Skip to main content
Log in

Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A persistent problem in the study of garnet geochemistry is that the consideration of major elements alone excludes a wealth of information preserved by trace elements, particularly the rare-earth elements (REEs). This is despite the fact that trace elements are generally less vulnerable to diffusive resetting, and are sensitive to a broader spectrum of geochemical interactions involving the entire mineral assemblage, including the growth and/or dissolution of accessory minerals. We outline a technique for the routine acquisition of high-resolution 2D trace element maps by LA-ICP-MS, and introduce an extension of the software package XMapTools for rapid processing of LA-ICP-MS data to visualise and interpret compositional zoning patterns. These methods form the basis for investigating the mechanisms controlling geochemical mobility in garnet, which are argued to be largely dependent on the interplay between element fractionation, mineral reactions and partitioning, and the length scales of intergranular transport. Samples from the Peaked Hill shear zone, Reynolds Range, central Australia, exhibit contrasting trace element distributions that can be linked to a detailed sequence of growth and dissolution events. Trace element mapping is thus employed to place garnet evolution in a specific paragenetic context and derive absolute age information by integration with existing U–Pb monazite and Sm–Nd garnet geochronology. Ultimately, the remarkable preservation of original growth zoning and its subtle modification by subsequent re-equilibration is used to ‘see through’ multiple superimposed events, thereby revealing a previously obscure petrological and temporal record of metamorphism, metasomatism, and deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ague JJ, Axler JA (2016) Interface coupled dissolution-reprecipitation in garnet from subducted granulites and ultrahigh-pressure rocks revealed by phosphorous, sodium, and titanium zonation. Am Mineral 101:1696–1699. doi:10.2138/am-2016-5707

    Article  Google Scholar 

  • Ague JJ, Carlson WD (2013) Metamorphism as garnet sees it: the kinetics of nucleation and growth, equilibration, and diffusional relaxation. Elements 9:439–445. doi:10.2113/gselements.9.6.439

    Article  Google Scholar 

  • Anczkiewicz R, Szczepanski J, Mazur S, Storey C, Crowley Q, Villa IM, Thirlwall MF, Jeffries TE (2007) Lu–Hf geochronology and trace element distribution in garnet: Implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95:363–380. doi:10.1016/j.lithos.2006.09.001

    Article  Google Scholar 

  • Anczkiewicz R, Thirlwall M, Alard O, Rogers NW, Clark C (2012) Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: Implications for Sm–Nd geochronology and timing of metamorphism in the Red River shear zone. Chem Geol 318–319:16–30. doi:10.1016/j.chemgeo.2012.04.024

    Article  Google Scholar 

  • Anderson JR, Kelsey DE, Hand M, Collins WJ (2013) Conductively driven, high-thermal gradient metamorphism in the Anmatjira Range, Arunta region, central Australia. J Metamorph Geol 31:1003–1026. doi:10.1111/jmg.12054

    Article  Google Scholar 

  • Austrheim H, Erambert M, Boundy TM (1996) Garnets recording deep crustal earthquakes. Earth Planet Sci Lett 139:223–238. doi:10.1016/0012-821X(95)00232-2

    Article  Google Scholar 

  • Ayers JC, Zhang L, Luo Y, Peters TJ (2012) Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochim Cosmochim Acta 96:18–28. doi:10.1016/j.gca.2012.08.027

    Article  Google Scholar 

  • Baxter EF, Scherer EE (2013) Garnet geochronology: timekeeper of tectonometamorphic processes. Elements 9:433–438. doi:10.2113/gselements.9.6.433

    Article  Google Scholar 

  • Bloch E, Ganguly J (2015) 176Lu–176Hf geochronology of garnet II: numerical simulations of the development of garnet–whole-rock 176Lu–176Hf isochrons and a new method for constraining the thermal history of metamorphic rocks. Contrib Mineral Petrol 169:1–16. doi:10.1007/s00410-015-1115-x

