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Abstract
Purpose To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients 
with different degrees of inflammation.
Methods Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sam-
pling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients 
had a WHO-CPS of below 9 (range 1–7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory 
markers. The culture medium of HBEC was supplemented with 2% of the patient’s serum, and the cells were cultured at 
37 °C, 5%  CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq.
Results Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than 
patients with scores of 9. Principal component analysis based on 500 “core genes” of RNA-seq segregated cells into two 
subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a 
score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with 
cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, 
a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in 
metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed.
Conclusion This simple model could be useful to characterize patient serum and epithelial cell properties.

Keywords Immune hyper-activation · Acute lung inflammation · Chemokine/cytokine profile · Gene expression · RNA-seq

Introduction

The incidence of acute and chronic respiratory diseases has 
been increasing worldwide. Respiratory diseases are associ-
ated with various comorbidities and risk factors, including 
genetics, exposure to adverse environmental factors, and 
aging [1]. The complicated pathogenesis of human respira-
tory diseases and the difficulties in simulating the real state 
of diseases experimentally limit our knowledge of the key 
mechanisms and molecules involved in pathological pro-
cesses and therapeutic approaches.

The respiratory system is responsible for the exchange of 
oxygen and other gases with the external environment and 
comprises multiple epithelial, endothelial, and mesenchy-
mal cell lineages [2]. These cells create not only a physical 
barrier but also a host defense system by expressing various 
receptors and producing inflammatory mediators. Therefore, 
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an improved understanding of respiratory cell properties is 
essential. The latest clinical and experimental data provide 
new insights into human lung epithelial cell (HBEC) hetero-
geneity and its roles in acute and chronic lung inflammation. 
For instance, HBEC expresses pattern recognition receptors, 
such as Toll-like receptors (TLRs) and cytokine receptors, 
which allow cells to initiate an immune response [3].

Therefore, human HBEC are useful tools for studying 
various aspects of the pathophysiology of the pulmonary 
epithelium. In vitro 2D or 3D models with primary human 
HBEC are advantageous because they originate from the rel-
evant host, express relevant host factors, and are of less ethi-
cal concern than animal models. In this study, for a model, 
we therefore selected primary human bronchial epithelial 
cells (HBECs) in 2D cultures and exposed them to sera from 
COVID-19 patients with different clinical severities.

SARS-CoV-2 and other coronaviruses infect the upper 
and lower respiratory tract. The control of viral spread 
depends on HBEC [4]. The HBEC activation and/or dys-
function can occur due to viral effects, as well as the release 
of inflammatory mediators, oxidative stress, and immune 
cell responses. For example, a characteristic feature of 
severe SARS-CoV-2 infection is increased blood levels 
of cytokines, particularly IL-1β, IL-6, and TNF-α, and 
chemokines such as IL-8 and MCP-1 [5]. The hyperactivated 
immune system together with cytokine/chemokine-induced 
exacerbated airway cell activation can cause severe lung 
injury [6–8]. It is well recognized that respiratory tract infec-
tions are associated with exacerbation of asthma or chronic 
obstructive pulmonary disease, and cause high morbidity 
and mortality in different age groups of individuals, even in 
those without underlying risk factors for respiratory diseases 
[9, 10].

The courses of infectious diseases such as COVID-19 
vary from moderate to severe and fatal. Disease severity 

is assessed based on inflammatory biomarkers in liquid 
biopsies and clinical examinations using various scoring 
systems. The main aim of our study was to use a simple 
HBEC-based cell model to evaluate the effect of serum 
factors, which actively contribute to the formation of a 
pro- or anti-inflammatory environment. For this, we used 
sera from COVID-19 patients with different degrees of 
severity.

Materials and Methods

Patients and Biomaterial

Serum samples from 19 patients with COVID-19 were 
collected between November 2020 and September 2021. 
Disease severity and clinical outcomes were assessed 
using the WHO clinical progression scale (WHO-CPS) 
(Table 1). On the day of sample collection, five of the 
19 COVID-19 patients had a WHO-CPS score of 9 (most 
severe disease, requiring mechanical ventilation  pO2/
FiO2 < 150 and vasopressors, dialysis, or ECMO). The 
remaining 14 patients had a WHO-CPS of < 9 (range 
1–7). Samples were obtained from the Hannover Unified 
Biobank (HUB). Sample processing and storage were per-
formed following the standard procedures of the HUB, as 
described by Kopfnagel et al. [11]. All patients included in 
this study signed a written consent. To establish the cellu-
lar model, we also used serum from 6 healthy age-matched 
donors [mean (SD) 52 (4) years]. The ethics committee of 
the Hannover Medical School (MHH, 9001_BO_K and 
MHH-6895) approved the sampling and analyses.

