Contrib Mineral Petrol (2017) 172:62
DOI 10.1007/s00410-017-1385-6

@ CrossMark

ORIGINAL PAPER

Thermodynamic controls on element partitioning
between titanomagnetite and andesitic—dacitic silicate melts

R. H. Sievwright!*?

- J. J. Wilkinson>! - H. St. C. O’Neill* - A. J. Berry™?

Received: 23 December 2016 / Accepted: 19 June 2017 / Published online: 7 July 2017

© The Author(s) 2017. This article is an open access publication

Abstract Titanomagnetite—melt partitioning of Mg, Mn,
Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta
was investigated experimentally as a function of oxygen
fugacity (fO,) and temperature (7) in an andesitic—dacitic
bulk-chemical compositional range. In these bulk systems,
at constant T, there are strong increases in the titanomag-
netite—melt partitioning of the divalent cations (Mg>*,
Mn?*, Co**, Ni**, Zn?*) and Cu?*/Cu* with increas-
ing fO, between 0.2 and 3.7 log units above the fayalite—
magnetite—quartz buffer. This is attributed to a coupling
between magnetite crystallisation and melt composition.
Although melt structure has been invoked to explain the
patterns of mineral-melt partitioning of divalent cations,
a more rigorous justification of magnetite—melt partition-
ing can be derived from thermodynamic principles, which
accounts for much of the supposed influence ascribed to
melt structure. The presence of magnetite-rich spinel in
equilibrium with melt over a range of fO, implies a recip-
rocal relationship between a(Fe>t0) and a(Fe**O, ) in
the melt. We show that this relationship accounts for the
observed dependence of titanomagnetite—melt partitioning
of divalent cations with fO, in magnetite-rich spinel. As a
result of this, titanomagnetite—melt partitioning of divalent
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cations is indirectly sensitive to changes in fO, in silicic,
but less so in mafic bulk systems.
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Introduction

Magnetite is a common liquidus phase in andesitic—dacitic
magmas. Here we present new experimental data on the
partition coefficients of key elements between magnetite-
rich spinel and andesitic—dacitic melts which will help in
interpreting the petrogenesis of such magmas. Advances in
microanalytical techniques, such as laser ablation induc-
tively coupled-plasma mass spectrometry (LA-ICP-MS),
have allowed us to determine a large range of trace ele-
ments in magnetite quantitatively, including alkali and
alkaline earths, metals to transition metals, metalloids,
rare-earth elements and others (Dare et al. 2012; Dupuis
and Beaudoin 2011; Nadoll et al. 2014). The trace-element
chemistry of magnetite and Fe-Ti oxides in general has
been recognised as a useful tool for interpreting the for-
mation environment of igneous rocks (Dare et al. 2012).
Nevertheless, the use of magnetite as a petrogenetic indi-
cator requires full understanding of the controls on ele-
ment partitioning. To develop a better understanding of
the partitioning behaviour of a wide range of elements into
magnetite, a set of experiments were conducted at atmos-
pheric pressure (0.1 MPa) as a function of oxygen fugac-
ity (fO, — FMQ + 0.2 to FMQ + 3.7) and temperature
(1070-1120 °C).

Although previous experimental work has studied parti-
tioning of various elements into magnetite as a function of
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different bulk composition, temperature, fO, and pressure,
few studies have covered the range of trace elements detect-
able using LA-ICP-MS. The growth of crystals large enough
to measure low trace-element abundances has previously
posed a challenge in experimental petrology, because of the
inverse relationship between analysis volume and detection
limits. LA-ICP-MS analysis of trace elements requires the
crystal size to be large (generally >20 um). Previous stud-
ies have overcome issues regarding crystal size by doping
starting materials to high concentrations, e.g. 10,000 ppm
(Nielsen et al. 1994) and analysing magnetite composition
by electron probe micro-analysis (EPMA). However, recent
work has highlighted that such highly doped systems could in
fact overestimate partition coefficients (Righter et al. 2006).
Moreover, only a few elements can be added at such levels
without compromising the systems bulk chemistry. Fortu-
nately, the development of LA-ICP-MS has significantly
enhanced the ease with which the trace-element chemistry of
magnetite can be determined. Magnetite associated with mag-
matic-hydrothermal mineral deposits has been recognised as
a potential indicator mineral for fertility (Dare et al. 2014).
Such deposits are commonly associated with calc-alkaline,
intermediate to felsic magmas. Consequently, a natural calc-
alkaline andesite and dacite were chosen as starting compo-
sitions for this study. Previous work has not investigated in
detail the influence of fO, on the trace-element partitioning of
magnetite in an andesitic—dacitic bulk compositional range.

Theoretical background

Magnetite—melt partitioning relations are not only useful
for petrogenetic modelling, they also hold theoretical inter-
est for understanding some of the fundamental principles
of trace-element geochemistry. In particular, the very large
variation in magnetite—melt partition coefficients observed
for many elements over a restricted range of melt compo-
sitions at a given temperature and pressure highlights the
importance of the “stoichiometric control” in trace-element
partitioning. In magnetite, the major-element compo-
nents providing the stoichiometric control are Fe**O and
Fe*T0, 5, whose activities in the melt, unlike those of sili-
cate minerals, can be varied greatly while still maintaining
magnetite on the liquidus. However, this variation in the
activities can only occur subject to two constraints, namely
the homogeneous equilibrium involving fO,:

F€2+O(silicate melt) + /402 = Fe’t0, S(silicate melt) - 1)

And the condition of magnetite saturation:

F62+O(silicate melt) + 2 Fe3+Ol.5(silicate melt) = Fes O4(spinel)-
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These constraints impose a correlation between the vari-
ables in magnetite—melt partitioning experiments, which
must be deconvoluted by recourse to the underlying ther-
modynamic principles.

Magnetite has the spinel structure, with the ideal stoi-
chiometry of 3 cations to 4 oxygens per formula unit (i.e.
Fe;0,). The deviations from this ideal stoichiometry are
very small over the temperature—fO, range relevant to this
study, with § < 0.002 in the formula Fe;—O,, according to
the thermogravimetric measurements of Dieckmann (1982).
The spinel structure has two distinct crystallographic sites
for cations, one having perfectly regular tetrahedral coordi-
nation, the other with almost regular octahedral coordina-
tion (e.g. O’Neill and Navrotsky 1983), providing suitable
environments for cations with a preference for highly sym-
metrical coordination environments. For example, Ni*t and
Cr** would be expected to partition readily into magnetite
because of their large crystal-field stabilisation energies in
regular octahedral coordination, but cations with potentially
strong Jahn—Teller distortions like Cr** are less favoured.
The cation distribution in magnetite at room temperature
is that of an inverse spinel (Fe*™),[Fe*"Fe*] ,0,, but at
magmatic temperatures it is disordered towards the ran-
dom distribution, (Fe7; - Fe3fy)[Fe3 3Fei il 0y (Wu
and Mason 1981). Its structure therefore provides crystal-
lographic sites suitable for both 24 and 34 cations in both
tetrahedral and octahedral coordination. The presence of Fe
in two valence states (2+ and 3+7) also facilitates charge-
balancing of cations with other valence states. Tetravalent
cations such as Ti** or Ge** can substitute easily onto octa-
hedral or tetrahedral sites, as appropriate, charge-balanced
by additional Fe**, e.g. Ti*" + Fe?* for 2 Fe**. In addition
to the large range of 2+, 3+ and 4+ cations forming ferrite
spinels with extensive binary solid solutions with Fe;O,
(e.g. O’Neill and Navrotsky 1984), there may be extensive
incorporation of 14 and 54 cations. Examples are Li'*, as
in the end-member spinel Liéergﬂs'OA; (Li* + Fe’* for 2
Fe?*); and Nb>*, for which the phase relations in the sys-
tem Fe-Nb-O at 1180-1200 °C show that niobian mag-
netites may be synthesised with up to ~80% solid solu-
tion towards the hypothetical end-member Fe§g3Nbgz7O4
(Turnock 1966; Katayama 1987).

A distinctive feature of magnetite—melt trace-element
partitioning is that while the oxidation states of redox-
variable elements, including Fe, change with fO, in the
melt, they do not change with fO, in magnetite. The rea-
son is obvious for Fe, because stoichiometry obviously
fixes Fe3*/Fe?* at 2 for pure magnetite. But this same
constraint also applies to some redox-variable trace ele-
ments, because its redox speciation will be controlled
by an electron-exchange reaction with Fe?* and Fe3*. A
well-known example is V, whose substitution into Fe;O,
has been studied by thermodynamic measurements on
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the spinel solid solution FeV,0,-Fe;0, (see review in
O’Neill and Navrotsky 1984). Here, the two oxidation
states of V are 3+ and 4+, hence the electron-exchange
reaction is:

Fe3t + V3t = Fe?t + V4T,

Thus the ratio of V>* to V#T in FeV,0,-Fe;0, spinels is
independent of fO, at a given temperature and pressure; this
includes the ratio at infinite dilution. When the free energy
of such an electron-exchange reaction is small, the phenom-
enon contributes a considerable configurational entropy, as
seen for example, by the large negative deviations from ide-
ality in Fe;0,~FeV,0, (O’Neill and Navrotsky 1984). This
effect makes V, usually moderately incompatible in com-
mon silicate minerals, compatible in magnetite, which has
been exploited in petrogenetic hypotheses—see, for exam-
ple, the discussion in Gill (1981). By contrast, V3*/V** in
a spinel without Fe or other redox-variable major elements,
such as MgAl,O,, can only vary in a way that depends on
fO,. For example, in the system MgO-AL,O;—V-O, the
relevant V components in spinel would be Mng+O4 and
Mg,V#+t0,, hence the redox speciation of V in the spinel
phase is given by the equilibrium:

0.5MgV3t04 4+ 1.5 MgO + 0.25 02 = Mg, V**0,.

