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Abstract
Purpose Cough represents a natural mechanism that plays an important defensive role in the respiratory tract, but in some 
conditions, it may become persistent, nonproductive, and harmful. In general, refractory chronic cough (RCC) occurs in about 
20% of individuals; hence, we aimed to assess the presence of altered gut–lung communication in RCC patients through a 
compositional and functional characterization of both gut (GM) and oral microbiota (OM).
Methods 16S rRNA sequencing was used to characterize both GM and OM composition of RCC patients and healthy controls 
(HC). PICRUST2 assessed functional changes in microbial communities while gas chromatography was used to evaluate 
fecal short-chain fatty acid levels and serum-free fatty acid (FFA) abundances.
Results In comparison with HC, RCC patients reported increased saliva alpha-diversity and statistically significant beta-
diversity in both GM and OM. Also, a, respectively, significant increased or reduced Firmicutes/Bacteroidota ratio in stool 
and saliva samples of RCC patients has been shown, in addition to a modification of the abundances of several taxa in both 
GM and OM. Moreover, a potential fecal over-expression of lipopolysaccharide biosynthesis and lipoic acid metabolism 
pathways and several differences in serum FFA levels have been reported in RCC patients than in HC.
Conclusion Since differences in both GM and OM of RCC patients have been documented, these findings could provide 
new information about RCC pathogenesis and also pave the way for the development of novel nutritional or pharmacological 
interventions for the management of RCC through the restoration of eubiotic gut–lung communication.
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Introduction

Chronic cough, that is a cough lasting longer than eight 
weeks, is among the most common respiratory symptoms 
for which patients seek medical advice [1]. It has long 
been recognized that virtually all diseases of the respira-
tory tract, as well as some non-respiratory disorders, are 
accompanied by chronic cough and that a relevant per-
centage of patients may suffer from a long-lasting cough 
for which no respiratory or extra-respiratory cause can be 
identified. Although the majority of patients can benefit 
from treatments of the underlying cause(s), it is increas-
ingly recognized that cough does not improve with such 
treatments in a large percentage of patients; these patients 
are commonly classified as having refractory chronic 
cough (RCC). In a minority of patients, the cough remains 
unexplained even after accurate investigations, and these 
patients are considered to be suffering from unexplained 
chronic cough (UCC) [2]. Subjects with RCC and UCC 
are currently believed to be affected by a condition known 
as the “cough hypersensitivity syndrome,” in which the 
physiological cough reflex becomes hypersensitized to 
stimuli that are inoffensive to the normal population [3].

The mechanisms underlying hypersensitization are still 
poorly defined and may involve both peripheral and central 
(medullary) neural structures that are crucial for producing 
the cough motor pattern, potentially representing a strate-
gic site of action for antitussive drugs. Patients with RCC 
or UCC are predominantly women (80%), mostly postmen-
opausal, and are eight times more likely to have an organ-
specific autoimmune disease, especially hypothyroidism 
[4, 5]. In general, due to various environmental factors, 
RCC/UCC prevalence is significantly higher in Europe and 
America than in Asia and Africa [6]; in addition, certain 
comorbidities (e.g., obesity, rhinitis) and smoking or alco-
hol abuse may contribute to increased regional RCC/UCC 
variability [7].

Recent evidence has suggested that the lung microbiome 
(LM) plays a critical role in the development and progres-
sion of various respiratory diseases [8]; hence, its involve-
ment in RCC/UCC pathogenesis could be hypothesized [9]. 
Until a few years ago, lungs were considered a sterile dis-
trict; however, their microbial population has been recently 
documented to be equivalent to that of the duodenum one 
[10]. Usually, although healthy people display a different 
microbial composition between the upper and lower respira-
tory tract, the most LM predominant phyla are Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria while Prevo-
tella, Streptococcus, Veillonella, Neisseria, Haemophilus, 
and Fusobacterium are the most abundant genera [11, 12].