    Article  Google Scholar 

  • Bloch E, Ganguly J, Hervig R, Cheng W (2015) 176Lu–176Hf geochronology of garnet I: experimental determination of the diffusion kinetics of Lu3+ and Hf4+ in garnet, closure temperatures and geochronological implications. Contrib Mineral Petrol 169:1–18. doi:10.1007/s00410-015-1109-8

    Article  Google Scholar 

  • Buick IS, Storkey A, Williams IS (2008) Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra-plate Alice Springs Orogeny, central Australia. J Metamorph Geol 26:915–936. doi:10.1111/j.1525-1314.2008.00794.x

    Article  Google Scholar 

  • Caddick MJ, Kohn MJ (2013) Garnet: witness to the evolution of destructive plate boundaries. Elements 9:427–432. doi:10.2113/gselements.9.6.427

    Article  Google Scholar 

  • Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347. doi:10.1093/petrology/egq059

    Article  Google Scholar 

  • Carlson WD (2002) Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87:185–204

    Article  Google Scholar 

  • Carlson WD (2006) Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am Mineral 91:1–11. doi:10.2138/am.2006.2043

    Article  Google Scholar 

  • Carlson WD (2011) Porphyroblast crystallization: linking processes, kinetics, and microstructures. Int Geol Rev 53:406–445. doi:10.1080/00206814.2010.496184

    Article  Google Scholar 

  • Carlson WD (2012) Rates and mechanism of Y, REE, and Cr diffusion in garnet. Am Mineral 97:1598–1618. doi:10.2138/am.2012.4108

    Article  Google Scholar 

  • Cartwright I, Buick IS (1999) Meteoric fluid flow within Alice Springs age shear zones, Reynolds Range, central Australia. J Metamorph Geol 17:397–414. doi:10.1046/j.1525-1314.1999.00205.x

    Article  Google Scholar 

  • Chakraborty S, Ganguly J (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib Mineral Petrol 111:74–86. doi:10.1007/bf00296579

    Article  Google Scholar 

  • Cheng H, King RL, Nakamura E, Vervoort JD, Zhou Z (2008) Coupled Lu–Hf and Sm–Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. J Metamorph Geol 26:741–758. doi:10.1111/j.1525-1314.2008.00785.x

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Meria D, Silcock D, Wade B (2013) Arsenopyrite-pyrite association in an Orogenic Gold Ore: tracing mineralization history from textures and trace elements. Econ Geol 108:1273–1283. doi:10.2113/econgeo.108.6.1273

    Article  Google Scholar 

  • Corrie SL, Kohn MJ (2008) Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. J Metamorph Geol 26:451–464. doi:10.1111/j.1525-1314.2008.00769.x

    Article  Google Scholar 

  • Cygan RT, Lasaga AC (1982) Crystal growth and the formation of chemical zoning in garnets. Contrib Mineral Petrol 79:187–200. doi:10.1007/bf01132887

    Article  Google Scholar 

  • Dirks PHGM, Wilson CJL (1990) The geological evolution of the Reynolds Range, central Australia: evidence for three distinct structural-metamorphic cycles. J Struct Geol 12:651–665. doi:10.1016/0191-8141(90)90080-I

    Article  Google Scholar 

  • Dirks PHGM, Hand M, Powell R (1991) The P–T–deformation path for a mid-Proterozoic, low-pressure terrane: the Reynolds Range, central Australia. J Metamorph Geol 9:641–661. doi:10.1111/j.1525-1314.1991.tb00553.x

    Article  Google Scholar 

  • Dragovic B, Baxter EF, Caddick MJ (2015) Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece. Earth Planet Sci Lett 413:111–122. doi:10.1016/j.epsl.2014.12.024

    Article  Google Scholar 

  • Dumond G, Goncalves P, Williams ML, Jercinovic MJ (2015) Monazite as a monitor of melting, garnet growth and feldspar recrystallization in continental lower crust. J Metamorph Geol 33:735–762. doi:10.1111/jmg.12150