For a detailed consideration of the thermodynamics of
the mineral/melt partitioning of V as a function of fO,, see
Mallmann and O’Neill (2009). Insofar as the spinels of this
study are rich in the Fe;0, component, the redox speciation
of redox-variable elements may be expected to be domi-
nated by electron-exchange reactions and stoichiometry,
rather than directly reflecting fO,. Hence the effect of fO,
on the partitioning of redox-variable elements, such as V,
Cu and Mo, between Fe;O,-rich spinel and melt requires a

particularly careful formulation of the underlying thermo-
dynamic relations.

Experimental procedures
Starting compositions

Two natural lavas were chosen as experimental starting
materials: a natural dacite, ‘Japanese Andesite-1’ (JA-1);
and an andesite ‘Andesite 190’ (Henderson et al. 1985).
Two additional compositions were prepared from these
starting materials by adding an extra 5 wt% Fe,O; to
promote magnetite saturation. In order to check the bulk
chemistry of the starting materials, superliquidus experi-
ments were conducted in a 1-atm furnace at 1400 °C. The
glasses produced were subsequently characterised by
EPMA (Table 1).

Choice of trace elements and doping

The initial starting materials used in this study were not
doped with additional trace elements. However, some ele-
ments were not detectable with LA-ICP-MS analysis using
this approach. Therefore, an additional starting material
was prepared by doping the And-190 + Fe,O; starting
material with trace elements, but only in sufficient quan-
tity to raise the expected concentration above the limit of
detection for LA-ICP-MS. Expected detection limits based
on a 15-micron spot size, were sourced from Nadoll et al.
(2014), and expected partition coefficients were derived
from existing literature values (Ewart and Griffin 1994;
Luhr and Carmichael 1980; Nielsen and Beard 2000).
Consequently, Co, Ni, V, Zn, Ga, Nb, Cu and Sn were
doped at 10 ppm; and Sc, Zr, Hf, Ta, Mo, Pb, Th, U and In

Table 1 Major-element

o . . JA-1 (n=12)
composition of experimental

JA-1 4 Fe,0, (n = 11)

And-190 (n = 14)  And-190 + Fe,0; (n = 8)

starting materials as determined Major elements (wt%)

by EPMA of glasses Na,0  3.50+0.05 337 £0.07 4.15 4 0.06 3.64 £ 0.10
Si0,  6586+£052  62.67 4093 57.51 £0.28 55.40 £ 0.7
MgO 1.57 +£0.05 1.48 + 0.05 3.41 £0.03 328 £0.13
ALO, 15.104£0.14  1437+0.36 17.79 4 0.08 16.74 % 0.04
P,0; 0.13 £ 0.01 0.12 4+ 0.02 0.16 % 0.02 0.14 £+ 0.02
K,0 0.78 + 0.01 0.76 = 0.03 1.88 = 0.05 1.65 = 0.09
Ca0 575 +£0.17 547402 6.60 £ 0.12 6.60 +0.2
TiO, 0.86 % 0.03 0.84 4 0.02 0.90 & 0.02 0.86 & 0.02
FeO'  635+036 10314058 6.24 +0.13 10.20 4 0.35
MnO  0.15+0.01 0.12 4+ 0.02 0.12 4 0.02 0.12 4+ 0.02

Errors = 1 o standard deviation
n number of replicate analysis
# Total FeO assuming all Fe is FeO
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were doped at 100 ppm. Trace elements were added to the
starting composition as inductively coupled-plasma stand-
ard nitrate solutions; the mixture was then dried under a
heat lamp and finally re-homogenised in an agate mortar.

Magnetite synthesis method

Approximately 100 mg of each starting material was mixed
with polyethylene oxide and water to form a paste, which
was pressed onto 0.3 mm-diameter Pt wire loops. Thin
loops were used to avoid Fe loss. The Pt wire loops were
then suspended from a Pt chandelier at the end of an alu-
mina rod in the hot zone of a GERO 1-atm vertical furnace
at a temperature of 600 °C and the gas mixing ratios set to
produce the desired fO,. Gas mixing ratios were regulated
using Celerity FC2900 mass flow controllers (see Burnham
et al. (2015) for further experimental details).

Samples were heated to 1250 °C and held for 9 h, in
order to promote homogeneity and equilibration with
the imposed fO,. The temperature was then cooled at
20-1190 °C/h, and subsequently cooled at 3 °C/h to the
desired temperature where samples were held for 36 h.
The temperature was then cycled up at 5 °C/h to reduce the
number of magnetite nucleation sites, then cooled at 3 °C/h
again to the desired temperature where samples were held
for at least 3 days before drop-quenching into water. The
incorporation of a temperature cycle significantly increased
magnetite crystal size in experiments with composition
And-190 + Fe,0; (some >100 micron) generating crystals
sufficiently large for LA-ICP-MS analysis. It is worth not-
ing that although the absolute fO, in the furnace varies with
temperature, gas mixing ratios used to define the fO, do
not substantially vary the fO, relative to common fO, buff-
ers. As a result, only a negligible change in oxidation state
(<0.05 Fe’T/=Fe) of the melt would have occurred during
temperature fluctuations in experimental runs. Details of all
experimental runs are provided in Table 2.

Temperature inside the furnace was calibrated using a
type B thermocouple and the fO, calibrated using an SIRO2
solid-state electrode. Temperature is considered accurate
to 1 °C, and log fO, is accurate to +0.1.

Analytical methods

Run products were examined using a Zeiss EVO 15LS
scanning electron microscope in the Imaging and Analysis
Centre at the Natural History Museum, London. Energy-
dispersive spectroscopy (EDS) was used in conjunction
with back-scattered electron (BSE) imaging to identify the
coexisting phases. Analytical conditions were 20 kV accel-
erating voltage, 3 nA sample current and a 1 pm spot size.
A Cameca SX-100 electron microprobe, also at the Nat-
ural History Museum, London, was used to measure major

@ Springer

Table 2 Experimental conditions

Run® Final T (°C) Log f02 AFMQP Time (h)°
RSM-20 1070 —9.82 0.2 112
RSM-6 1070 —9.02 1 78
RSM-11 1070 —8.02 2 102
RSM-21 1070 —7.02 3 109
RSM-9 1070 —6.31 3.7 97
RSM-19 1095 —8.38 1.2 136
RSM-15 1095 —7.68 2 121
RSM-12 1095 —6.68 3 112
RSM-18 1095 —5.98 3.7 101
RSM-16 1120 —-7.16 22 115
RSM-4 1120 —6.36 3 114
RSM-17 1120 —5.66 3.7 103
RSM-10 1070 —9.02 1 344

% For each experimental run, all starting compositions were equili-
brated

> AFMQ = logfO, (experiment) — logfO, (FMQ buffer); values of
FMQ calculated using Hemmingway (1990)

¢ Time represents dwell time in hours at the final temperature after
temperature cycle was completed

and some trace-element contents. Silicon, Al, Mg, Fe, Ca,
P, Ti, Mn, Na, Cr and K were analysed for in both titano-
magnetite and silicate glass analyses. Alkali elements, such
as Na and K, were included in the analysis of titanomagnet-
ite to be sure no contamination by glass occurred. A 20 kV
accelerating voltage, 10 nA sample current and focused
electron beam with 1 pum spot size were used for titano-
magnetite analyses. For glass analyses, analytical condi-
tions were 20 kV, 2 nA and a defocused (10-20 um) beam
in order to minimise migration of alkalis.

Trace elements below the limit of detection of EPMA
were obtained by LA-ICP-MS. This was carried out in the
LODE laboratory at the Natural History Museum, Lon-
don, using a New Wave Research 193 nm excimer laser
coupled with an Agilent 7700x quadrupole ICP-MS. For
titanomagnetite analyses, the laser was operated with a
pulse rate of 5 Hz, a fluence of 3.5J cm~2, and a spot size
of 11-35 um depending on the crystal size. With decreas-
ing spot size, the limits of detection increase and there is
more variability in the data, and thus larger spot sizes were
utilised wherever possible. Occasionally, the laser drilled
through a target magnetite crystal into the underlying
glass; in such cases, only the portion of the signal within
titanomagnetite was integrated. Each batch of analyses was
bracketed by three analyses of a primary calibration stand-
ard (GSD-1 g) and a secondary standard (GSE-1 g). Each
batch of magnetite analyses also included one analysis of a
Ti-rich magnetite (BC28) studied by Dare et al. (2012). The
Fe concentration, determined by EPMA, was used as the
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internal standard. For glass analyses, a pulse rate of 10 Hz,
fluence of 3.5 J cm™2, and a spot size of 20-50 um were
used. GSD-1g was used as the primary calibration stand-
ard, and NIST 612 as a secondary standard. Ca determined
by EPMA was used as the internal standard. In all cases the
analysis duration was 90 s, with the first 30 s monitoring
a gas blank prior to ablation. The isotopes analysed were
BNa, Mg, Al 2Si, 3P, ¥K, 4Ca, 5S¢, “Ti, 5V, Cr,
55Mn, 57Fe, °Co, ©Ni, ©3Cu, 55Cu, %Zn, ©¥Ga, ’Ge, ¥,
907r 9SNb, %Mo, 5In, "'8Sn, '77HE, 181Ta, 182y, 208pp,
232Th and *3U, for both titanomagnetite and glass. Data
were reduced using EXLAM 2000 (Zacharias and Wilkin-
son 2007).

Results

Experimental charges consist of quenched melt + plagio-
clase + titanomagnetite & orthopyroxene =+ clinopyroxene
(Fig. 1). At constant T, with increasing fO,, the proportion
of quenched melt decreases and the proportion of titanomag-
netite and plagioclase increases. With increasing fO, there
is also a decrease in the crystal size of the silicate mineral
phases. Addition of Fe,O; to both starting compositions
significantly increased the modal proportions and average
crystal size of titanomagnetite, generating some crystals
>100 um across. Consequently, results in the dacitic bulk
system focus on experiments using JA-1 with added Fe,0;,
where titanomagnetite was also present over a greater range
of fO, and temperature. Titanomagnetite crystals exhibit var-
iable morphology and crystal size. Some display euhedral to
subhedral equant forms, whereas others are more skeletal.