Moreover, emerging experimental and epidemiologi-
cal evidence has highlighted the existence of a crucial 

cross-talk between the gut microbiota (GM) and the lungs 
that is currently known as the ‘gut–lung axis’ [13]. Pertur-
bations of the GM composition and/or function, referred to 
as dysbiosis, are linked with altered immunity and homeo-
stasis in the airways. For instance, an altered gut–lung axis 
has been associated with increased susceptibility to air-
way diseases and infections; as an explicative example, we 
can cite that the patients affected by inflammatory bowel 
disease usually show a higher prevalence of pulmonary 
diseases [14, 15]. In addition, various microbial-derived 
metabolites, especially short-chain fatty acids (SCFA), 
have been documented to play a pivotal role in regulating 
the immune system in both the intestine and the airways 
[16]. Specifically, SCFAs exert anti-inflammatory and 
immune-modulatory effects by i) acting as potent ligands 
of G protein-coupled receptors and ii) inhibiting histone 
deacetylase (HDAC) activity in various cell types and 
tissues [17, 18]. Furthermore, the SCFAs can also pass 
through the intestinal epithelium entering the bloodstream 
and reaching the lungs where they promote an extrathymic 
peripheral Treg (T regulatory cells) pool, linked to damp-
ening allergic airway diseases through HDAC inhibition 
[19].

In this scenario, we have performed a compositional and 
functional characterization of intestinal and saliva micro-
biota of RCC patients in order to evaluate the presence of an 
intestinal or oral dysbiosis that might help to understand the 
pathogenesis of RCC/UCC paving the way for novel topic 
investigations.

Materials and Methods

Patients

We enrolled 10 adult non-smoking outpatients with an estab-
lished diagnosis of RCC and 10 gender-and age-matched 
healthy volunteers as controls (HC). For each patient, data 
collection and routine clinical assessments were performed 
in accordance with international guidelines [20]. None of the 
patients reported a history of recent (< 4 weeks) respiratory 
infection nor had evidence of active lesions documented by 
a recent (within 2 months) chest X-ray. Patients rated the 
magnitude of their cough disturbance using a 0–9 modified 
Borg Scale where 0 indicated “Not bothered at all” and 9 
indicated “Worst disturbance I can possibly imagine”; the 
values obtained with this method were termed as “cough 
score” [21].

Subjects were also excluded if they were taking medica-
tions or probiotics and similar (prebiotics or symbiotics) or 
traveled to an exotic region in the last three months, were 
pregnant or lactating or had a serious illness or unstable 
condition.



109Lung (2024) 202:107–118 

This study was approved by the Ethics Committee of 
the Careggi University Hospital (OSS-1431) and followed 
the principles of the Declaration of Helsinki. The patients 
gave their written informed consent.

Fecal and Salivary Microbiota Characterization

The genomic DNA was extracted from frozen (−80 °C) 
stool and saliva samples using the DNeasy PowerSoil Pro 
Kit (Qiagen, Hilden, Germany), following the manufac-
turer’s instructions. For saliva samples, a pre-processing 
step involved centrifugation in a 1.5-mL microcentrifuge 
tube at 10.000 rpm for 10 min, discarding the supernatants 
and collecting the pellets. Briefly, 0.25 g of stool sample 
or the salivary pellet was added to a bead-beating tube and 
homogenized with TissueLyser LT (Qiagen, Hilden, Ger-
many) for 5 min at 50 Hz. Afterward, DNA was captured 
on a silica membrane in a spin column format, washed, 
and eluted. The quality and quantity of extracted DNA 
were assessed with both NanoDrop ND-1000 (Thermo 
Fisher Scientific, Waltham, USA) and Qubit Fluorom-
eter (Thermo Fisher Scientific, Waltham, USA) and 
then it was stored at −20 °C. Subsequently, total DNA 
samples were sent to IGA Technology Services (Udine, 
Italy) where amplicons of the variable V3–V4 region of 
the bacterial 16S rRNA gene (341F:CCT ACG GGNGGC 
WGC AG; 805R: GAC TAC NVGGG TWT CTA ATC C) were 
sequenced in paired-end (2 × 300 cycles) on the Illumina 
MiSeq platform, according to the Illumina 16S Metagen-
omic Sequencing Library Preparation protocol.

Demultiplexed sequence reads were processed using 
QIIME2 2022.8 [22]. The sequencing primers and the 
reads without primers were removed using the Cutadapt 
tool v3.4 [23] while DADA2 [24] was used to perform 
paired-end reads filtering, merging, and chimeras removal 
steps after trimming low-quality nucleotides from both 
forward and reverse reads (-p-trunc-len-f 250 and -p-trunc-
len-r 204).

Hence, ASVs (amplicon sequence variants) were gen-
erated and the taxonomic assignments were performed 
through the Scikit-learn multinomial naive Bayes classi-
fier re-trained on the SILVA database (release 138) V3–V4 
hypervariable region. Each cross-amplified host DNA was 
identified by aligning the ASVs to GRCh38 (human ref-
erence genome) using Bowtie2 v.2.2.5. ASVs associated 
with genera with maximum relative abundance across the 
samples under the cut-off of 0.005% have been discarded 
to minimize sequencing contaminants and improve statisti-
cal inferences [25, 26].