    Article  Google Scholar 

  • Dutch R, Hand M (2010) Retention of Sm–Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm–Nd closure temperature in garnet. Contrib Mineral Petrol 159:93–112. doi:10.1007/s00410-009-0418-1

    Article  Google Scholar 

  • Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214. doi:10.1007/bf00321220

    Article  Google Scholar 

  • Florence FP, Spear FS (1991) Effects of diffusional modification of garnet growth zoning on P–T path calculations. Contrib Mineral Petrol 107:487–500. doi:10.1007/bf00310683

    Article  Google Scholar 

  • Ganguly J (2010) Cation diffusion kinetics in aluminosilicate garnets and geological applications. Rev Mineral Geochem 72:559–601. doi:10.2138/rmg.2010.72.12

    Article  Google Scholar 

  • George L, Cook NJ, Ciobanu CL, Wade BP (2015) Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am Mineral 100:548–569. doi:10.2138/am-2015-4862

    Article  Google Scholar 

  • Günther D, Frischknecht R, Heinrich CA, Kahlert H-J (1997) Capabilities of an Argon Fluoride 193 nm Excimer Laser for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Microanalysis of Geological Materials. J Anal At Spectrom 12:939–944. doi:10.1039/A701423F

    Article  Google Scholar 

  • Haines PW, Hand M, Sandiford M (2001) Palaeozoic synorogenic sedimentation in central and northern Australia; a review of distribution and timing with implications for the evolution of intracontinental orogens. Aust J Earth Sci 48:911–928. doi:10.1046/j.1440-0952.2001.00909.x

    Article  Google Scholar 

  • Hames WE, Menard T (1993) Fluid-assisted modification of garnet composition along rims, cracks, and mineral inclusion boundaries in samples of amphibolite facies schists. Am Mineral 78:338–344

    Google Scholar 

  • Hand M, Buick IS (2001) Tectonic evolution of the Reynolds-Anmatjira Ranges: a case study in terrain reworking from the Arunta Inlier, central Australia, vol 184. Geological Society, Special Publications, London, pp 237–260. doi:10.1144/gsl.sp.2001.184.01.12

    Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162(2):329–348. doi:10.1007/s00410-010-0599-7

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113:401–412. doi:10.2113/gssajg.113.4.401

    Article  Google Scholar 

  • Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and evidence for assimilation. Contrib Mineral Petrol 138:164–175. doi:10.1007/s004100050015

    Article  Google Scholar 

  • Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67:3473–3497. doi:10.1016/S0016-7037(03)00084-X

    Article  Google Scholar 

  • Hellstrom J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Miner Assoc Can Short Course Ser 40:343–348

    Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99(3):165–184. doi:10.1007/s00710-010-0110-1

    Article  Google Scholar 

  • Hickmott D, Spear FS (1992) Major-and trace-element zoning in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts: garnet growth histories in retrograded rocks. J Petrol 33(5):965–1005. doi:10.1093/petrology/33.5.965

    Article  Google Scholar 

  • Hollister LS (1966) Garnet Zoning: An Interpretation Based on the Rayleigh Fractionation Model. Science 154:3757. doi:10.1126/science.154.3757.1647

    Article  Google Scholar 

  • Howell D, Griffin WL, Pearson NJ, Powell W, Wieland P, O’Reilly SY (2013) Trace element partitioning in mixed-habit diamonds. Chem Geol 355:134–143. doi:10.1016/j.chemgeo.2013.07.013

    Article  Google Scholar 

  • Howlett D, Raimondo T, Hand M (2015) Evidence for 1808–1770 Ma bimodal magmatism, sedimentation, high-temperature deformation and metamorphism in the Aileron Province, central Australia. Aust J Earth Sci 62:831–852. doi:10.1080/08120099.2015.1108364