Table 1  WHO-CPS used to validate disease severity of COVID-19 patients (adopted from Marshall et al. [12])

NV noninvasive ventilation, ECMO extracorporeal membrane oxygenation
*Hospitalized for isolation alone

Patient state Descriptor Score

Uninfected Uninfected; no viral RNA detected 0
Ambulatory mild disease Asymptomatic; viral RNA detected 1

Symptomatic; independent 2
Symptomatic; assistance needed 3

Hospitalized: moderate disease Hospitalized, no oxygen therapy* 4
Hospitalized; oxygen by mask or nasal prongs 5

Hospitalized: severe diseases Hospitalized, oxygen by NV or high flow 6
Intubation and mechanical ventilation  pO2/FiO2 ≥ 150 or  SpO2/FiO2 ≥ 200 7
Mechanical ventilation  pO2/FiO2 < 150  (SpO2/FiO2 < 200) or vasopressors 8
Mechanical ventilation  pO2/FiO2 < 150 and vasopressors, dialysis, or ECMO 9

Dead Dead 10
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Multiplex Immunoassay

Patient serum was analyzed using the Inflammation 20-Plex 
Human ProcartaPlex panel (Invitrogen, Thermofisher Sci-
entific, Waltham, MA, USA) multiplex assay to detect GM-
CSF, IFNα, IFNγ, IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-
12p70, IL-13, IL-17A (CTLA-8), TNFα, IP-10 (CXCL10), 
MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), ICAM-1, 
CD62E (E-selectin), and CD62P (P-selectin) according to 
the manufacturer’s protocol. Readings were carried out using 
the Luminex device Bio-Plex 200 (Bio-Rad, Hercules, CA, 
USA), which is compatible with Luminex xMAP fluorescent 
bead-based technology (Luminex, Austin, TX, USA).

Cell Culture

Primary HBEC, isolated from the bronchial surface of 
healthy Caucasian male 62 years of age, was purchased 
from PromoCell (Lot: 458Z015, Promocell, Heidelberg, 
Germany). HBEC were cultured in Airway Epithelial Cell 
Growth Medium at 37 °C and 5%  CO2. Cells of passage 4 
were used in the experiments. Serum was added to HBEC 
(2% final) for 18 h. To avoid experimental bias, HBECs from 
the same passage were treated simultaneously with all indi-
vidual serum samples. Cell-free supernatants of HBEC were 
collected for cytotoxicity assay and ELISA and cells were 
collected for gene expression analysis.

Lactate Dehydrogenase (LDH) Cytotoxicity Assay

LDH release in cell-free supernatants was measured using 
the LDH Cytotoxicity Detection Kit (Roche, Basel, Switzer-
land) according to the manufacturer’s protocol and analyzed 
using an Infinite 200 Pro Microplate reader (Tecan, Männe-
dorf, Switzerland).

Trypan Blue Viability Assay

After culture for 18 h in growth medium or medium supple-
mented with 2% patient serum, HBECs were stained using 
0.4% trypan blue solution (Invitrogen, Thermofisher Scien-
tific, Waltham, Massachusetts, USA) and visualized micro-
scopically using Leica DMIL LED (Leica Microsystems, 
Wetzlar, Germany).

RNA Isolation, Reverse Transcription, 
and Quantitative Real‑Time PCR

RNA was isolated using the RNeasy Mini Kit (Qiagen, 
Hilden, Germany). cDNA was synthesized using High-
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Thermo Fisher Scientific, Waltham, MA, USA). 
Quantitative real-time PCR was performed using TaqMan 

gene expression assays (Table 2) and TaqMan Gene Expres-
sion Master Mix (Applied Biosystems) with the StepOne-
Plus Real-Time PCR System (Applied Biosystems), accord-
ing to the manufacturer’s instructions. POLR2A was used 
as a housekeeping gene in the same run. The selection of 
POLR2A was validated by RNA-seq analysis. Measure-
ments were performed in duplicates. Gene expression was 
calculated using the 2∆Ct method (Ct value of the target 
gene − Ct value of the reference gene).