Melts in all experiments quenched to a homogeneous
glass without any evidence of quench crystallisation,
apart from one experiment using And-190 + Fe,O; at
1070 °C and fO, = FMQ + 3.7 (RSM-9), in which fine
grained plagioclase throughout the glass made it impos-
sible to analyse.

The major-element compositions of titanomagnetite
and glass, as well as partition coefficients for some ele-
ments analysed with EPMA are listed in Table 3. Titano-
magnetite—melt partition coefficients (D(X)), were cal-
culated as (wt% X in titanomagnetite)/(wt% X in glass).
Trace-element concentrations of titanomagnetite and
glass, as well as D(X) values, are given in Table 4.

Addition of Fe,O; to Andesite-190 does not signifi-
cantly affect partition coefficients for elements detect-
able using EPMA (Table 3), namely Al, Ti, Mn and Mg.
Using LA-ICP-MS it was also possible to determine Sc,
V, Co, Ni, Zn, Ga, Zr, and sometimes Cu, Mo, Nb, Hf and
Ta concentrations in titanomagnetite in experiments with

Fig. 1 Back-scattered electron image of titanomagnetite (mgt),
plagioclase (plag) and orthopyroxene (opx) in silicate glass syn-
thesised from Andesite-190 + 5 wt% Fe,O; at 1095 °C and
JO, = FMQ + 1.2. The hole is a laser-ablation pit in titanomagnetite

larger titanomagnetite grains (generally higher fO,). The
concentrations of Y, W, Pb, Th and U were not above their
limits of detection by LA-ICP-MS in titanomagnetite in
any experiments, including those doped with trace ele-
ments, and are therefore not reported. Furthermore, Ge,
Sn, In and Pb suffered significant volatile loss, as evinced
by lower concentrations than would be expected after
doping, so that reliable titanomagnetite—melt partitioning
data could not be determined for these elements. Using
EPMA, it was possible to detect Si, Al, Mg, Fe, Ca, P, Ti,
Mn, Na and K in glass. All other elements reported for
glass composition were analysed by LA-ICP-MS. Using
GSD-1g as a calibration standard for titanomagnetite and
glass produces strong correlation between EPMA and
LA-ICP-MS for those elements detectable by both tech-
niques, offering a means to cross-check the accuracy of
the LA-ICP-MS data (Fig. 2).

Titanomagnetites are dominated by a magnetite
(Fe;04) component, but also have significant ulvospi-
nel (Fe,TiO,), spinel (MgAl,0,) and magnesioferrite
(MgFe,0,) components. Although the same bulk starting
compositions were used in all experiments, there are con-
sistent variations in the composition of the titanomagnet-
ite and quenched melt compositions as a function of fO,.
Notably, with increasing fO, there is a decrease in Ti cati-
ons per formula unit (cpfu) and increase in Mg and Mn
cpfu, whilst the total FeO* and Al cpfu remain relatively
constant. In the melt, there is a marked decrease in FeO*
and CaO, and increase in SiO, contents with increasing
fO,, as a consequence of the increased modal abundance
of titanomagnetite and plagioclase.
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Table 4 continued

RSM-4
—6.36

RSM-18
—5.98

RSM-12
—6.68

RSM-15
—7.68

RSM-19
—8.38

RSM-9
—6.31

RSM-21
—7.02

RSM-11
—8.02

RSM-6
-9.02
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# Titanomagnetite V content determined using EPMA

Attainment of equilibrium

Experiments conducted for longer durations (>14 days)
indicate that the dwell time at the final temperature (3 days)
was sufficient to provide a close approach to equilibrium
(Fig. 3). Incorporation of a temperature cycle was also
shown to have no significant impact on the experimentally
determined partition coefficients for elements detected
using EPMA (Fig. 3). BSE images of the experimental
charges do not reveal any compositional zoning in titano-
magnetite or glass (Fig. 1), which is supported by homo-
geneous compositions determined in line traverses across
grains, and low standard deviations for replicate analyses
of both titanomagnetite and glass. Collectively, these data
suggest that equilibrium was attained in all experiments.

Loss of certain elements during an experiment could
present issues when determining equilibrium partition coef-
ficients. For example, Ni, Co and Cu could be susceptible
to alloying with the Pt wire, and Zn could be lost through
volatility. For Co and Ni, concentrations in the glass do not
decrease with decreasing fO,, which indicates that there
was no significant loss of these elements during the experi-
ments. There is a slight decrease in Cu concentration with
decreasing fO, suggesting that there was minor loss during
the experiments. Zinc concentrations are also lowest at low
JO,, which suggests there was some volatile loss at low fO,.
Thus values of D(Cu) and D(Zn) should be viewed with
caution.

Titanomagnetite—melt partitioning

Magnesium, Mn, Zn, Co, and Ni are assumed to partition
as divalent cations over the range of experimental condi-
tions studied. Values of D(Mg), D(Mn), D(Zn), D(Co)
and D(Ni) are well correlated with each other, suggesting
that there is a common factor controlling their partitioning
(Fig. 4). Nickel is the most compatible divalent cation stud-
ied, followed by Co, Zn, Mn, then Mg. At constant AFMQ,
the partition coefficients for divalent cations are greater
at lower temperature. For fO, values between FMQ + 0.2
and FMQ + 3.7, titanomagnetite—melt partitioning of the
divalent cations (e.g. Mg and Mn) increases with increas-
ing fO,, which is particularly pronounced at lower temper-
ature (Fig. 5a). This variation in the partitioning of these
isovalent divalent cations with fO, cannot be attributed to
a change in valence. Interestingly, an increase in partition
coefficient for Mn, Co and Ni with increasing fO, was not
observed in studies by Righter et al. (2006) and Toplis and
Corgne (2002), who both investigated more mafic bulk sys-
tems (SiO, < 49.5 wt.%).

Titanomagnetite—melt partitioning of Al shows no clear
dependence on fO,, but Al is more strongly partitioned
into titanomagnetite at higher temperature (7' > 1095 °C)

@ Springer



62 Page 18 of 33

Contrib Mineral Petrol (2017) 172:62

Fig. 2 Titanomagnetite—melt partition coefficients determined using »
LA-ICP-MS and EPMA analyses for a Mn, b Ti, and ¢ Mg. Errors
bars are 1o of multiple analyses. Grey line is 1:1

(Fig. 5b). Nevertheless, the influence of temperature on
D(Al) is weaker than for D(Mg), D(Mn), D(Zn), D(Co) and
D(Ni). There is not a strong bulk compositional dependence
with similar D(Al) values observed in ferrobasaltic (Top-
lis and Corgne 2002), andesitic and dacitic bulk systems
(this study) at comparable temperature and fO,. Gallium
is weakly compatible in titanomagnetite (D(Ga) between
0.93 and 1.36), but exhibits no clear trend in titanomag-
netite—melt partitioning with either fO, or temperature.
The D(Ga) values obtained are somewhat lower than those
reported for Cr-rich spinel at higher temperature by Horn
et al. (1994) (D(Ga) >2.49 at T > 1235 °C), suggesting Ga
is more strongly partitioned at higher temperature, although
the higher D(Ga) could also be induced by the contrasting
spinel composition.

Titanomagnetite—melt partitioning of Sc also shows no
clear dependence on fO,. No relationship between D(Ti)
and D(Sc) is apparent in our data as previously reported by
some studies (e.g. Horn et al. 1994; Nielsen et al. 1994).
Although Cr was detectable with EPMA analysis in titano-
magnetite, Cr in the glass was below detection limit with
LA-ICP-MS, which meant D(Cr) could not be determined.

Copper is moderately incompatible to compatible in
titanomagnetite with D(Cu) ranging from 0.29 to 2.68. Simi-
lar to the divalent cations, at constant fO,, D(Cu) is greater at
lower temperature, and at constant T, D(Cu) increases with
increasing fO,. For example, at 1095 °C, D(Cu) increases
from 0.29 to 2.41 between FMQ + 1.3 < fO, < FMQ + 3.7
in the And-190 + Fe,O; + trace bulk system. Our values
for D(Cu) are in agreement with those reported for Cr, Al,
and Fe spinels crystallised at pressure in a hydrous system
(Liu et al. 2014, 2015) and also similarly exhibit an increase
D(Cu) with increasing fO, and Fe** cpfu. However, there is
no increase in D(Cu) with increasing Ti cpfu as was observed
by Liu et al. (2015) and Simon et al. (2008) in dacitic and
rhyolitic bulk compositions, respectively.

At fO, < FMQ + 3, D(Ti) exhibits a strong decrease
with increasing fO, (Fig. 5c). At constant log fO,, there
is no significant change in D(Ti) with temperature. This
finding differs from earlier studies which suggested that
Ti is more strongly partitioned at higher temperature (e.g.
Nielsen et al. 1994). Comparing results from this work with
those from experiments using a more mafic starting mate-
rial (e.g. Toplis and Corgne 2002), shows a large degree of
overlap suggesting that bulk composition does not have a
significant effect on D(Ti). However, this breaks down at
fO, < FMQ + 1, where Ti is more strongly partitioned in
more silicic (andesitic—dacitic) bulk systems.