Further details about the FASTQ processing are 
available at github.com/LeandroD94/Papers/tree/
main/2023_Idiopathic_Chronic_Cough_batteriota.

Fecal SCFA Evaluation by GC–MS Analysis

The qualitative and quantitative evaluation of fecal SCFA 
was performed by an Agilent gas chromatography-mass 
spectrometry (GC–MS) system composed of 5971 single 
quadrupole mass spectrometer, 5890 gas chromatograph, 
and 7673 autosampler, through our previously described 
method [27].

Briefly, just before the analysis, stool samples were 
thawed and combined a with 0.25 mM sodium bicarbonate 
solution (1:1 w/v) in a 1.5-mL centrifuge tube. The result-
ing suspensions were sonicated for 5 min and centrifuged 
at 5.000 rpm for 10 min, and then the supernatants were 
collected. The SCFAs were finally extracted as follows: an 
aliquot of 100 µL of sample solution (corresponding to 0.1 
mg of stool sample) was added to 50 µL of internal stand-
ards mixture, 1 mL of tert-butyl methyl ether, and 50 µL of 
HCl 6 M + 0.5 M NaCl solution in a 1.5-mL centrifuge tube. 
Subsequently, each tube was shaken in a vortex apparatus for 
2 min and centrifuged at 10.000 rpm for 5 min, and lastly, 
the solvent layer was transferred to an autosampler vial and 
processed three times.

Serum‑Free Fatty Acids Quantification by GC–MS 
Analysis

Free fatty acids (FFAs), namely circulating SCFA, medium-
chain fatty acids (MCFAs), and long-chain fatty acids 
(LCFAs), were analyzed using our previously described 
GC–MS protocol [28, 29]. Briefly, just before the analysis, 
each sample was thawed and the FFAs were extracted as fol-
lows: an aliquot of 200 μL of serum sample was added to 10 
μL of ISTD mixture, 100 μL of tert–butyl methyl ether, and 
20 μL of 6 M HCl + 0.5 M NaCl solution in a 0.5 mL centri-
fuge tube. Afterward, each tube was stirred in a vortex for 2 
min and centrifuged at 10,000 rpm for 5 min, and finally, the 
solvent layer was transferred to a vial with a microvolume 
insert and analyzed.

Statistical Analysis

The statistical analyses on bacterial communities were per-
formed in R 4.2.1 with the help of the packages phyloseq 
1.44.0 [30], vegan 2.6–4, DESeq2 1.40.1 [31] and other 
packages satisfying their dependencies. The packages 
ggplot2 3.4.2, ggh4x 0.2.2 and ggpubr 0.40 were used to 
plot data and results. A saturation analysis on ASV was 
performed on every sample using the function rarecurve 
(step 100 reads), further processed to highlight saturated 
samples (arbitrarily defined as saturated samples with a 
final slope in the rarefaction curve with an increment in 
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ASV number per reads < 1e-5). The observed richness and 
Shannon indices were used to estimate the bacterial alpha-
diversity in each sample using the function estimate_rich-
ness from phyloseq.

The Pielou’s evenness index was calculated using the 
formula E = S/log(R), where S is the Shannon diversity 
index and R is the observed ASV richness in the sample. 
Differences in alpha-diversity indices and the Firmicutes/
Bacteroidetes ratio were inspected using the Mann–Whit-
ney test. PCoAs were performed using the Hellinger 
distance on Hellinger transformed genera abundances. 
PERMANOVA and Betadisper were used to test the sta-
tistical significance of the beta-diversity distances and 
dispersions. At different taxonomic ranks, the differential 
analysis of the abundances was computed with DESeq2 on 
raw count data. Furthermore, differentially abundant taxa 
with a DESeq2 baseMean value < 50 have been discarded 
from the displayed results, irrespective of their statistical 
significance to limit noisy results. Moreover, potentially 
expressed KEGG pathways in each group were predicted 
through PICRUST2 v2.5 with the SEPP algorithm and 
then significant differences were explored using LEFSE 
1.1.2 (LDA Effect Size) analysis [32]. Only the results 
with a log10 LDA score over 3 were considered. Finally, 
the monotonic relationships between DA genera relative 
abundances and serum FFA levels among RCC patients 
were explored using Spearman correlation. Every p-value 
related to multiple tests has been adjusted according to the 
Benjamini–Hochberg method.