ELISA

Serum levels of hyaluronic acid and alpha1-antitrypsin 
(AAT) were measured using a Hyaluronan Duoset ELISA 
kit (R&D Systems, Minneapolis, MN, USA, assay detection 
range: 0.37–90 ng/ml) and Human Serpin A1 Duoset ELISA 
kit (R&D Systems, assay detection range: 0.125–8 ng/ml). 
Assays were performed according to the manufacturer’s 
instructions. For quantification of IL-8 in cell-free culture 
supernatants, Human IL-8/CXCL8 Duoset ELISA kit was 
used (R&D Systems, assay detection range 31.3–2000 pg/
ml). Measurements were performed in duplicates.

RNA Sequencing (RNA‑seq) Analysis

RNA sequencing analysis was performed as described previ-
ously [13]. The quality of the total RNA was assessed using 
1% agarose gels and by Agilent 2100 Bioanalyzer using Agi-
lent RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA). 
RNA-Seq libraries were prepared from 200 ng of RNA from 
each sample using TruSeq Stranded mRNA Kit (Illumina 
Inc., San Diego, CA, USA) following the recommendations 
from the manufacturer. Sequencing was performed at the 

Table 2  Taqman gene 
expression assays 
(ThermoFisher Scientific, 
Waltham, MA, USA)

Target Assay ID

ACE2 Hs01085333_m1
CDH1 Hs01023895_m1
CXCL8 Hs00174103_m1
FITM1 Hs00416856_m1
FITM2 Hs00380930_m1
HMOX1 Hs01110250_m1
IL1A Hs00174092_m1
PECAM1 Hs00169777_m1
POLR2A Hs00172187_m1
SERPINA Hs01097800_m1
SERPINE Hs01126606_m1
TLR2 Hs01872448_S1
TLR4 Hs00152939_m1
TMPRSS2 Hs00237175_m1
TNF Hs00174128_m1
VEGFA Hs00900055_m1
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Genomics Service and the Bioinformatics Facility (Institute 
of Health Carlos III, ISCIII) on a NovaSeq 6000 sequencer 
(Illumina Inc.) using 100 base read lengths in paired-end 
mode analyzed the obtained RNA-Seq data. A quality con-
trol analysis was based on Fast QC v0.11.3 (http:// www. 
bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). Due to the 
limited amount of COVID-19 patient serum, we performed 
RNAseq analysis with one technical repeat per serum 
sample.

For the data analysis, normalization and differential 
expression analyses were performed on raw counts using 
the R package DESeq2 v1.32.0, with default settings. Differ-
entially expressed genes (DEGs) were defined as those with 
an adjusted p value of < 0.05. Gene set enrichment analy-
sis (GSEA) was performed on DEGs using the R package 
Enrichr Version [3.0] (W. Jawaid (New York, NY, USA). 
Significant gene ontology biological process (GO BP) terms 
and KEGG pathways were defined as the gene set results 
acquired using Enrichr with an adjusted p value of < 0.05. 
The normalized gene expression levels and DEG results 
were visualized using R and related packages, including 
ggplot2 Version [3.3.5] (H. Wickham et al. from Palo Alto, 
CA, USA) [14], ggrepel Version [0.9.1] (K. Slowikowski 
from Boston, MA, USA), and pheatmap Version [1.0.12] 
(R. Kolde from Tartu, Estonia) [15, 16].

Statistical Analysis

Statistical analysis and graphical data presentation were 
performed using GraphPad Prism (Version 9.1.2 226). The 
Student’s t test was used to compare two sample means for 
one variable. When the Shapiro–Wilk normality test failed, 
the nonparametric Mann–Whitney U test was used. When 
more than two groups were involved in the comparison, one-
way ANOVA was used. If the normality test passed, the data 
were presented as mean (SD). If the normality test failed, 
Kruskal–Wallis nonparametric one-way analysis followed 
by the Mann–Whitney rank-sum test, and the data were pre-
sented as median and interquartile range (IQR, 25th–75th 
percentile). Statistical significance was set at p < 0.05.