    Article  Google Scholar 

  • Huston DL, Maas R, Cross A, Hussey KJ, Mernagh TP, Fraser G, Champion DC (2016) The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications. Mineral Depos 51:797–822. doi:10.1007/s00126-015-0631-y

    Article  Google Scholar 

  • Ingham ES, Cook NJ, Cliff J, Ciobanu CL, Huddleston A (2014) A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochim Cosmochim Acta 125:440–465. doi:10.1016/j.gca.2013.10.017

    Article  Google Scholar 

  • Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184–187:456–477. doi:10.1016/j.lithos.2013.07.023

    Article  Google Scholar 

  • Jackson SE, Longerich HP, Dunning GR, Freyer BJ (1992) The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral 30:1049–1064

    Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostand Geoanalytical Res 35:397–429. doi:10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Kelly ED, Carlson WD, Connelly JN (2011) Implications of garnet resorption for the Lu–Hf garnet geochronometer: an example from the contact aureole of the Makhavinekh Lake Pluton, Labrador. J Metamorph Geol 29:901–916. doi:10.1111/j.1525-1314.2011.00946.x

    Article  Google Scholar 

  • Kelsey DE, Powell R (2011) Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system. J Metamorph Geol 29:151–166. doi:10.1111/j.1525-1314.2010.00910.x

    Article  Google Scholar 

  • Kohn MJ (2003) Geochemical zoning in metamorphic minerals. In: Heinrich DH, Karl KT (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 229–261

    Chapter  Google Scholar 

  • Kohn MJ (2009) Models of garnet differential geochronology. Geochim Cosmochim Acta 73:170–182. doi:10.1016/j.gca.2008.10.004

    Article  Google Scholar 

  • Konrad-Schmolke M, Handy MR, Babist J, O’Brien PJ (2005) Thermodynamic modelling of diffusion-controlled garnet growth. Contrib Mineral Petrol 149:181–195. doi:10.1007/s00410-004-0643-6

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Mineral 19:431–438. doi:10.1127/0935-1221/2007/0019-1749

    Article  Google Scholar 

  • Konrad-Schmolke M, Zack T, O’Brien PJ, Jacob DE (2008) Combined thermodynamic and rare earth element modelling of garnet growth during subduction: examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth Planet Sci Lett 272:488–498. doi:10.1016/j.epsl.2008.05.018

    Article  Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208–209:178–201. doi:10.1016/j.lithos.2014.09.001

    Article  Google Scholar 

  • Lanari P, Riel N, Guillot S, Vidal O, Schwartz S, Pêcher A, Hattori KH (2013) Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: Application to the Stak eclogitic massif (northwest Himalaya). Geology 41:111–114. doi:10.1130/g33523.1

    Article  Google Scholar 

  • Lanari P, Vidal O, De Andrade V, Dubacq B, Lewin E, Grosch EG, Schwartz S (2014) XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput Geosci 62:227–240. doi:10.1016/j.cageo.2013.08.010

    Article  Google Scholar 

  • Lanzirotti A (1995) Yttrium zoning in metamorphic garnets. Geochim Cosmochim Acta 59:4105–4110. doi:10.1016/0016-7037(95)00320-Y

    Article  Google Scholar 

  • Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultra-high-pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth Planet Sci Lett 215:57–72. doi:10.1016/S0012-821X(03)00455-2

    Article  Google Scholar 

  • Lockington JA, Cook NJ, Ciobanu CL (2014) Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineral Petrol 108:873–890. doi:10.1007/s00710-014-0346-2

    Article  Google Scholar 

  • Loomis TP, Nimick FB (1982) Equilibrium in Mn-Fe-Mg aluminous pelitic compositions and the equilibrium growth of garnet. Can Mineral 20:393–410