@ Springer
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Vanadium is strongly compatible at low fO, (D(V) = 38.9
at fO, = FMQ + 02 and T = 1070 °C using And-
190 + Fe,0,), but becomes incompatible at fO, > FMQ + 3
(D(V) = 0.65 at fO, = FMQ + 3.7 and T = 1070 °C using

10 "8 And-190+ Fe,0,
@ JA-1+Fe,O,
8 .
6 .
s A—D(Ti)
a e
4
D(Mn)\_)i
2 \ ]
o> R_p(Mg)
-
. @ 4—D(Al)
0 2 4 6 8 10

DS44h

Fig. 3 Experimentally determined partition coefficients (D) from
an experiment with a dwell time of 78 h vs. D values determined
from an experiment with a dwell time of 344 h. Both experiments
were conducted at 1070 °C and fO, = FMQ + 1 and included both
JA-1 + Fe,0; and And-190 + Fe,O;. No temperature cycle was used
in the longer 344-h experiment. Grey line is 1:1 and error bars = 1o

a 40 b
B And-190 + Fe,0, (T = 1070°C)
O And-190 + Fe,0, (T = 1095°C)
35 B And-190 + Fe,0, (T = 1120°C)
© And-190 (T = 1070°C) 5
©  And-190 (T = 1095°C) o
3.0 @ And-190 (T = 1120°C) =
: A And-190 + Fe,0, + trace (T = 1095°C) ()]
A And-190 + Fe, 0, + trace (T = 1095°C) £
A And-190 + Fe,0, + trace (T = 1120°C)
2.5 @ JA-1+Fe,0, (T = 1070°C)
= 0 JA-1+Fe,0, (T = 1095°C)
s 20 ® JA-1+Fe,0,(T=1120°C)
a |
£ (o
1.5
=}
1.0 N
(=]
£
0.5
0.0 T . . .
0.0 0.5 1.0 1.5 2.0 2.5
InD(Mg)

Fig. 4 Natural log of titanomagnetite—melt partition coefficients of a
Mn, b Co, ¢ Zn, d Ni and e Cu as a function of the natural log of
titanomagnetite—melt partition coefficient of Mg for And-190, And-

And-190 + Fe,O; + trace) Thus, at constant temperature,
D(V) decreases with increasing fO,, exhibiting partitioning
behaviour like Ti. There is also a slight increase in D(V) with
decreasing temperature and constant fO,. Although titanomag-
netite crystals in experiments conducted at fO, < FMQ + 1
were generally too small to analyse by LA-ICP-MS, because V
contents increase strongly with decreasing fO, it was possible
to measure the V content of titanomagnetite using EPMA for
these experiments. The V contents of the glasses were deter-
mined using LA-ICP-MS for some experiments at low fO,
using And-190 + Fe,O;. The derived D(V) values are similar
to those reported for the more mafic bulk compositions stud-
ied by Toplis and Corgne (2002) (Fig. 5d). Similar to D(Ti),
D(V) does not decrease significantly at fO, > FMQ + 3.

The titanomagnetite—melt partition coefficients for the
high field strength elements (HFSE), Zr, Hf, Nb and Ta,
all correlate positively (Fig. 6). As for the divalent cations,
this suggests a common factor controls their mineral-melt
partitioning. Tantalum is the most compatible HFSE cation
studied, followed by Nb, Hf, then Zr. With increasing fO,,
D(Zr)/D(Nb) and D(Hf)/D(Ta) increase, suggesting the
incorporation of 44 cations into titanomagnetite is increas-
ingly favoured. For example, at T = 1095 °C, D(Zr)/D(Nb)
increases from 0.63 £ 0.088 at fO, = FMQ + 1.3 to
1.25 £ 0.39 at fO, = FMQ + 3.7 in experiments using And-
190 + Fe,05 + trace starting material. There is a linear cor-
relation between D(Ta) and D(Nb), although Ta is slightly
more compatible in magnetite than Nb, despite the similarity
in ionic radii and ionic charge (+5) of these two elements. Ta
is also partitioned into titanomagnetite more strongly relative

5 d 7
4 6 -
Z
34 8 9
£
2 44
— 3 ; .
4 e 2
3 1
S 0
| Q 4.
2 g 1
1- £ 29 %
-3 4
0 T T T T -4 T T T T
0.0 05 1.0 1.5 2.0 25 0 05 1 15 2 25
InD(Mg) InD(Mg)

190 + Fe,03, And-190 + Fe,O; + trace and JA-1 + Fe,Oj; starting
compositions. Lines are non-linear least-squared regression and their
respective values of a(,z,[ and allvl are given in Table 5. Error bars = 1o
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Fig. 5 Titanomagnetite—melt partition coefficients of a Mg, b Al, ¢
Ti and d V as a function of logfO,. All partition coefficients for Mg,
Al and Ti were determined using EPMA data; D(V) values deter-
mined using LA-ICP-MS data apart from those denoted with a star

to Nb at higher temperature, with D(Nb)/D(Ta) decreasing
from 0.82-0.85 at 1070 °C to 0.57-0.65 at 1120 °C in the
And-190 + Fe,0; + trace starting material. There is no sig-
nificant variation in D(Nb)/D(Ta) with variation in fO,. The
results for the relative partition coefficients for the HFSEs
contrast with earlier studies investigating spinel-melt parti-
tioning in a more mafic bulk system (SiO, < 50 wt%), which
found these to be uniform (Nielsen et al. 1994; Horn et al.
1994). This study, however, covers a relatively narrow range
in spinel composition, with Fe*™/(Fe*t+APT+Crt4(2
*Ti**) cpfu between 0.59 and 0.89.

Nielsen and Beard (2000) observed that the spinel
composition, notably Al content, correlates with the parti-
tion coefficients for some elements. This is to be expected
where the range of spinel compositions is large, due to the
dependence of the activities of components in spinel with
composition (e.g. O’Neill and Navrotsky 1984). However,
the thermodynamic model of O’Neill and Navrotsky (1984)
suggests that this factor will be of minor importance over

@ Springer
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where V content was measured with EPMA due to small crystal size.
Relevant literature data are included for comparison (Toplis et al.
1994; Toplis and Corgne 2002). Error bars = 1o

the limited compositional range of Fe;O,-rich spinels in
this study; instead, empirical correlations with a factor such
as Al in spinel can be explained by the response of Al parti-
tioning to the same thermodynamic effects of melt compo-
sition, particularly Fe*"O,,;,, as other cations (see below).
Molybdenum was only present in titanomagnetite above
the detection limit using LA-ICP-MS at fO, < FMQ + 3.7
at 1070 °C, and fO, < FMQ + 3 at 1095 °C. Despite the
lack of data, it is clear that there is a decrease in D(Mo) with
increasing fO, and increasing temperature. In experiments
using And-190 + Fe,O; 4+ trace elements, at 1095 °C,
D(Mo) decreases from 0.103 + 0.016 to 0.029 + 0.008
between FMQ + 1.3 < fO, < FMQ + 2, and at 1070 °C,
D(Mo) decreases from 0.046 + 0.012 to 0.011 + 0.005
between FMQ + 2 < fO, < FMQ + 3. This trend of
decreasing D(Mo) with increasing fO, was previously
reported for spinel by Wijbrans et al. (2015) in a syn-
thetic ultramafic bulk system, although D(Mo) was sig-
nificantly lower in their experiments (D(Mo) = 0.0028 at
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Fig. 6 Natural log of titanomagnetite—melt partition coefficients of
a 'V, b Zr and ¢ Hf as a function of In D(Ti), and d In D(Nb) and
e In D(Ta) as a function of In D(Ti) — (1/12 x InfO,) — (1/3 x
In XFe**0, ). Ti concentrations determined using EPMA; all other
concentrations determined using LA-ICP-MS apart from three points

T = 1220 °C, fO, = FMQ + 2.1). The decrease in D(Mo)
with increasing fO, could be explained by a change in
valence state from Mo*" to Mo®", suggesting that the
tetravalent phase is more compatible. Nonetheless, like the
other polyvalent elements such as Cu and V, Mo*", Mo™"
and Mo®* could all be accommodated independent of fO, at
high temperature via coupled exchange with Fe** and Fe’*.

Discussion
Prevailing valence states of elements in the melt

The oxidation states of a number of the trace elements
studied namely, Fe, Cu, Mo and V, are redox-variable under
natural conditions on earth. Copper can occur as both Cu™
and Cu®*, but is predominantly Cu™ in the melt over the
experimental conditions studied here, as suggested by the
previous spinel-melt partitioning experiments by Liu et al.
(2014, 2015) and the metal solubility study of Ripley and
Brophy (1995). Molybdenum exists as 4+ and 6+ in sil-
icate melts, but is likely to be Mot in the melts studied
here (O’Neill and Eggins 2002). Moreover, although Ti**
could occur at reduced conditions (fO, < FMQ — 2), Ti is
expected to be present as Ti*" in the melt in these experi-
ments (Mallmann and O’Neill 2009). Finally, V can occur
in multiple valence states in silicate melts, but is likely to
occur as V>*, V#* and V>F in the melt studied here (Toplis
and Corgne 2002; Mallmann and O’Neill 2009).

labelled with a star, where V content was measured with EPMA due
to small crystal size. Lines are non-linear least-squared regression
and their respective values of ag,[ and a,lv[ are given in Table 5. Error
bars = lo

Factors controlling titanomagnetite-melt partitioning
Thermodynamic explanation of element partitioning

Thermodynamic principles show that an essential feature
of any mineral-melt partitioning is the “stoichiometric
control” described by the appropriate equilibrium reaction.
Such reactions in general depend on the valence state of
the partitioning element, the valence state of the element
for which the partitioning element substitutes, hence the
charge-balance mechanism, and the crystallographic site
or sites on which the substitution takes place (e.g. O’Neill
and Eggins 2002). In the case of magnetite, with its near-
random distribution of Fe>™ and Fe** over the two distinct
cation sites, the details of site occupancy are less important
than usual, but the stoichiometric control remains critical.
In the case of polyvalent trace elements (e.g. Cu, V and
Mo) in magnetite, there is also the additional complexity in
the thermodynamics from the charge-transfer process.