Results

Patient Demographics

Serum samples were retrospectively collected from clini-
cally well-characterized, non-vaccinated COVID-19 
patients (November 2020 to September 2021). The severity 
of SARS-CoV-2 infections was evaluated using the WHO-
CPS (Table 1, adopted from Marshall et al. [12]). On the day 
of sample collection, 5 of the 19 patients had a WHO-CPS 
of 9 (most severe disease, requiring mechanical ventilation 

 pO2/FiO2 < 150 and vasopressors, dialysis, or ECMO). The 
age, BMI, and comorbidities of these latter patients were 
not significantly different from those of the 14 patients with 
lower WHO-CPS (1 to 7). As shown in Table 3, significantly 
lower serum albumin levels (approximately 40%) were found 
in patients with a score of 9 than in those with a score < 9. 
Although not statistically significant, patients with a WHO-
CPS of 9 (n = 5) had higher serum levels of AAT, CRP, ferri-
tin, and hyaluronic acid than those with a WHO-CPS below 
9 (n = 14) (Table 3).

Serum Cytokine/Chemokine Levels in COVID‑19 
Patients

Patient serum was analyzed using Inflammation 20-Plex 
Human Multiplex assay. Patients with a WHO-CPS score 
of 9 (n = 5) showed significantly higher levels of E-selec-
tin, IL-8, and MCP-1 than those with a score < 9 (Fig. 1). 
Although the levels of the other markers did not differ sta-
tistically significantly between patient subgroups, the levels 
of most pro-inflammatory markers were higher in patients 
with a score of 9 (Supplementary Table 1). The GM-CSF, 
IFNγ, IL-1β, IL-4, IL-6, IL-10, and IL-13 levels were below 
the detection limits.

Effects of Patient Serum on IL‑8 Release 
and Inflammatory Gene Expression in HBEpC

Since serum profiles of COVID-19 patients were relatively 
similar, we then used a cellular model for a possible differ-
entiation between patients with different disease severities. 
We incubated 2D HBEC cultures for 18 h in a medium sup-
plemented with 2% healthy donor or each patient (n = 19) 
serum. A serum concentration of 2% was chosen based on 
preliminary experiments, which showed that this amount 
of serum did not alter cell viability or morphology (Fig. 2).

The cells exposed to patient serum with WHO-CPS = 9 
(n = 5) released higher levels of IL-8 and showed a higher 
CXCL8 (IL-8 gene) and TLR4 (Toll-like receptor 4) mRNA 
levels but significantly lower expression of ACE2 (angioten-
sin-converting enzyme 2), CDH1 (E-Cadherin), and HMOX1 
(heme oxygenase 1) than cells exposed to serum with WHO-
CPS < 9 (n = 14) (Fig. 3). The expression of several other 
HBEC-related genes, selected to cover different signaling 
pathways, did not differ between cells treated with serum 
from patients with different WHO scores (Supplementary 
Table 2).

Transcriptome Analysis of HBEC Cultured in Medium 
Supplemented with Patient Serum

We performed a transcriptome data analysis (RNA-seq) 
of HBEC cultured in the presence of 2% serum from 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 3  Characteristics of 
patient cohort

Variables WHO-CPS = 9 WHO-CPS < 9 p value

Groups, n (%) 5 (26.3) 14 (73.7)
 Age, mean (SD) 61.4 (3.0) 61.6 (20.7) 0.9798
 Gender (female/male) 1/4 7/7
 BMI 34 (27–43) 28 (27–32) 0.4773
 Place of birth
(Europe/Other/Unknown, n/n/n)

4/1/0 8/5/1

 Smoking status
(Active/Never-/Ex-/Unknown, n/n/n/n)

0/0/0/5 1/6/3/4

 Vaccination status (Yes/No, n/n) 0/5 0/14
 Death due to COVID-19, n (%) 3 (15.8) 1 (5.3)

Comorbidities (Yes/No/Unknown, n/n/n)
 Lung disease 0/2/3 0/10/4
 Diabetes 0/3/2 2/8/4
 Heart disease 0/1/4 2/7/5
 Adiposity 2/1/2 2/6/6
 Arterial hypertension 4/1/0 5/8/1
 Heart disease 0/1/4 2/7/5
 Kidney disease 0/5/0 4/9/1
 Liver disease 2/3/0 1/12/1
 Immunological disease
 (Vasculitis, diverticulitis)

0/5/0 2/12/0

 Pregnancy 0/5/0 3/11/0
 Organ transplantation 0/5/0 1/13/0
 Active tumor (Yes/No/in remission) 0/5/0 2/10/2