    Google Scholar 

  • McLaren S, Sandiford M, Dunlap WJ, Scrimgeour I, Close D, Edgoose C (2009) Distribution of Palaeozoic reworking in the Western Arunta Region and northwestern Amadeus Basin from 40Ar/39Ar thermochronology: implications for the evolution of intracratonic basins. Basin Res 21:315–334. doi:10.1111/j.1365-2117.2008.00385.x

    Article  Google Scholar 

  • Mészáros M, Hofmann BA, Lanari P, Korotev RL, Gnos E, Greber ND, Leya I, Greenwood RC, Jull AJT, Al-Wagdani K, Mahjoub A, Al-Solami AA, Habibullah SN (2016) Petrology and geochemistry of feldspathic impact-melt breccia Abar al’ Uj 012, the first lunar meteorite from Saudi Arabia. Meteoritics & Planetary. Science. doi:10.1111/maps.12693

    Google Scholar 

  • Moore SJ, Carlson WD, Hesse MA (2013) Origins of yttrium and rare earth element distributions in metamorphic garnet. J Metamorph Geol 31:663–689. doi:10.1111/jmg.12039

    Article  Google Scholar 

  • Morrissey LJ, Hand M, Raimondo T, Kelsey DE (2014) Long-lived high-T, low-P granulite facies metamorphism in the Arunta Region, central Australia. J Metamorph Geol 32:25–47. doi:10.1111/jmg.12056

    Article  Google Scholar 

  • Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by Laser Ablation ICPMS: Instrumental operating conditions and calibration values of NIST glasses. Geostand Newsl 20:247–261. doi:10.1111/j.1751-908X.1996.tb00186.x

    Article  Google Scholar 

  • Otamendi JE, de la Rosa JD, Douce AEP, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162. doi:10.1130/0091-7613(2002)030<0159:rfohre>2.0.co;2

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi:10.1039/C1JA10172B

    Article  Google Scholar 

  • Paul B, Paton C, Norris A, Woodhead J, Hellstrom J, Hergt J, Greig A (2012) CellSpace: A module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom 27:700–706. doi:10.1039/C2JA10383D

    Article  Google Scholar 

  • Paul B, Woodhead JD, Paton C, Hergt JM, Hellstrom J, Norris CA (2014) Towards a method for quantitative LA-ICP-MS imaging of multi-phase assemblages: mineral identification and analysis correction procedures. Geostand Geoanalytical Res 38:253–263. doi:10.1111/j.1751-908X.2014.00270.x

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanalysis 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Petrelli M, Morgavi D, Vetere F, Perugini D (2016) Elemental imaging and petro-volcanological applications of an improved Laser Ablation Inductively Coupled Quadrupole Plasma Mass Spectrometry. Period di Mineral 85:25–39. doi:10.2451/2015PM0465

    Google Scholar 

  • Pollington AD, Baxter EF (2011) High precision microsampling and preparation of zoned garnet porphyroblasts for Sm–Nd geochronology. Chem Geol 281:270–282. doi:10.1016/j.chemgeo.2010.12.014

    Article  Google Scholar 

  • Putnis A (2009) Mineral Replacement Reactions. Rev Mineral Geochem 70:87–124. doi:10.2138/rmg.2009.70.3

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269. doi:10.1111/j.1468-8123.2010.00285.x

    Google Scholar 

  • Pyle JM, Spear FS (2003) Yttrium zoning in garnet: Coupling of major and accessory phases during metamorphic reactions. Am Mineral 88:708

    Article  Google Scholar 

  • Raimondo T, Clark C, Hand M, Faure K (2011) Assessing the geochemical and tectonic impacts of fluid–rock interaction in mid-crustal shear zones: a case study from the intracontinental Alice Springs Orogen, central Australia. J Metamorph Geol 29:821–850. doi:10.1111/j.1525-1314.2011.00944.x