Partitioning of divalent cations

The partitioning of divalent cations, such as Mg, Mn, Co,
Ni and Zn, into magnetite can be described by the reaction:

M2+Omelt + F62+Fe3+204spinel - M2+Fe%+o4spinel + F82+Omelts
3)

for which the equilibrium constant, K, is:
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(aM2+Fe%+ O4mgt) X (aFez“'Ome]t)

(aFe2+Fe%+O4mgt) X (aMerOmelt)' ¥

By relating activities to the product of concentrations
times activity coefficients in the usual way, and convert-
ing from mole fractions to concentrations by weight where
appropriate, Eq. 2 can be rewritten as:

24
. Mg YMh o yFe? T Opey
M= F x XFe Omelt X T,
M"Fpere  aFe304mg YM“T Ol

&)

where ¥M*'O,.,, and ¥Fe’"O,, are the activity coef-
ficients of the components M?*O and Fe?*O in the mel,
and ¥ Mzmzt is the activity coefficient of the M2+Fe3+04
component in the magnetite solid solution, which may, in
principle, change with the major-element composition of
the magnetite where this differs from pure Fe;O, (in this
study, mainly solid solution towards Fe,TiO,). The weight
ratio [M2+]mg[/ [M?*],..;. is the partition coefficient D(M*"),
and K* is the equilibrium constant using a mix of concen-
trations-by-weights and mole fractions.
Rearranging gives:

D(M2+) “KE aFe304mgy % 1 « VM2+Omclt
- ™M 2+ XFe2+0 Fe2tO ’
yM € melt yke melt

mgt

(6)

which shows that the magnetite—melt partition coef-
ficients of divalent cations are strongly dependent on
XFe?*0, which is related to fO, by the reaction Fe?*O + 4
0, = Fe’™0, 5. We may use Eq. 3 for comparing the par-
titioning behaviour of elements with 2+ cations indepen-
dently of variations in the activity of magnetite (aFe;0y,,)
by selecting one of the divalent cations as a reference. We
chose Mg for this role, because it is in sufficient concentra-
tion in all experiments to be analysed precisely by EPMA,
even in smaller magnetite crystals. By dividing Eq. 4 for
Mg from Eq. 4 for another divalent cation, M, we obtain:

K* M2t0 M
D(M*") = D(Mg) x M x L= Zmelt i g;ig‘.
KMg yMg“" Opelt VMmgt

)

Hence plots of In DMt vs. In D(Mg) at a given tem-
perature and pressure should produce straight lines with a
VM2+Omell yMgmg1
VMgZJrOmelt )/Mer ’

mgt

. . K;
slope of unity and an intercept of Kf\‘l\,:; X

regardless of aFe;O, (magnetite composition), pro-

vided that both the ratios of activity coefficients, namely

VMgmgt )/M2+Om51t

VM?n-E( VMg2+ Onmelt

are constant. For the melt, there is a

@ Springer

considerable body of experimental evidence addressing this
question. The activity coefficients for the divalent cations
(Mg>*, Co**, Ni**, Fe?") have been investigated experi-
mentally over a wide range of melt compositions (O’ Neill
and Eggins 2002; O’Neill and Berry 2006; Toplis 2005;
Doyle and Naldrett 1987), and those of Mn*" and Zn**
have also been studied, albeit over a more limited range
(Kohn and Schofield 1994). The absolute variation in indi-
vidual activity coefficients is only within a factor of two
over a wide range of melt compositions, and although they
do not correlate with any simple parameter such as melt
chemistry or melt structural descriptor (O’Neill and Eggins
2002), their ratios (e.g. YMg>T/¥Fe*) remain almost con-
stant, only exhibiting small dependences on silica content
and concentration of alkalis (Toplis 2005; O’Neill and
Berry 2006). Similarly, the systematics of thermodynamic

mixing properties in complex spinel solid solutions indi-

. yMgne .. . .
cate that the ratio = Mgz‘%‘ is likely to remain approximately

Y Mmngt

constant within the rather limited range of spinel compo-
sitions covered by the Fe;O,-rich spinels of this study (or
similar studies on “magnetite”, because such systematics
depend mainly on two fundamental properties of the cati-
ons themselves, their site preference energies and ionic
radii (O’Neill and Navrotsky 1984). The temperature range
of this study (1070-1120 °C) is sufficiently small that the
change of K,* with temperature may be ignored as a first
approximation. Nevertheless, Nielsen et al. (1994) have
shown that spinel composition also correlates with min-
eral-melt partitioning of some trace elements. Therefore, it
is important to emphasise that this model may not be appli-
cable to magnetite-poor spinel crystallised in bulk com-
positions which contrast with the andesitic—dacitic system
studied here.

Plots of In D(M?*) vs. In D(Mg) are shown in Fig. 4, where
M = Mn, Co, Ni and Zn. These data were fit by a global non-
linear least-squares model to minimise Chi-square:

2
x2 Z (ln D(M)obs — ag/l — al{/[lnD(Mg)calc>
(3)

— s(ln D(M))
" < In DMg)ops — In D(Mg) a1 ) 2
s(in D(M)) ’

where M = Mn, Co, Ni, Zn and also Cu, as discussed below,
with uncertainties from Table 3. The results are summarised
in Table 5. If the approximations just discussed are valid, the
values of aI{A should be 1. For Mn, Co and Zn, aI{/I isclose to 1
with values 0.97, 1.16 and 0.91, respectively. The value of ay;
is somewhat higher (1.29). It is clear that the influence of melt
composition, other than the all-important Fe**O, ., (Eq. 4),
is a rather minor input in the nearly order-of-magnitude
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variations in the partition coefficients of the divalent cations
seen in this study.

Partitioning of Cu

Empirically, D(Cu) correlates quite well with D(Mg) as
shown in Fig. 4, but the slope of In D(Cu) vs. In D(Mg) at
1.51 (Table 5) is noticeably larger than unity. The valence
state of Cu in silicate melts under the fO, regime of this
study is predominantly 14 (Ripley and Brophy 1995; Liu
et al. 2014, 2015). One distinctive crystal-chemical fea-
ture of magnetite trace-element partitioning compared
to most other minerals is that in the magnetite, but not
the melt, the valence states of redox-variable elements
reflect the stoichiometry of magnetite through electron-
exchange reactions. Thus, the valence state of redox-var-
iable elements in stoichiometric magnetite is independent
of fO,. For Cu, the electron-exchange could be written:

Cult + Fe*t = Fe?t + Cu?™, 9)

(e.g. O’Neill and Navrotsky 1983, 1984).

The appropriate thermodynamic component is the fully
oxidised end-member Cu2+Feg+O4,, a well-known fer-
rite spinel (Nickel 1973). The reasons for selecting this
component rather than say CuOJgFeg O4 (by analogy with
Ll(]) Fe2504) will be discussed further below. The parti-
tioning equilibrium is then:

1
Cu1+00.5melt+ I:“‘3304$pinel'|‘ZOZ = Cu2+Feg+O4spinel+ F62+Omelt~

10)

Using Egs. 1 and 2 (the Fe*™O + % 0, = Fe*T0, 5 and
the Fe*"O + 2 Fe’*0, 5 = Fe;0, equilibria) to eliminate
O,, the comparison with the partitioning equilibrium for
Mg to eliminate the effect of aFe;Oyy,,, gives:

Cul+00.5melt + 1-51\/12‘51:6%—"_O4spinel = Cu2+Feg+O4spinel

+ Fe* Opert + 1.5MgO, oy, an
Hence:
— In XFe®tOperr — In K (%)

I VF32+Omelt (V Mgomelt)
yCu'* 0 smeit

D(Cu) = 1.51n D(Mg)

1.5
VMgmgt

14 Cumgt

+1In

12)

Although we do find the slope of In D(Cu) versus
In D(Mg) is near 1.5 (Fig. 4e), this appears to be coinci-
dental. If the expected effect of XFe?™ O, is factored
in, the relationship disappears: a plot of In D(Cu) vs.
{In D(Mg) - In XFe’*0, ]} gives a slope of 0.68; the

discrepancy with theory presumably reflects a substantial

change of the quotient of activity coefficients in the melt,
yFe JrOmell(VN[gomelt)1.5

Cul Op st , with melt composition.

The reasons for selecting CuFe,O, rather than
Cu, sFe, 50, as the Cu-containing component in magnet-
ite start with the observation that the phase relations in
the system Cu-Fe—O show a continuous solid solution,
with a smooth change of free energy along the binary join
running from the spinel composition stable at the most
oxidising conditions achievable in this system, which is
Cu2+Fe;+O4, to that stable at the most reduced extreme,
which is Fe;O, (Jacob et al. 1977; Katayama et al. 1980;
Katkov and Lykasov 2003). The composition CuFe, 0,
is simply the 50:50 composition. Its cationic Conﬁgura—
tion could in principle be anywhere between Cu0 5Fe2 O4
(all Cu as 17, no Fe**) or Cug Feo Fe2+04 (all Cu as
2+); these possibilities are related by the homogeneous
equilibrium  Cu>"Fe; " 04 + Fe304 = 2 Cug tFe3 104,
Alternatively, this equilibrium could be expressed as the
electron-exchange reaction Cu?* + Fe?* = Cu'* + Fe3t,
as noted above. This electron-exchange reaction results
in a large negative deviation from ideal mixing in the
binary join Cu2+Feg+O4 — Fe;0,, due to the extra con-
figurational entropy that it confers. Note that while the
ratio of Cu'*/Cu®" in the spinel at a given Cu/Fe is
expected to depend on temperature, it is independent
of fO,, being controlled, through the electron-exchange
reaction, by the stoichiometry of the spinel. Although the
thermodynamic properties of a component with stoichi-
ometry Cu,sFe, O, could in principle be derived from
the experimentally determined phase relations, they
would depend on those of CuFe,O, anyway. It is there-
fore simpler to stick with the latter.