Chronic therapy
(Yes/No, n/n/n)
 Cortisone 0/5 2/12
 Immunosuppressive drugs 0/5 3/11

ICU, n (%) 5 (26.3) 5 (26.3)
 Mechanical ventilation, n (%) 5 (26.3) 1 (5.3)
 ECMO, n (%) 4 (21.1) 0 (0.0)
 Vasopressors, n (%) 5 (26.3) 0 (0.0)
 Oxygen by NIV or high flow, n (%) 0 (0.0) 4 (21.1)
 Oxygen by mask or nasal prongs, n (%) 0 (0.0) 6 (31.6)
 Dialysis (Yes/No/Unknown, n/n/n) 2/3/0 0/13/1
 Anticoagulation (Yes/No/unknown, n/n/n) 3/0/2 8/3/3

Steroids, n (%) 5 (26.3) 9 (47.4)
Complications
 Renal failure 3 (15.8) 4 (21.1)
 Liver failure 2 (10.5) 0 (0.0)
 ARDS 5 (26.3) 3 (15.8)

Clinical parameters
 AAT (mg/ml), n/mean (SD) 5/756 (169) 14/603 (141) 0.0620
 Albumin (g/l), n/mean (SD) 5/18.0 (2.1) 7/30.9 (8.2) 0.0069
 CRP (mg/l), n/median (IQR) 5/93 (85–169) 11/31 (11–138) 0.1149
 D-Dimer (mg/l), n/median (IQR) 5/2.11 (1.50–3.86) 11/2.44 (1.32–7.43) 0.7223
 Ferritin (µg/l), n/mean (SD) 5/1001 (218) 11/556 (508) 0.0848
 Hyaluronic Acid (ng/ml), n/median (IQR) 5/117.7 (62.1–509.8) 14/75.7 (26.1–130.6) 0.2193
 INR (ratio), n/median (IQR) 5/1.11 (0.97–1,18) 11/0.89 (0.86–1.02) 0.0545
 Lipase (U/l), n/mean (SD) 5/45.8 (29.8) 9/41.6 (32.6) 0.8140
 Leukocytes  (103/µl), mean (SD) 126 (61) 86 (36) 0.1170



162 Lung (2024) 202:157–170

each patient using an unsupervised principal component 
analysis (PCA). To reduce the complexity caused by the 
high dimensionality of the original transcriptome data, 
we selected 500 transcripts with the highest variance, that 
is, the transcripts with the highest frequency in normal-
ized read counts across all samples. The number of prin-
cipal components (PCs) was set to ten. The PCA results 
showed that the first component could explain 52.64% of 
the total between sample variance, and the samples were 

divided into two subgroups along the x-axis represent-
ing this component (Fig. 4). All other nine components 
together accounted for less than half of the variance, with 
the second and third PCs accounting for only 10.23% and 
8.87%, respectively (Fig. 4A, B). Therefore, PCA showed 
four clearly distinguishable cell samples, all treated with 
patient serum, classified as a WHO-CPS of 9. Cells treated 
with one of the serum samples with a WHO-CPS of nine 
did not occur in this subgroup.

Table 3  (continued) Variables WHO-CPS = 9 WHO-CPS < 9 p value

 Neutrophils  (103/µl), mean (SD) 1061 (961) 683 (241) 0.4335

Reference levels: Albumin (35–52  g/l), CRP (< 5  mg/l), D-Dimer (0–0.5  mg/l), ferritin (27–365  µg/l), 
INR (0.90—1.25 ratio), lipase (13–60 U/l). If the Shapiro–Wilk normality test was passed, variables were 
shown as mean (SD), and p values were calculated using a two-sided unpaired t test. If the normality test 
failed, variables were presented as medians (IQR), and p values were calculated using the Mann–Whitney 
test. Statistical significance was set at p < 0.05. The significant p values are highlighted in bold
ARDS acute respiratory distress syndrome, CRP C-reactive protein, ECMO extracorporeal membrane oxy-
genation, ICU intensive care unit, INR international normalized ratio (measure for the risk of thrombosis), 
NIV noninvasive ventilation, WHO-CPS WHO clinical progression scale

Fig. 1  Serum levels of cytokines/chemokines. Serum samples from 
COVID-19 patients were analyzed using the Inflammation 20-Plex 
Human Multiplex Assay. All assays were performed in duplicate. If 
the Shapiro–Wilk normality test was passed, data are shown as mean 