Furthermore, the software GraphPad Prism was used for 
the statistical analysis of fecal SCFA and MCFA levels and 
serum FFA abundances between RCC patients and HC; dif-
ferences were assessed using the Mann–Whitney test and 
p-values less than 0,05 were considered statically significant.

Further details about the data analysis are avail-
ab le  a t  g i t hub .com/LeandroD94 /Pape r s / t r ee /
main/2023_Idiopathic_Chronic_Cough_batteriota.

Results

Enrolled Patients

Demographical and clinical features of patients and HC are 
reported in Table 1.

All patients were female, with a mean age of 65,5 (range 
52–81) and a BMI of 23,35 ± 1,62 kg/m2. The mean cough 
score was 6,8 (range 5–9). At enrollment, patients were 
treated with cough suppressants such as Gabapentin, cen-
tral (Codeine), or peripheral antitussive drugs (Levodropro-
pizine). No gut diseases or intolerances were diagnosed in 
any enrolled patients.

Gut and Oral Microbiota Composition

Rarefaction curves for observed ASVs indicated that both 
stool and saliva specimens were sufficiently sampled (Fig-
ure S1). In particular, the principal coordinate analysis 
computed using the Hellinger distance on transformed 
genera abundances highlighted a separation among stool 
(PERMANOVA, p < 0,0085) (Fig. 1A) and saliva samples 
(PERMANOVA, p < 0.0001) (Fig. 1B) of both HC and RCC 
patients.

Of note, statistically significant beta-diversities between 
stool and saliva samples of HC and RCC patients were also 
found at all other taxonomic ranks (Table S1).

Although no significant differences in the alpha-diver-
sity indices were reported between stool samples of HC and 
RCC patients (Fig. 2A), an increased saliva alpha-diversity 
(observed ASV richness, p = 0.019) was documented in 
patients in comparison to HC (Fig. 2B), Additionally, a 
significant (p = 0.004) increase in the fecal Firmicutes/Bac-
teroidota (F/B) ratio in the patients compared to HC was 
observed (Fig. 2C); conversely, the RCC patients showed 
a significantly (p = 0.002) lower saliva F/B ratio than HC 
(Fig. 2D).

Regarding the taxonomic analysis, the stacked bar plots 
depicted different relative abundances of the top five phyla 
and the top eight genera in either stool (Figures S2A and 
S2B) and saliva (Figures S2C and S2D) samples collected 
from RCC patients and HC.

In more detail, the top five represented phyla in stool 
samples were Actinobateriota, Bacteroidota, Firmicutes, 
Proteobacteria, and Verrucomicrobiota while saliva samples 
showed high abundances of Actinobateriota, Bacteroidota, 
Firmicutes, Fusobacteriota, and Proteobacteria. Besides, the 
top eight represented genera in stool samples were Alistipes, 
Bacteroides, Bifidobacterium, Blautia, Faecalibacterium, 
Prevotella, Ruminococcus, and Subdoligranulum whereas 

Table 1  Demographical and clinicopathological features of enrolled 
RCC patients

RCC: refractory chronic cough, BMI: body mass index

Sample ID Gender Age BMI Smoke Cough score

RCC 1 F 56 22.4 No 9
RCC 2 F 63 27.0 Ex 9
RCC 3 F 68 22.8 No 7
RCC 4 F 76 19.4 No 5
RCC 5 F 52 22.7 Ex 6
RCC 6 F 56 26.8 Ex 5
RCC 7 F 81 36.0 No 7
RCC 8 F 66 22,2 Ex 6
RCC 9 F 70 24,5 Ex 7
RCC 10 F 67 23.8 No 7



111Lung (2024) 202:107–118 

Fig. 1  Principal coordinate analysis (PCoA) conducted with the Hellinger distance on transformed genera abundances of stool (A) and saliva (B) 
samples among HC and RCC patients. RCC: refractory chronic cough, HC: healthy controls

Fig. 2  Box plots showing alpha-diversity indices (Observed ASV, Shannon index, Pielou’s evenness) of stool (A) and saliva (B) samples and the 
fecal (C) and saliva (D) F/B ratio among HC and RCC patients. RCC: refractory chronic cough, HC: healthy controls
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saliva samples showed high abundances of Fusobacte-
rium, Haemophilus, Neisseria, Porphyromonas, Prevotella, 
Rothia, Streptococcus, and Veillonella.