Fartitioning of trivalent cations

The partitioning of trivalent cations, such as Sc**, into

magnetite can be described as follows:

= 1/pFe** M**,04 + FeOl smet
13)
Based on similar thermodynamic assumptions as for
the partitioning of divalent cations, the partitioning of

trivalent cations between magnetite and melt would be
expected to follow the expression:

M>T O smeic + 12Fe*TFe? 50,

1

2
b K* (aFe2+Feg+O4mgt>
M3+ (mgt—melt) = BSm X
megt
1 J/M3+Ol.5melt

X X .
XFe* Oy smeii ~ YFe* T Orsmen (14)
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0 1
Table 5 . Valges of ay anfi ay Reference In D(M) %, al,
from fitting titanomagnetite—
melt partitioning for elements
(M) to global non-linear least- In D(Mg) In D(Mn) 0.29 0.97
squares model to minimise Chi- In D(Mg) In D(Co) 1.82 1.17
square using the partitioning of In D(Mg) In D(Ni) 3.39 1.29
an9ther cation as greference In D(Mg) In D(Zn) 1.07 0.91
using data from this study (see
Eq. ) In D(Mg) In D(Cu) —-1.56 1.51
In D(Mg) —In XFe?*O(melt) In D(Cu) —3.69 0.68
In D(Ti) In D(V) —1.79 2.40
In D(Ti) In D(Zr) —3.62 0.80
In D(Ti) In D(Hf) -3.19 0.75
In D(Ti) In D(Nb) —4.28 1.40
In D(Ti) In D(Ta) -3.73 1.25
InD(Ti) — ((1/12) ¥ InfOy) — (1/3 % In XFe>+ Oy 5(melt)) In D(Nb) —6.61 1.01
InD(Ti) — ((1/12) ¥ InfOy) — (1/3 % In XFe>+ Oy 5(melt)) In D(Ta) —5.94 0.94
Similar to the analyses of partitioning of divalent cati-
e ana yses o p g ) e (@FTFeM Ogg)
ons, the partitioning behaviour of 3+ cations can be com- D(M ) = K}, x :
pared to other trivalent cations as a reference. By divid- (J/an;) X (fO2)4
ing Eq. 14 for Al from Eq. 14 for another trivalent cation, 4
. . 1 )/M OZmelt
M, we obtain the expression: X g X g . (17)
XFe’ 01 5melt yFe’T O smelt

KK/[ VM3+OI.5melt )/Almgt
- X 3 X 3T
K4 YAPTOrsmen  yMph

mgt

D(M*t) = D(Al) x

(15)

Unlike the divalent cations, plots of In D(Sc) and In
D(Ga) vs. In D(AI) do not produce clear trends (Fig. 7). In
comparison to the divalent cations, there is not a large vari-
ation in the partitioning of trivalent cations in our dataset. It
could be that the partitioning of the trivalent cations is more
strongly controlled by spinel composition as a result of
non-ideal mixing of Al, Fe’* and Cr (Nielsen et al. 1994).
This could explain the weak negative correlation between
In D(Sc) and In D(Al). Alternatively, because Al is a major

structural component of the melt, it is likely that the activ-
VM3+01.5melt
YAPTOL el

over the range of compositions and conditions studied here.
Additionally, Ky,could be more sensitive to temperature for
the trivalent cations than for the divalent cations.

ity coefficients in the melt, , are not constant

Partitioning of tetravalent cations

The partitioning of tetravalent cations can be described

by the reaction:

M** Oomei + Fe*TFe3TO4Fe3 "M*T 04 + Fe?T O smei + /4 02
(16)

Again based on similar thermodynamic assumptions,
the partitioning of tetravalent cations would be expected
to follow the expression:

@ Springer

In this case, the magnetite—melt partitioning of tetrava-
lent cations is directly dependent on the fO,. By dividing
Eq. 17 for Ti from Eq. 17 for another tetravalent cation, M,
we obtain:

4 .
DMy = DTy x Kt o VM Ot ¥ T
K;i, Y TiO2melr )/anz,_t

(18)

Plots of In D(M*") vs. In D(Ti) at a given temperature
and pressure should produce straight lines with a slope of

. . K M*o ¥ Timgt
nity and an inter f M x Yoo Sodmelt g pro-
unity and a tercept o rea TiOomat yM?“;t » pro
vided that the ratios of activity coefficients are constant.

Again, the ratio £ lz“f‘ is likely to remain constant within

mgt
the range of spinel compositions studied. However, the
activity coefficients for the tetravalent cations in the melt
have not been investigated as comprehensively as for the
divalent cations.

Plots of In D(M**) vs. In D(Ti) are shown in Fig. 6,
where M = Zr and Hf. These data were fit by a global non-
linear least-squares model to minimise Chi-square. These
results are summarised in Table 5. The values of a), and afy;
are 0.80 and 0.75, respectively. This suggests that the ratio

Y TiO2melt
constant for the tetravalent cations. Similar to the partition-

ing of divalent cations, it is the Fe**O, 5., and Fe*TO, .,
(which is controlled by the fO,) which dictates the primary

of the activity coefficients, , also remains close to
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control on the spinel-melt partitioning of tetravalent cati-
ons. A plot of In D(V) vs. In D(Ti) does not have a slope
close to unity (2.40), which would be expected given that
the valence states of V in magnetite are, like those of Cu,
controlled by stoichiometry through -electron-exchange
reaction: V3T + Fe3* = Fe?* + V*t with the thermo-
dynamically convenient end-member being F62+V§+O4
(O’Neill and Navrotsky 1984). Thus, Eq. 16 does not suit-
ably describe the partitioning of V into magnetite.

Fartitioning of pentavalent cations

Pentavalent cations, such as niobian magnetite, have been
shown to have solid solution towards the end-member
Fe%jngg/gO;; (Turnock 1966; Katayama 1987), hence the
stoichiometry of the partitioning reaction is:

2/3M>F 0 5mei + Fe?TFe?™,04= Fe?™73M> 1,304

+ Fe’ Oy smei + 1/302 (19)

Again, based on similar thermodynamic assumptions,
the partitioning of tetravalent cations would be expected to
follow the expression:
(aFe?t Fe3 T Oymgy) 1

M+ 03 3+

YMig ) X (fO2)3  (XFe’T Oy smelr)
o yM 10y 5meit
5
(VFC3+OI.5melt) 3 (20)

D(M™) =K x

Wt

By dividing Eq. 17 for Ti from Eq. 20 for another penta-
valent cation, M, we obtain:

K} M>tO —&
DM’T) = D(Ti) x 71:1 X w x fO,
Ky Y TiO2melt

. 21)

N (
><XF€:3"'0153 x ¥ lrsnft.
Y Mgt

After factoring in for the fO, and XFe’'O, s terms,
D(Nb) and D(Ta) correlate with D(Ti), but with a slope

of 1.01 and 0.94, respectively, which suggest that
Kﬁ/l VM5+02.5mclt VTimgl : :
ca X 0 X MVEs El remains approximately constant

within the experimental conditions studied. Notwithstanding
this, the partitioning of HFSE also correlates with 7, Al con-
tent of spinel and P (Nielsen and Beard 2000); thus, the ratios
of these activity coefficients may not be constant in spinel or
melt outside the composition range studied here.

Spinel thermodynamics and partitioning relations

Spinel-melt partitioning can be evaluated more directly
if aFe;0y, can be calculated. O’Neill and Wall (1987)

a 20
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Fig.7 Natural log of titanomagnetite—melt partition coefficients
of a Ga and b Sc as a function of the natural log of titanomagnet-
ite-melt partition coefficient of Al for And-190 + Fe,0;, And-
190 + Fe,O; + trace and JA-1 + Fe,O; starting compositions. Error
bars = lo

presented a model for calculating aFe;Oy4p, in compo-
sitionally complex spinels in the system MgO-Al,O;—
Cr,05-TiO,—Fe-O as a function of temperature and
pressure. The Fe’"O concentration in the melt can be
approximated from measured total Fe concentrations (i.e.
FeO total) and fO, using the empirical parameterisation of
Kress and Carmichael (1991), which can then be converted
into a mole fraction on a single-cation basis (XFe?*0), so
that values of XFe’™O and XFe’*O, 5 can be calculated.
As discussed earlier, the ratios of the activity coefficients
for the divalent cations in melt and magnetite are expected
to remain almost constant. Therefore, the partitioning of
divalent cations would be expected to be linearly propor-
tional to (aFe,0, in magnetite)/(XFe?"O in liquid), which
is observed in our data (Fig. 8a-c).
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Fig. 8 Titanomagnetite—melt partition coefficients of a Mg, b Mn
and ¢ Co plotted against aFe3O4(mgt)/XFez+O(melt). aFe;04(mgt)
approximated using model by O’Neill and Wall (1987), and mole
fraction on single-cation basis XFe?tO(melt) calculated from values
approximated using Kress and Carmichael (1991). Literature data
include: Toplis and Corgne (2002), Toplis et al. (1994) and Nielsen

The linear trend for D(M?") as a function of
aFe3O4(mgt)/XFez+O(melt) is corroborated by literature
data covering a variety of bulk compositions, but breaks
down in some experiments, notably those conducted at
lowest fO, by Toplis and Corgne (2002) and Toplis et al.
(1994). These data are for particularly Ti-rich spinel with
Fe3T/(F +APT+CrT+2 x Ti*Y) cpfu of 0.11-0.30.
Furthermore, data from Nielsen et al. (1994) with Fe’t/
(F+APTHCrT+(2 x Ti*h)) cpfu > 0.25 agree well with
the linear trend defined in this study, but those with Fe*t/
(Fe T+ APT+Cr 42 x Ti*)) cpfu <0.25 do not. Mg-rich
spinel in experiments by Wijbrans et al. (2015) also have
elevated D(Mg) relative to those studied here. Thus, it would
seem that the model in terms of thermodynamic principles
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@ JA-1 + Fe,0, (T = 1070°C)

