Pertermann M (2007) Properties of rocks and minerals–thermal conductivity of the earth. Treatise Geophys 2:543–577

    Google Scholar 

  • Hofmeister AM, Whittington AG, Pertermann M (2009) Transport properties of high albite crystals, near-endmember feldspar and pyroxene glasses, and their melts to high temperature. Contrib Mineral Petrol 158:381–400

    Google Scholar 

  • Hofmeister AM, Dong J, Branlund JM (2014) Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction. J Appl Phys 115:163517

  • Hofmeister AM, Carpenter PK (2015) Heat transport of micas. Can Mineral 53:557–570

  • Kanamori H, Fujii N, Mizutani H (1968) Thermal diffusivity measurement of rock-forming minerals from 300 to 1100 K. J Geophys Res 73:595–605

    Google Scholar 

  • Lemenager A, O’Neill C, Zhang S, Evans M (2018) The effect of temperature-dependent thermal conductivity on the geothermal structure of the sydney basin. Geotherm Energy 6:1–27

    Google Scholar 

  • Li S, Unsworth MJ, Booker JR, Wei W, Tan H, Jones AG (2003) Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophys J Int 153:289–304

    Google Scholar 

  • Linvill ML, Vandersande JW, Pohl RO (1984) Thermal conductivity of feldspars. Bull Mineral 107:521–527

    Google Scholar 

  • Marquardt H, Ganschow S, Schilling FR (2009) Thermal diffusivity of natural and synthetic garnet solid solution series. Phys Chem Mineral 36:107–118

    Google Scholar 

  • McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349

    Google Scholar 

  • Merriman JD, Whittington AG, Hofmeister AM, Nabelek PI, Benn K (2013) Thermal transport properties of major archean rock typesto high temperature and implications for cratonic geotherms. Precambrian Res 233:358–372

    Google Scholar 

  • Miao S, Li H, Chen G (2014) The temperature dependence of thermal conductivity for lherzolites from the North China Craton and the associated constraints on the thermodynamic thickness of the lithosphere. Geophys J Inter 197:900–909

    Google Scholar 

  • Michaut C, Jaupart C, Bell DR (2007) Transient geotherms in Archean continental lithosphere: new constraints on thickness and heat production of the subcontinental lithospheric mantle. J Geophys Res 112:1–17

    Google Scholar 

  • Mottaghy D, Vosteen HD, Schellschmidt R (2008) Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. Int J Earth Sci 97:435–442

    Google Scholar 

  • Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett 317:157–164

    Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones AG, Booker J, Unsworth M, Kidd W, Hauck M, Alsdorf D, Ross A, Cogan M, Wu C, Sandvol W, Edwards M (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Google Scholar 

  • Nestola F, Curetti N, Benna P, Ivaldi G, Angel RJ, Bruno E (2008) Compressibility and high-pressure behavior of Ab63Or27An10 anorthoclase. Can Mineral 46:1443–1454

    Google Scholar 

  • Ohta K, Yagi T, Hirose K, Ohishi Y (2017) Thermal conductivity of ferropericlase in the Earth’s lower mantle. Earth Planet Sci Lett 465:29–37

    Google Scholar 

  • Osako M, Ito E, Yoneda A (2004) Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys Earth Planet Inter 143:311–320

    Google Scholar 

  • Osako M, Yoneda A, Ito E (2010) Thermal diffusivity, thermal conductivity, and heat capacity of serpentine (antigorite) under high pressure. Phys Earth Planet Inter 183:229–233

    Google Scholar 

  • Padture NP, Klemens PG (1997) Low thermal conductivity in garnets. J Am Ceram Soc 80:1018–1020

    Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals at high temperature. Am Mineral 91:1747–1760

    Google Scholar 

  • Pertermann M, Whittington AG, Hofmeister AM, Spera FJ, Zayak J (2008) Transport properties of low-sanidine single-crystals, glasses and melts at high temperature. Contrib Mineral Petrol 155:689–702

    Google Scholar 

  • Petitjean S, Rabinowicz M, Grégoire M, Chevrot S (2006) Differences between Archean and Proterozoic lithospheres: assessment of the possible major role of thermal conductivity. Geochem Geophys Geosyst 7:1–26

    Google Scholar 

  • Rudnick RL, McDonough WF, O’Connell RJ (1998) Thermal structure, thickness and composition of continental lithosphere. Chem Geol 145:395–411

    Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals: I crystal structures, physical, chemical and microtextural properties, 2nd edn. Springer, Berlin, pp 1–20

    Google Scholar 

  • Smith DS, Fayette S, Grandjean S, Martin C, Telle R, Tonnessen T (2003) Thermal resistance of grain boundaries in alumina ceramics and refractories. J Am Ceram Soc 86:105–111

    Google Scholar 

  • Stein CA, Stein SA (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129

    Google Scholar 

  • Thompson AB (1992) Water in the Earth’s upper mantle. Nature 358:295–302

    Google Scholar 

  • Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509

    Google Scholar 

  • Wang C, Yoneda A, Osako M, Ito E, Yoshino T, Jin Z (2014) Measurement of thermal conductivity of omphacite, jadeite, and diopside up to 14 GPa and 1000 K: Implication for the role of eclogite in subduction slab. J Geophys Res Solid Earth 119:6277–6287

    Google Scholar 

  • Wei W, Unsworth M, Jones A, Booker J, Tan H, Nelson D, Chen L, Li S, Solon K, Bedrosian P, Jin S, Deng M, Ledo J, Kay D, Robert B (2001) Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292:716–718

    Google Scholar 

  • Whittington AG, Hofmeister AM, Nabelek PI (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458:319–321

    Google Scholar 

  • Xiong ZL, Zhang BH (2019) Thermal properties of olivine, wadsleyite and ringwoodite—a review. Minerals 9:519

    Google Scholar 

  • Yanagawa TKB, Nakada M, Yuen DA (2005) Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity. Earth Planet Space 57:15–28

    Google Scholar 

  • Zhang BH, Ge JH, Xiong ZL, Zhai SM (2019a) Effect of water on the thermal properties of olivine with implications for lunar internal temperature. J Geophys Res Planet 124:3469–3481

    Google Scholar 

  • Zhang Y, Yoshino T, Yoneda A, Osako M (2019b) Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets. Earth Planet Sci Lett 519:109–119

    Google Scholar 

  • Zhang BH, Guo X, Yoshino T, Xia QK (2021) Electrical conductivity of melts: Implications for conductivity anomalies in the Earth’s mantle. Natl Sci Rev 8:nwab064. https://doi.org/10.1093/nsr/nwab064

    Article  Google Scholar 

  • Zheng YF, Chen YX (2016) Continental versus oceanic subduction zones. Natl Sci Rev 3:495–519

    Google Scholar 

Download references

Acknowledgements

We thank the editor (H. Keppler) and two anonymous reviewers for their constructive comments that greatly improved the manuscript. This study was supported by Key Research Program of Frontier Sciences of CAS (ZDBS-LY-DQC015), CAS “Light of West China” program (Y9CR026 to X. G.), NSF of China (41773056, 41973056, 42072051). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baohua Zhang or Xinzhuan Guo.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Zhang, B., Ge, J. et al. Thermal diffusivity and thermal conductivity of alkali feldspar at 0.8–3 GPa and 300–873 K. Contrib Mineral Petrol 176, 42 (2021). https://doi.org/10.1007/s00410-021-01797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01797-2

Keywords

Navigation