Notably, several taxa resulted differentially abundant in 
stool (Fig. 3A, B and Table S2) and saliva (Fig. 3B, C and 
Table S3) samples of HC and RCC patients.

More precisely, compared to HC, RCC patients reported 
higher fecal abundances of Erysipelotrichaceae, Anaero-
stipes spp., Blautia spp., CAG-352 spp., Enterorhabdus 

spp., and Streptococcus spp. as well as reduced abun-
dances of Bacteroidota, Proteobacteria, Gammaproteobac-
teria, Enterobacterales, Marinifilaceae, Acidaminococcus 
spp., Alloprevotella spp., Butyricimonas spp., Clostridia_
vadinBB60_group spp., Mitsuokella spp., unidentified genus 
of Lachnospiraceae family, Odoribacter spp., Parabacte-
roides spp., and Sutterella spp.

On the other hand, RCC patients showed higher saliva lev-
els of Spirochaetota, Flavobacteriales, Saccharimonadaceae, 

Fig. 3  Boxplot (A) and circoplot (B), respectively, showing the 
results of differential abundances analysis and log2fold change 
between taxa of the stool (Panels A, B) and saliva (Panels C, D) 

samples from HC and RCC patients. Letters indicate the taxonomic 
depth, in detail, G = genus, F = family, O = order, C = class, P = phy-
lum. All results have an FDR < 0.05
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Selenomonadaceae, Capnocytophaga spp., Dialister spp., 
Porphyromonas spp., Saccharimonadaceae spp., and Sele-
nomonas spp. but lower levels of Proteobacteria, Bacilli, 
Gammaproteobacteria, Micrococcales, Burkholderiaceae, 
Micrococcaceae, Pasteurellaceae, Alloprevotella spp., Lau-
tropia spp., and Rothia spp. than HC.

Functional Analysis of the Fecal and Oral Microbiota

The PICRUSt2 (phylogenetic investigation of communi-
ties by reconstruction of unobserved states) [33] predic-
tive metabolism approach was used on the 16S rRNA gene 
sequencing data to assess a functional GM analysis of RCC 
patients and HC. Using the KEGG metabolic pathway data-
base, RCC patients exhibited a potential upregulated fecal 
profile in lipopolysaccharide biosynthesis (p = 0.002) and 
lipoic acid metabolism (p = 0.017) compared to HC. On the 
contrary, for HC, in comparison with RCC patients, poten-
tial higher expressed fecal pathways in the biosynthesis 
of ansamycins (p = 0.001) and C5-Branched dibasic acid 
metabolism (p = 3,2e−4) were predicted (Fig. 4A).

Finally, regarding the saliva samples, the biosynthesis of 
ansamycins (p = 0.001) pathway resulted potentially higher 
expressed in RCC patients than in HC (Fig. 4B).

Analysis of Fecal SCFA and Serum FFA

Microbial-derived SCFA abundances in fecal samples of HC 
and RCC patients were assessed with a GC–MS protocol. 
Since these analyses could be in part influenced by the total 
amount of each metabolite, we performed the comparisons 
on the SCFA percentage compositions (Table S4); however, 
no statistically significant differences were found between 
RCC patients and HC.

On the other hand, several differences in serum FFAs lev-
els were observed. Specifically, RCC patients, compared to 
HC, exhibited significantly increased levels of hexanoic acid 
and significantly reduced levels of acetic, propionic, butyric, 
isobutyric, isovaleric, heptanoic, octanoic, nonanoic, hexa-
decanoic, and octadecanoic acids. Figure 5 displays each 
FFA level for RCC patients and HC while the statistical 

Fig. 4  Significant enriched KEGG pathways with LDA score > 3.0 
in stool (A) and saliva (B) samples of HC and RCC patients. Path-
ways more abundant in HC are indicated with a positive LDA score 

(green) while pathways more abundant in RCC patients are indicated 
with a negative LDA score (red). RCC: refractory chronic cough, HC: 
healthy controls, LDA score: Linear discriminant analysis effect size

Fig. 5  Boxplots representing 
each FFA percentage in RCC 
patients and HC



114 Lung (2024) 202:107–118

results of the comparisons conducted for FFA abundances 
are shown in Table 2.

Finally, Spearman correlations were performed between 
differentially abundant fecal and oral taxa and significant 
serum FFA abundances to evaluate potential associations 
between taxonomy and function, providing insights into their 
role in RCC pathogenesis.