0JA-1 + Fe,05 (T = 1095°C)

@ JA-1 + Fe,05 (T = 1120°C)

O Toplis and Corgne (2002) - Ferrobasalt

O Toplis et al. (1994) - Ferrobasalt

4 Righter et al. (2006) - Tholeiite

© Leeman (1974) - Ankaramite

O Wijbrans et al. (2015) - sp6 Ultramafic (CFMAS)

O Horn et al. (1994) - Alkali Basalt

A Nielsen et al. (1994) - Fe**/(Fe3*+APR*+Cr3*+(2*Ti**)>0.25
+ Nielsen et al. (1994) - Fe**/(Fe**+AlP*+Cr3*+(2*Ti*)<0.25

et al. (1994) which were conducted at 1068—-1130 °C; and Righter
et al. (2006), Leeman (1974), Horn et al. (1994) and Wijbrans et al.
(2015) which were conducted between 1150 and 1370 °C. Data from
Nielsen et al. (1994) with spinel Fe>*/(Fe’*+ AP +Crit+(2 x Ti*")
> 0.25 have been distinguished from the rest of the data from this
study. Error bars = lo

reliably explains magnetite—melt partitioning in magnetite-
rich spinel, but breaks down for spinel with contrasting
major-element composition to those studied here. Thus, large
changes in major-element composition of the bulk system
can exert an additional control on spinel-melt partitioning, as
expected from models of spinel solid-solution thermodynam-
ics (O’Neill and Navrotsky 1984). However, to establish this,
the other relevant factors would first need to be accounted for.
One of these is the change in the activity coefficients in the
melt with the composition of the system.

In comparison to the andesitic—dacitic bulk composi-
tion studied here, in mafic bulk systems (e.g. Toplis and
Corgne 2002; Toplis et al. 1994; Righter et al. 2006),
there is a stronger increase in the aFe;O,(mgt) over a
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Fig. 9 Titanomagnetite—melt partition coefficients of a D(Al) e
D(Sc) and f D(Ga) as a function of aFe3O4(mgt)0'5/XFe3+O]45(melt).
aFe;04(mgt) approximated using model by O’Neill and Wall (1987),
and mole fraction on single-cation basis, XFe** O, s(melt), calculated
from values approximated using Kress and Carmichael (1991). Lit-

similar range in fO,. This counteracts the decrease in
Fe?TO(melt) with increasing fO, and as a result there is
significantly less variation in aFe3O4(mgt)/XFez+O(melt)
with fO,. Consequently, there is a lesser pronounced
increase in D(M”)mgl_ mere With increasing fO, in mafic
bulk systems in comparison to the silicic bulk composi-
tions studied here (Fig. 5).

There is a linear trend as a function of
aFe3O4(mgt)0'S/XFe3+ O, s(melt) for D(Sc), which is cor-
roborated by literature data, investigating spinel-melt
partitioning in different bulk compositions (Fig. 9b).
Similarly, plotting D(Ga) vs. aFe;0,(mgt)"/XFe*"
O, s(melt) generates a linear trend when combined with
data using the most Fe-rich starting composition stud-
ied by Wijbrans et al. (2015); however, this trend has a
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@ JA-1 + Fe,05 (T = 1070°C)
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0O Wijbrans et al. (2015) - sp6 Ultramafic (CFMAS)
O Horn et al. (1994) - Alkali Basalt

+ Nielsen et al. (1994)

erature data include: Toplis and Corgne (2002), Toplis et al. (1994)
and Nielsen et al. (1994) which were conducted at 1068—-1130 °C;
and Righter et al. (2006), Leeman (1974), Horn et al. (1994) and Wij-
brans et al. (2015) which were conducted between 1150 and 1370 °C.
Error bars = lo

negative slope (Fig. 9¢). Plotting D(Al) vs. aFe;0,(mgt)*/
XFe** O, s(melt), also produces a poorly defined linear
trend with a negative slope (Fig. 9a). This could suggest
there is large variation in the ratio of activity coefficients
for Al and Ga relative to other 34 cations in the melt with
variation in bulk composition or temperature. This might
be expected for Al given that it is a major component of
the melt. It is also worth noting that spinels crystallised in
studies included by Righter et al. (2006), Leeman (1974),
Horn et al. (1994) and Wijbrans et al. (2015) have sig-
nificantly higher Al cpfu (Al cpfu = 0.82 in data included
from Wijbrans et al. (2015) in comparison to Al cpfu
from 0.1 to 0.2 in this study), which could exert an addi-
tional control on spinel-melt partitioning through signifi-
cantly altering the activity of the substituting cation.
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Fig. 10 a D(Ti) plotted against aFe;O,(mgt)/[XFe*T0, s(melt) x

(2)'25)] and b D(Nb) as a function of aF(=,3O4(mgt)/[(XFe3+O1.5
(melt)®?) x (]‘Oé/3 ]. aFe;O,(mgt) approximated using model by
O’Neill and Wall (1987) and mole fraction on single-cation basis
XFe3+Ol'5(melt) calculated from values approximated using Kress
and Carmichael (1991). Relevant literature data are included for com-
parison (Toplis et al. 1994; Toplis and Corgne 2002; Nielsen et al.
1994; Righter et al. 2006; Leeman 1974; Horn et al. 1994; Wijbrans
et al. 2015). Error bars = 1o
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Linear relationships can also be produced which
describe the partitioning of tetravalent and pentavalent cati-
ons as a function of (aFe304,,,)/(XFe’TO, 55, x f02°%)
and (aFe304,,,)/(XFe’TO13;, x f02'7), respectively
(Fig. 10). The linear trend for D(Ti) is corroborated by lit-
erature data covering different bulk compositions to that
studied here. Data from Wijbrans et al. (2015) support the
linear trend defined for D(Nb); however, data from Nielsen
et al. (1994) do not. It is possible that the contrasting spinel
composition affects the mineral-melt partitioning so that
this model is only relevant for magnetite-rich spinel.

For the And-190 4 Fe,O; bulk composition, between
FMQ + 0.2 and FMQ + 3, the maximum variation in
aFe;0,(mgt)/XFe** O, s(melt) is between 42.5 and 54.3.
The fO, expression, however, exhibits a much larger vari-
ation, and between FMQ + 0.2 < fO, < FMQ + 3, 1/(f
08'25) varies between 285.10 and 56.9. Clearly, the oxy-
gen fugacity term (fog~25) dictates most influence on the
partitioning of the tetravalent cations, which could explain
the large degree of overlap between datasets for D(Ti) as
a function of fO, (Fig. 5c). In this premise, the partition-
ing of homovalent tetravalent and higher valence cations,
should be easier to predict from the fO, alone, than cations
with variable valence state. For example, V partitioning
is often used as a proxy for fO, owing to its multivalent
character. However, this mixed valency substantially com-
plicates the dependence of its partitioning as a function of
JfO,. In this premise, in comparison to V, the partitioning
behaviour of homovalent tetravalent and pentavalent cati-
ons in response to fO, is easier to predict, and therefore
could offer an improved proxy for fO,. Notwithstanding
this, it is important to consider that the crystallisation of
zircon will strongly influence the concentration of Zr and
Hf in the melt, which would hinder the use of Zr and Hf
titanomagnetite—melt partitioning as potential proxies for
fO, in natural systems.

In summary, thermodynamic principles predict linear
relationships between titanomagnetite-melt partition-
ing and the aFe;0, in titanomagnetite and XFe*™O, 5 and
XFe>"0 in the melt, which are supported by results in this
study. Thus, for magnetite-rich spinel we conclude that
titanomagnetite—melt partitioning is controlled to a first
order by the chemical equilibria associated with a chang-
ing melt composition. Notwithstanding this, the activity
coefficients, both in spinel and the melt, are expected to
vary with changes in the bulk composition of the system.
This could exert an additional control on spinel-melt par-
titioning. Nevertheless, it is difficult to determine whether
such changes in partitioning in contrasting bulk compo-
sitions to those studied here reflect changes in the activ-
ity coefficients in the crystal or melt (O’Neill and Eggins
2002).
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Fig. 11 Titanomagnetite—melt partition coefficients of Mn ver-
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Melt polymerisation

A number of previous studies have identified that the degree
of melt polymerisation exerts a strong control on the parti-
tioning of elements between crystalline phases and melts
(e.g. Kohn and Schofield 1994; Toplis and Corgne 2002;
Kushiro and Mysen 2002; Mysen 2007). Melt polymerisa-
tion is frequently expressed as NBO/T (the molar ratio of
non-bridging oxygens to tetrahedrally co-ordinated cations)

which can be calculated from the melt composition. With
increasing NBO/T, D(Mg), D(Mn), D(Ni), D(Co) and
D(Zn) decrease forming well-defined trends, that are an
exponential function of melt NBO/T (Fig. 11a). When sup-
plemented by data from Toplis and Corgne (2002), Righter
et al. (2006), Leeman (1974), Horn et al. (1994) and Wij-
brans et al. (2015), it is clear that this trend is particularly
pronounced at NBO/T < 0.30, but flattens at higher values.
In highly polymerised melts D(Mn) values up to 8.3 and
D(Mg) up to 6.0 are observed; in this region of melt poly-
merisation, small increases in the degree of polymerisation
(decreases in NBO/T) are accompanied by large increases
in the partition coefficients.

As has been noted previously for several crystal-
line phases, D(M>*) can be described by the equation
D(M?*) = C.(NBO/T)X where X and C are constants
specific to the partitioning of each metal cation (Kohn
and Schofield 1994; Toplis and Corgne 2002). Previ-
ous work cautioned the use of this equation at values of
NBO/T < 0.08; however, the results of this work sug-
gest that this equation is still valid in this compositional
range. Incorporating data from this study with that of pre-
vious work (Toplis and Corgne 2002; Toplis et al. 1994;
Righter et al. 2006; and Leeman 1974), the following
relationships have been derived to predict the titanomag-
netite—melt partition coefficients for Mg and Mn:

DMg) = 0.52 x (NBO/T) *82R? = 0.78,

D(Mn) = 0.77 x (NBO/T)"%"7 R? = 0.81.