    Article  Google Scholar 

  • Raimondo T, Clark C, Hand M, Cliff J, Harris C (2012) High-resolution geochemical record of fluid–rock interaction in a mid-crustal shear zone: a comparative study of major element and oxygen isotope transport in garnet. J Metamorph Geol 30:255–280. doi:10.1111/j.1525-1314.2011.00966.x

    Article  Google Scholar 

  • Raimondo T, Clark C, Hand M, Cliff J, Anczkiewicz R (2013) A simple mechanism for mid-crustal shear zones to record surface-derived fluid signatures. Geology 41(6):711–714. doi:10.1130/g34043.1

    Article  Google Scholar 

  • Raimondo T, Hand M, Collins WJ (2014) Compressional intracontinental orogens: ancient and modern perspectives. Earth Sci Rev 130:128–153. doi:10.1016/j.earscirev.2013.11.009

    Google Scholar 

  • Rittner M, Müller W (2012) 2D mapping of LA-ICPMS trace element distributions using R. Comput Geosci 42:152–161. doi:10.1016/j.cageo.2011.07.016

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468. doi:10.1007/PL00007673

    Article  Google Scholar 

  • Rubatto D, Müntener O, Barnhoorn A, Gregory C (2008) Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). Am Mineral 93:1519–1529. doi:10.2138/am.2008.2874

    Article  Google Scholar 

  • Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochim Cosmochim Acta 64:3413–3432. doi:10.1016/S0016-7037(00)00440-3

    Article  Google Scholar 

  • Schmidt A, Pourteau A, Candan O, Oberhänsli R (2015) Lu–Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey). Earth Planet Sci Lett 432:24–35. doi:10.1016/j.epsl.2015.09.015

    Article  Google Scholar 

  • Schoneveld L, Spandler C, Hussey K (2015) Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia. Contrib Mineral Petrol 170:1–22. doi:10.1007/s00410-015-1168-x

    Article  Google Scholar 

  • Sharrad KA, McKinnon-Matthews J, Cook NJ, Ciobanu CL, Hand M (2014) The Basil Cu–Co deposit, Eastern Arunta Region, Northern Territory, Australia: A metamorphosed volcanic-hosted massive sulphide deposit. Ore Geol Rev 56:141–158. doi:10.1016/j.oregeorev.2013.08.008

    Article  Google Scholar 

  • Skora S, Baumgartner L, Mahlen N, Johnson C, Pilet S, Hellebrand E (2006) Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology. Contrib Mineral Petrol 152:703–720. doi:10.1007/s00410-006-0128-x

    Article  Google Scholar 

  • Smit MA, Scherer EE, Mezger K (2013) Lu–Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes. Earth Planet Sci Lett 381:222–233. doi:10.1016/j.epsl.2013.08.046

    Article  Google Scholar 

  • Spear FS, Daniel CG (2001) Diffusion control of garnet growth, Harpswell Neck, Maine, USA. J Metamorph Geol 19:179–195. doi:10.1046/j.0263-4929.2000.00306.x

    Article  Google Scholar 

  • Spear FS, Selverstone J (1983) Quantitative P–T paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83:348–357. doi:10.1007/bf00371203

    Article  Google Scholar 

  • Taylor SR, McClennan SM (1985) The continental crustal: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Terry MP, Heidelbach F (2006) Deformation-enhanced metamorphic reactions and the rheology of high-pressure shear zones, Western Gneiss Region, Norway. J Metamorph Geol 24:3–18. doi:10.1111/j.1525-1314.2005.00618.x

    Article  Google Scholar 

  • Thöni M (2002) Sm–Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm–Nd chronometry. Chem Geol 185:255–281. doi:10.1016/s0009-2541(01)00410-7

    Article  Google Scholar 

  • Tirone M, Ganguly J, Dohmen R, Langenhorst F, Hervig R, Becker H-W (2005) Rare earth diffusion kinetics in garnet: Experimental studies and applications. Geochim Cosmochim Acta 69:2385–2398. doi:10.1016/j.gca.2004.09.025