Although no correlation has been reported between gut 
bacteria and serum FFAs (Fig. 6A), a strong negative cor-
relation was observed between saliva Dialister spp. and both 
propionic (padj = 0.003) and isobutyric (padj = 0.003) acids 
in RCC patients (Fig. 6B).

Discussion

The respiratory tract, previously considered sterile, is one 
of the latest body sites being explored for the characteri-
zation of human-associated microbial communities. LM is 
a dynamic ecosystem whose composition in healthy lungs 
is likely to reflect microbial migration, elimination, and 
reproduction.

In detail, although certain bacteria are more abundantly 
represented in the airway microbiota than in the correspond-
ing OM, primarily due to a selective advantage in replicat-
ing in the lung microenvironment compared to the oral 
one, a close resemblance of the LM to the OM has been 
documented [34]. The microbiome’s continuity in the lower 

Table 2  Serum FFAs abundances of HC and RCC patients

p-values were assessed the with Mann–Whitney test
FFAs: free fatty acids, SCFAs: short-chain fatty acids, MCFAs: 
medium-chain fatty acids, LCFAs: long-chain fatty acids HC: healthy 
control, RCC: refractory chronic cough

FFAs (μmol/L) HC RCC p-values

SCFAs (μmol/L)
Acetic acid 255.03 ± 47.41 107.88 ± 56.81 0.0004
Propionic acid 7.99 ± 2.81 3.04 ± 2.25 0,0034
Isobutyric acid 18.59 ± 5.66 0.96 ± 0.56 0.0004
Butyric acid 4.77 ± 0.78 2.25 ± 1.77 0.0004
Isovaleric acid 2.58 ± 0.01 0.28 ± 0.18 0.0004
Valeric acid 0.43 ± 0.15 0.31 ± 0,27 0,1154
MCFAs (μmol/L)
Hexanoic 0.14 ± 0.08 0.69 ± 0.57 0.0006
Heptanoic 0.34 ± 0.15 0.02 ± 0.01 0.0002
Octanoic 15.48 ± 7.41 3.53 ± 5.42 0.0021
Nonanoic 2.19 ± 0.00 0.24 ± 0.18 0.0004
Decanoic 2.35 ± 0.88 4.61 ± 8.11 0.0728
Dodecanoic 2.39 ± 1.16 2.51 ± 3.67 0.2980
LCFAs (μmol/L)
Tetradecanoic 15.65 ± 7.38 10.46 ± 8.91 0.0676
Hexadecanoic 306.36 ± 85.34 90.23 ± 56.33 0.0001
Octadecanoic 181.85 ± 58.62 44.22 ± 19.30 0.0001

Fig. 6  Heatmaps of Spearman correlations between serum FFAs 
abundances and differentially abundant fecal (A) and oral (B) taxa 
among RCC patients and HC. Red shades indicate positive correla-
tions, whereas blue shades indicate negative correlations; the inten-

sity of colors represents the degree of association. p-values adjusted 
according to the Benjamini–Hochberg method less than 0.05 were 
considered statistically significant
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respiratory tract is likely defined by the entry of bacteria into 
the lungs via regular OM microaspirations; conversely, LM 
members can propagate to the OM through coughing [35].

Moreover, it is now widely accepted that LM, intimately 
related to the GM, undergoes alterations in various respira-
tory disorders such as obstructive airway diseases [36], inter-
stitial lung diseases [37], infections [38], and lung cancer 
[39]. Hence, we hypothesized a potential involvement of LM 
also in the pathogenesis of RCC/UCC.

Consequently, through a compositional and functional 
characterization of both intestinal and saliva microbiota of 
patients with RCC, we found, for the first time, that, com-
pared with HC, patients presented a significant increase in 
microbiota alpha-diversity in saliva but not in stool samples. 
Significant differences in microbiota beta diversities were 
also observed between chronic coughers and HC in both 
intestinal and oral microbiota. Taken together, these findings 
support previous reports suggesting that gut and lungs are 
linked organs and changes in the GM community can influ-
ence the LM and vice versa [13, 40].

For instance, modification in newborns’ diet influences 
the composition of their LM while fecal transplantation in 
rats induces changes in their LM [41]. Moreover, the LM 
becomes enriched with gut bacteria after sepsis [42] and 
LPS instillation in the lungs of mice is associated with GM 
disturbances [43].

Consisted with our findings, a significant increase in oral 
alpha-diversity has been reported in patients with asthma 
[44] or COPD [45] compared with HC. However, no sig-
nificant differences have been reported in fecal alpha-diver-
sity indices among COPD patients and healthy subjects 
[46]. Moreover, a significant parting of the intestinal and 
saliva microbiota among RCC patients and HC has been 
documented.