(SD) and p values were calculated using a two-tailed unpaired t test. 
If the normality test fails, data are presented as median (IQR), and p 
values are calculated using the Mann–Whitney test. A p value below 
0.05 was considered significant

Fig. 2  HBEpC morphology is unchanged in the presence of 2% 
COVID-19 patient serum. Representative images of cell morphol-
ogy after 18 h culture in a medium supplemented with healthy donor 
serum (A), medium supplemented with 2% of serum from patient 

with WHO-CPS = 9 (B), and with serum from patient with WHO-
CPS = 4 (C) were taken on a Leica DIML LED microscope equipped 
with camera using 10 × objective
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Further RNA-seq analyses were performed on two cell 
subsets: first (I) treated with serum from four patients with 
score = 9, and second (II) treated with the serum of remain-
ing patients, 14 with scores between 1 and 7 and one with 
score = 9. The characteristics of both subsets are shown in 

Supplementary Table 3. In general, cells in subset I showed 
5566 DEGs, of which 2793 were upregulated and 2773 were 
downregulated compared with those in cell subset II. Heat 
maps show similarities and differences in the expression 
levels of the top 50 DEGs based on log2-fold change and 

Fig. 3  IL-8 release and the 
expression of specific genes in 
HBEC cultured in the presence 
of 2% patient serum (n = 19) 
for 18 h at 37 °C, 5%  CO2. A 
IL-8 levels in cell supernatants 
supplemented with 2% patient 
serum after subtraction of IL-8 
values detected in a cell-free 
cell culture medium supple-
mented with 2% serum. B to 
F. The RNA was isolated and 
analyzed by a real-time qPCR. 
All analyses were carried out 
in duplicates. If Shapiro–Wilk 
normality test passed, data 
are shown as mean (SD) and 
p values were calculated with 
two-sided unpaired t test. If 
normality test failed, data are 
presented as median (IQR) and 
p values are calculated with 
Mann–Whitney test. A p value 
below 0.05 was considered 
significant

Fig. 4  Principal component analysis of HBEC treated with 2% of 
patient serum and subjected to RNA-seq analysis. PCA on top 500 
transcripts revealed a subset I of four clearly distinguishable patients 
all of which had a WHO-CPS of 9 (labeled in green). A subset II 
comprises 14 samples with a WHO-CPS of 1 to 7 (labeled in red) 

and one outlier sample with WHO-CPS = 9 (labeled in purple). The 
x- and y-axis represent the first (A) and second (B) principal com-
ponents (PCs), respectively. The first PCA distinctly segregates the 
patients into two subgroups, accounting for 52.64% of the total vari-
ance among the samples
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-log10 adjusted p value across all 19 samples (Supplemen-
tary Fig. 1). In addition, the annotation of these genes to the 
Gene Ontology (GO) terms and related pathways analysis 
are presented in Supplementary Tables 4 and 5.

To visualize the direction, magnitude, and importance 
of gene expression changes between cell subsets I and II, 
we generated a volcano plot and normalized read counts of 
DEGs (CDH1, TLR4, and CXCL8) identified by RNA-seq 
using DESeq2 (Fig. 5A, B). These genes were also identified 
as differentially expressed in the quantitative real-time PCR 
experiments (Fig. 3).

Finally, we presented 15 significant Gene Ontology Biol-
ogy Process (GO BP) terms that exhibited the highest com-
bined scores between sample subset I (n = 4) and II (n = 15) 
(Fig. 6). The combined scores were computed using Enrichr 
as previously described [17, 18].

Immunosuppressive therapy may be a potential con-
founding factor. Because 2 patients out of 14 in the lower 
score group (< 9) did not receive immunosuppressive drugs 
(including steroids), we performed the same analysis exclud-
ing both samples. However, PCA showed very similar results 
(Supplementary Fig. 2). The adjusted p values for DEGs 
differed only slightly, e.g., for CDH1 from 0.0003665 to 
0.0009462, TLR4 from 0.001301 to 0.004026, CXCL8 from 
0.01482 to 0.01876. Due to the small cohort size, we decided 
not to exclude these samples and not to further stratify the 
groups.