    Article  Google Scholar 

  • Ubide T, McKenna CA, Chew DM, Kamber BS (2015) High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. Chem Geol 409:157–168. doi:10.1016/j.chemgeo.2015.05.020

    Article  Google Scholar 

  • Ulrich T, Kamber BS, Jugo PJ, Tinkham DK (2009) Imaging element-distribution patterns in minerals by Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS). Can Mineral 47:1001–1012. doi:10.3749/canmin.47.5.1001

    Article  Google Scholar 

  • Vry J, Compston W, Cartwright I (1996) SHRIMP II dating of zircons and monazites: reassessing the timing of high-grade metamorphism and fluid flow in the Reynolds Range, northern Arunta Block, Australia. J Metamorph Geol 14:335–350. doi:10.1111/j.1525-1314.1996.00335.x

    Article  Google Scholar 

  • Whitney DL (1996) Garnets as open systems during regional metamorphism. Geology 24:147–150. doi:10.1130/0091-7613(1996)024<0147:gaosdr>2.3.co;2

    Article  Google Scholar 

  • Whitney DL, Broz M, Cook RF (2007) Hardness, toughness, and modulus of some common metamorphic minerals. Am Mineral 92:281–288. doi:10.2138/am.2007.2212

    Article  Google Scholar 

  • Wilke M, Schmidt C, Dubrail J, Appel K, Borchert M, Kvashnina K, Manning CE (2012) Zircon solubility and zirconium complexation in H2O + Na2O + SiO2 ± Al2O3 fluids at high pressure and temperature. Earth Planet Sci Lett 349–350:15–25. doi:10.1016/j.epsl.2012.06.054

    Article  Google Scholar 

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47. doi:10.1111/j.1525-1314.1996.00029.x

    Article  Google Scholar 

  • Woodhead JD, Hellstrom J, Hergt JM, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostand Geoanalytical Res 31:331–343. doi:10.1111/j.1751-908X.2007.00104.x

    Google Scholar 

  • Xu J, Ciobanu CL, Cook NJ, Zheng Y, Sun X, Wade BP (2016) Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet. Lithos 262:213–231. doi:10.1016/j.lithos.2016.07.010

    Article  Google Scholar 

  • Yang P, Pattison D (2006) Genesis of monazite and Y zoning in garnet from the Black Hills, South Dakota. Lithos 88:233–253. doi:10.1016/j.lithos.2005.08.012

    Article  Google Scholar 

  • Yang P, Rivers T (2001) Chromium and manganese zoning in pelitic garnet and kyanite: Spiral, overprint, and oscillatory (?) zoning patterns and the role of growth rate. J Metamorph Geol 19:455–474. doi:10.1046/j.0263-4929.2001.00323.x

    Article  Google Scholar 

  • Zhang J, Green HW (2007) Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Metamorph Geol 25:97–115. doi:10.1111/j.1525-1314.2006.00684.x

    Article  Google Scholar 

  • Zhou B, Hensen BJ (1995) Inherited Sm–Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121:317–326. doi:10.1016/0009-2541(94)00130-Z

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to the developers of Iolite (http://iolite-software.com/), in particular Bence Paul and Chad Paton for their assistance with method development and data processing. Detailed and constructive reviews from three anonymous reviewers improved several aspects of this manuscript, and we are grateful to Othmar Müntener for editorial handling. The MON GT garnet standard used in this study was kindly provided by Chris Harris. Funding for this work was provided by ARC Discovery Grants DP160103449 to TR and DP160104637 to MH and CC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Raimondo.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 3926 KB)

Supplementary material 2 (XLSX 26333 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimondo, T., Payne, J., Wade, B. et al. Trace element mapping by LA-ICP-MS: assessing geochemical mobility in garnet. Contrib Mineral Petrol 172, 17 (2017). https://doi.org/10.1007/s00410-017-1339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1339-z

Keywords

Navigation