Finally, in comparison with HC, RCC patients reported 
a significant increase in the fecal F/B ratio and a significant 
decrease in the saliva F/B ratio. In particular, an increased 
fecal F/B ratio has been associated with elevated lung IL-17 
and IL-22 responses and enhanced airway hyperresponsive-
ness [47]. In general, these microbial compositional altera-
tions in both oral and intestinal microbiota of RCC patients 
reflect the presence of a remarkable dysbiosis condition.

The analysis performed at all taxonomic ranks as in stool 
as in saliva samples also revealed significant differences in 
several taxa between RCC patients and HC. In particular, 
RCC patients reported higher fecal abundances of Erysip-
elotrichaceae family and Anaerostipes, Blautia., CAG-352, 
Enterorhabdus, and Streptococcus genera. In line with our 
findings, Erysipelotrichaceae members increased in COPD 
patients [45] but, in contrast to our results, Blautia, Anaero-
stipes, and Streptococcus genera were reduced in the GM of 
patients with cystic fibrosis or COPD [48, 49]. Moreover, 
we documented reduced abundances of bacteria belonging 

to Bacteroidota and Proteobacteria phyla, Gammaproteo-
bacteria class, Enterobacterales order, Marinifilaceae fam-
ily, and Acidaminococcus, Alloprevotella, Butyricimonas, 
Clostridia_vadinBB60_group, Mitsuokella, Odoribacter, 
Parabacteroides, and Sutterella genera in RCC patients 
compared to HC.

Regarding differences at the phylum level, Bacteroidota 
members are known to be overrepresented in healthy people 
[50] while Proteobacteria have been reported as relevant pro-
ducers of lipopolysaccharide (LPS), which is in turn impli-
cated in COPD development [51]. Notably, reduced levels 
of Enterobacteriaceae and Acidaminococcaceae have been 
reported in asthmatic patients [52, 53] while Lai et al. high-
lighted a significant negative association between Parabac-
teroides goldsteinii and COPD severity [54]. Additionally, 
Chiu et al., documented a lower abundance of Alloprevotella 
spp. in patients with rapid lung function decline [46] while 
a decreased abundance of Odoribacter spp. has been linked 
to different microbiota-associated diseases, such as inflam-
matory bowel disease and cystic fibrosis [55]. Finally, lower 
levels of Butyricimonas spp. have been associated with a 
detrimental decrease of butyric-acid production, a renowned 
SCFA with potent anti-inflammatory properties [56].

Concerning the saliva samples, RCC showed higher 
saliva levels of members of Spirochaetota phylum, Flavobac-
teriales order, Saccharimonadaceae and Selenomonadaceae 
families, and Capnocytophaga, Dialister, Porphyromonas, 
Saccharimonadaceae, and Selenomonas genera than HC.

Notably, Spirochaetota and Porphyromonas species have 
been widely associated with the pathogenesis of the peri-
odontal disease [57, 58], a condition that may worsen COPD 
outcomes and play a causal role in the occurrence of pneu-
monia and bronchitis.

In contrast, Flavobacteriales, Capnocytophaga, Dialister, 
and Selenomonas species were significantly increased in the 
LM of COPD patients [45, 59].

In addition, our results showed reduced levels of bacteria 
belonging to Proteobacteria and Bacilli phyla, Gammapro-
teobacteria class, Micrococcales order, Burkholderiaceae, 
Micrococcaceae and Pasteurellaceae families, and Allo-
prevotella, Lautropia, and Rothia genera in RCC compared 
to HC.

In line with these findings, the relative abundance of 
Gammaproteobacteria, Bacilli, and Micrococcaceae mem-
bers were decreased in asthmatic patients [60, 61] while 
lower levels of Rothia mucilaginosa, a common bacteria 
having inhibitory effects on pathogen- or LPS-induced pro-
inflammatory responses, have been reported in patients with 
chronic lung disease [62].

Furthermore, to better characterize the consequences of 
these changes in both intestinal and oral microbiota, we per-
formed a predictive functional analysis using the PICRUSt2 
software. In detail, compared to HC, RCC patients showed 
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a potential upregulation in the fecal pathways of lipopoly-
saccharide biosynthesis and lipoic acid metabolism but a 
lower biosynthesis of ansamycins, which conversely resulted 
potentially upregulated in saliva samples of RCC patients.