The other divalent cations also follow a similar trend
in terms of NBO/T as could be inferred by the linear cor-
relation of divalent cations with one another (Fig. 4). It
has been suggested that more polymerised melts contain
fewer potential sites onto which network-modifying cati-
ons can partition (Toplis and Corgne 2002). This could
result in higher mineral-melt partition coefficients with
increasing melt polymerisation for cations that act as
network modifiers, notably the divalent cations. How-
ever, this does not explain why the relationship is expo-
nential. Furthermore, there is not an adequate reason to
account for the fact that the relationship with NBO/T is
only observed for the divalent cations, and not the parti-
tioning of other network-modifying cations with different
valence states.

The optical basicity (A) can be used as an alternative,
and potentially superior, measure of melt structure which
distinguishes different cations with contrasting electron
donor power (Duffy 1993). Similar to plotting D(M>") vs.
NBO/T, plotting D(M>**) vs. A generates trends that are an
exponential function of A (Fig. 11b). This trend, however,
diverges into two paths at A < 0.56, for the dacitic (JA-1)
and andesitic (And-190) compositions investigated and
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does not form a single, well-defined trend as observed for
NBO/T. The inability of A to fully describe the partitioning
behaviour suggests melt polymerisation is not the domi-
nant control on D(M>"). Furthermore, NBO/T is a strong
function of Fe**0,,, (Fig. 12), with a correlation coeffi-
cient between the two variables of 0.72. Thus, the appar-
ent correlation between the partitioning of divalent cations
and NBO/T could in fact be an artefact of the change in
Fe’*0,,.,, with increasing fO,. For instance, with increased
JfO,, there is an increase in the crystallisation of titanomag-
netite, which decreases the concentration Fe in the melt
and hence of Fe’*O, ;. There is also an increase in the
concentration of SiO, in the melt with increasing NBO/T
(Fig. 12). The change in melt composition will therefore
drive changes in melt structure and NBO/T which gener-
ates illusory correlations between partitioning and melt
polymerisation. Although there is correlation between melt
structure and partitioning, this does not imply causation.
Instead, we suggest that thermodynamic equilibria between
mineral and melt and its associated changes in a(Fe’*0)
and a(Fe*T0, ) in the melt offer a more accurate explana-
tion of partitioning.

Implications for studying natural systems

Evidence for redox-sensitive partitioning of isovalent
divalent cations in intermediate-silicic bulk systems

The relationship between fO, and melt composition has
important implications for natural intermediate-silicic
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Fig. 13 Titanomagnetite MnO vs. V contents for rhyolitic, dacitic,
andesitic and basaltic rocks from GEOROC (Sarbas and Nohl 2008).
Data using And-190 at 1070 °C (this study) is included for compari-
son and mimics trend defined by andesite and dacite

magmas. In silicic bulk systems, the increased crystallisa-
tion of magnetite with increasing fO, predominantly drives
a decrease in XFe’'O, ,, with only minor variation in
aFe;0, (Table 3). Consequently, the partitioning of divalent
cations is indirectly sensitive to changes in fO,, particu-
larly between FMQ + 0.2 and FMQ + 3. The partitioning
of divalent cations into other cocrystallising mafic phases,
bearing a significant amount of ferrous iron, could also be
indirectly sensitive to fO, for the same reasons. Fractiona-
tion of other phases, such as silicate phases, could also
exert a control on melt composition although, because the
crystallisation of magnetite occurs relatively abruptly in
comparison to silicate phases and is particularly sensitive
to fO,, magnetite crystallisation can trigger quite sudden
changes in melt chemistry, particularly at high fO, (e.g.
fO,>FMQ + 2).

There is evidence for a systematic increase in D(M>")
with increasing fO, in natural intermediate-silicic rocks.
Using the GEOROC database (Sarbas and Nohl 2008),
data from titanomagnetite worldwide was filtered
and sorted into categories based on host rock: basalt,
andesite, dacite and rhyolite. Despite the complexity of
its dependence, the partitioning of V into titanomagnetite
has been shown to be a relatively good, qualitative proxy
for the fO, (e.g. this study; Righter et al. 2006; Toplis and
Corgne 2002). Plotting V content of magnetite as a redox
proxy against divalent cations, such as Mn, indicates that
at V contents less than approximately 1200 ppm, with
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decreasing V content, the MnO content of titanomag-
netite increases in rhyolitic, dacitic and andesitic rocks.
In titanomagnetite from basaltic rocks, however, there is
no apparent increase in MnO content with decreasing V
content. This suggests that Mn partitioning is indirectly
sensitive to fO, as a result of the influence of fO, on mag-
netite crystallisation and its implications for aFe;0 4y, /X
Fe>™ 0, It is interesting to note that the data from And-
190 in this study follow a similar trend to natural titano-
magnetite data from andesitic and dacitic rocks (Fig. 13).
Magnesium does not produce a trend of increasing titano-
magnetite—melt partitioning with decreasing V content,
but this is unsurprising given its incorporation as a major
component in other crystallising phases. There is insuf-
ficient data in the GEOROC database to produce similar
trends for other divalent cations at present.

Redox-sensitive trace-element ratios in magnetite

The relationships between fO, and our experimentally
determined titanomagnetite—melt partition coefficients of
redox-sensitive elements could be used to estimate the
SO, of natural magmas, but only if the composition of the
titanomagnetite and the melt from which it crystallised
are known. Melt inclusions, hosted within a titanomag-
netite grain, could be reasonably assumed to represent the
melt from which the crystal grew. However, at magmatic
temperatures, lattice diffusion through the host mineral
has been shown to be sufficiently rapid to alter the origi-
nal chemical composition of melt inclusions, including
elements not compatible in the host minerals (Spandler
et al. 2007; Spandler and O’Neill 2010). In addition to
this, melt inclusions are often difficult to find, or are too
small to analyse using LA-ICP-MS. Collectively, this
thwarts determination of the melt composition using melt
inclusions.

Without an accurate means to measure the melt com-
position, relative redox indicators, using just the spinel
composition alone, have been suggested as a means to
estimate the fO, in natural systems (Wijbrans et al. 2015).
For example, the ratio of a redox-sensitive element to an
element that does not change partitioning behaviour as a
function of all other parameters (e.g. melt compositions,
crystal composition, temperature and fO,) could be used.
Furthermore, the bulk partition coefficients of the denom-
inator element should be close to 1, so that its relative
abundance is not strongly influenced by crystallisation of
other mineral phases. On this basis, Wijbrans et al. (2015)
suggested the use of Mo/Ga and V/Ni in spinel as pos-
sible relative redox monitors. In support of this, within
the range of conditions studied here, the titanomagnetite—
melt partitioning behaviours of Mo and V are redox sen-
sitive, whereas the partitioning of Ga remains relatively

insensitive to all parameters. In an intermediate-silicic
bulk system, however, we have shown that the partition-
ing of Ni is sensitive to fO, and temperature. Furthermore,
when including data from other studies, it is apparent that
Ga is more strongly partitioned in Cr-rich spinel crystal-
lised at higher temperature (7 > 1250 °C; e.g. Horn et al.
(1994)), which negates the use of Ga in systems crystal-
lising over a large range of compositions and tempera-
tures. Notwithstanding this, as far as we are aware, Ga
offers the best possible element for the denominator in
a relative redox ratio and could be used in conjunction
with redox-sensitive elements such as V to qualitatively
approximate the fO, in natural systems. In addition to V
and Mo, titanomagnetite—melt partitioning of Nb and Ta
is also sensitive to fO, whilst the concentration of Nb and
Ta is relatively unaffected by fractionation of other co-
crystallising phases in arc magmas; thus Nb/Ga and Ta/
Ga in titanomagnetite may also be effective relative redox
monitors for natural arc magmas. Nevertheless, the use
of such relative redox indicator ratios is yet to be tested
comprehensively in natural systems.

Conclusions

Although melt structure has been invoked as the dominant
factor controlling the mineral-melt partitioning of divalent
cations, we suggest that thermodynamic equilibria between
mineral and melt species offer a more rigorous explanation
of partitioning, whereby the mechanism of incorporation
is controlled by exchange reactions, rather than the site in
a variably polymerised melt. Titanomagnetite—melt parti-
tioning of divalent cations has been shown to be a func-
tion of aFe;0,,,/aFeO,, . With increasing fO,, there is a
decrease in Fe*T0,,, as a result of the increasing propor-
tion of magnetite and increasing Fe’*/XFe of the system.
For many elements, these relationships break down for spi-
nel compositions containing lower fractions of Fe;0, than
those of this study. This may plausibly be due to changing
activity—composition relations in either the spinel, or in the
melt. Separating these variables in mineral/melt partition-
ing studies is in general difficult or even impossible, and
other experimental or theoretical information is required
(O’Neill and Eggins 2002). However, in an andesitic bulk
system, there is only a minor variation in the molar pro-
portion of Fe;O, in titanomagnetite with increasing fO,.
As a result, in such systems there are large increases in
aFe3O4mgt/aFe”Ome]t with increasing fO,, and the varia-
tion in titanomagnetite—melt partitioning of divalent cati-
ons is sufficiently pronounced that it may be confidently
ascribed to this factor. In mafic systems, by contrast, there
is less variation in aFe;Oy,/aFeO,, with fO, because
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keeping spinel on the liquidus with decreasing fO, requires
a large decrease in the Fe;O,-content of the spinel. Hence
the ratio aFe3O4mgt/aFc:‘,2+Omelt does not change as much.
Consequently, the other factors influencing titanomagnet-
ite—melt partitioning of divalent cations become relatively
more important.
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