LPS is among the most potent microbial inducers of 
inflammation and is implicated in the deleterious effects of 
pulmonary infections. Animal models have reported that 
ML-7, a potent myosin light-chain kinase (MLCK) inhibitor, 
impedes neutrophilic inflammation caused by LPS in various 
respiratory diseases [63]. Interestingly, RCC patients exhib-
ited a high metabolism of lipoic acid but its beneficial role 
in ameliorating many respiratory diseases (e.g., lung cancer, 
fibrosis, asthma, and acute lung injury) has been suggested 
because it shows anti-oxidative and anti-inflammatory prop-
erties [64].

On the other hand, ansamycins are secondary metabo-
lites, mainly produced by Actinobacteria, known for their 
antimicrobial properties and currently used as the first-line 
treatment of tuberculosis [65]. Our results showed a high 
representation of Actinobacteria in both fecal and saliva 
microbiota of RCC patients, yet the potential upregulation 
of ansamycins biosynthesis was observed only in saliva sam-
ples but not in stool.

Finally, a microbial functional evaluation has been 
assessed through the analysis of fecal SCFA abundances and 
the evaluation of serum circulating FFAs in RCC patients 
and HC. About fecal SCFA, no statistically significant dif-
ferences were found between RCC patients and HC, mainly 
because no SCFA-producing bacteria resulted differently 
abundant between groups. However, it’s noteworthy that a 
significant decrease in the total fecal content of SCFAs has 
been detected in some lung diseases including COPD and 
asthma [66, 67].

Anyway, regarding serum FFA abundances, RCC patients 
showed a significant increase in hexanoic acid, a bacterial 
metabolite known for its pro–inflammatory role through the 
activation of p38 MAPK signaling [68]. Moreover, in com-
parison to healthy subjects, RCC patients reported signifi-
cantly reduced levels of various SCFA, MCFAs, and LCFAs.

Circulating FFA exerts well-established pleiotropic func-
tions, ranging from maintaining an intestinal–epithelial 
integrity to dampening inflammation in the gut and respira-
tory tract [16]. While SCFAs promote the differentiation of 
immune-suppressive T regs in the gut [69], their detection 
in the lungs is limited, possibly due to the absence of digest-
ible substrates [16]. However, Trompette et al. documented 
that, along the gut–lung axis, SCFAs play a protective role 
against allergic airway diseases and respiratory infection by 
priming myeloid cells in the bone marrow. These cells sub-
sequently migrate to the lungs, shaping an anti-inflammatory 
milieu [70].

In RCC patients, we also documented a strong anti-cor-
relation between saliva Dialister spp. abundance and serum 

levels of anti-inflammatory propionic and isobutyric acids. 
Dialister species are known intestinal SCFA producers [71] 
but an increased abundance of saliva Dialister spp. has been 
associated with oral and lung diseases [72, 73]. Importantly, 
Dialister spp. showed an anti-correlation with serum neutro-
phil to lymphocyte ratio and platelet lymphocyte ratio; two 
parameters increased in stable COPD patients [74].

Overall, we speculate that these alterations in intestinal 
and oral microbiota may play a role in RCC development 
through a complex cross-talk involving the gut, lungs, and 
brain. The bidirectional communication between the cen-
tral and the intestinal nervous system, involving nerves, 
endocrine pathways, immunity, and microbial interactions, 
has been widely documented [75], with the bacterial SCFA 
acting as major metabolites that can affect various central 
nervous system (CNS) aspects [76].

In detail, SCFAs can directly or indirectly modulate vagal 
afferent fibers, leading to the activation of efferent fibers that 
conduct feedback signals from the CNS to the lungs, form-
ing the “brain-lung axis.” This process promotes bronchial 
smooth muscle contraction, glandular secretion, mucosal 
swelling, and cough [77, 78]. Furthermore, intestinal and/or 
pulmonary dysbiosis can be the cause or contributory factor 
to a systemic and nervous hyperinflammatory state, which, 
in turn, disrupts both the intestine–brain and brain–lung 
communication pathways [78, 79].

This study has some limitations, including the restricted 
number of enrolled patients, and the evaluation of the LM 
composition only through saliva samples. However, we 
have documented, for the first time, numerous and consist-
ent differences in the gut and oral microbial communities 
of RCC patients that could reflect an unbalanced gut–lung 
communication. Hence, although future studies are needed, 
these findings introduce new impacting factors in RCC 
pathogenesis, paving the way for further investigations and 
the development of novel therapeutic interventions for RCC 
management based on the modulation of microbial gut–lung 
communication.
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