We also analyzed RNA-seq data comparing COVID-19 
cases assigned by clinical judgment to severe and moderate 
disease without considering WHO scores (Supplementary 
Table 6). The unsupervised PCA revealed large overlaps of 
HBECs treated with moderate and severe COVID-19 serum 

Fig. 5  Volcano plot and normalized read counts of DEGs (CDH1, 
TLR4 and CXCL8) identified by RNA-seq using DESeq2. A The 
volcano plot shows the differential gene expression analysis (DEA) 
of the HBEC cultured with 2% serum from SARS-CoV-2 infected 
4 patients with a WHO-CPS = 9 (subset I), which were identified by 
PCA (Fig. 4, blue dots), compared to cells cultured with a serum from 
15 patients (subset II, Fig. 4, red and purple dots). The x-axis denotes 
the log2-fold change, while the y-axis represents the -log10 trans-

formed adjusted p values of the genes. Selected DEGs, possessing 
an absolute log2-fold change greater than 1.5 and adjusted p values 
less than  10–6, are highlighted in red and labeled. The red dotted line 
establishes a threshold of significance, corresponding to an adjusted p 
value of 0.05. B Box plots show DEGs identified by RNA-seq using 
DESeq2 in cells treated with serum of patient subsets I (Fig. 4, green 
dots, WHO-CPS = 9, n = 4) and II (Fig. 4, red and purple dots, n = 15)
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(Supplementary Fig. 3). There were no significant differ-
ences in gene expression between moderate and severe sub-
groups (Supplementary Fig. 4).

Discussion

Human airway epithelial cultures are used to model chronic 
obstructive pulmonary disease, cystic fibrosis, and respira-
tory infectious diseases [19, 20]. Primary HBEC as mon-
olayers (2-D cultures) or as 3-D cultures are good models for 
studying various inflammatory aspects of the lower airways 
[21, 22]. In this study, we applied serum from clinically 

and biochemically well-characterized patients infected with 
SARS-CoV-2 in 2D cultures of HBEC.

Severity and poor outcomes in SARS-CoV-2 infection 
have been associated with high levels of inflammatory 
mediators [23], particularly pro-inflammatory cytokines/
chemokines (IL-1, IL-8, IL-12, IL-17, interferon-γ-inducible 
protein (IP10), MCP-1, MIP-1, and TNFα) [24, 25]. In paral-
lel, adhesion molecules, early markers of endothelial activa-
tion/dysfunction, such as selectins (E-, P-, and L-selectin), 
soluble intercellular adhesion molecule 1 (ICAM-1), and 
vascular adhesion molecule 1 (VCAM-1), are also elevated 
in plasma samples from COVID-19 patients [26, 27]. Indeed, 
high expression of endothelial cell adhesion molecules might 
contribute to coagulation dysfunction [28] because these 

Fig. 6  The top 15 GO terms 
with the highest Enrichr scores. 
The score signifies the level of 
term significance as represented 
by the p value and incorporates 
the z score, illuminating the 
deviation from a rank pre-
established by a permutation 
test. Consequently, this score 
provides a more reliable under-
standing of the term's signifi-
cance by factoring in the weight 
of the contributing genes. The 
dotted red line represents an 
adjusted p value of 0.05. The 
y-axis displays the -log10 
transformed adjusted p values 
of the terms, derived from the 
identical Enrichr results
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molecules are required for platelet and leukocyte migration 
and pro-inflammatory cytokine/chemokine production [29, 
30]. Increased neutrophil counts and decreased lymphocyte 
counts, high levels of pro-calcitonin and D-dimer together 
with old age and the presence of coronary heart disease may 
also be useful indicators of the severity of COVID-19 dis-
ease [23, 31].

Regardless of clinical outcome, patients in our COVID-19 
cohort showed limited differences in most serum inflam-
matory markers, although the mean or median values of 
several markers, such as TNFα, ICAM-1, CRP, AAT, and 
ferritin, were higher in more severe patients. According to 
previous studies, patients with severe COVID-19 have high 
serum concentrations of chemokines [32]. In line, E-selec-
tin, IL-8, and MCP-1 levels were significantly higher, while 
albumin levels were lower in the most severe COVID-19 
patients. Systematic reviews and meta-analyses have shown 
that serum albumin concentrations are significantly lower 
in COVID-19 patients with higher disease severity [33, 34]. 
The hypoalbuminemia is associated with severe inflamma-
tory diseases and increased mortality [35, 36].

To make a comparative assessment of COVID-19 patients 
and predict clinical outcomes, several scoring systems are 
being implemented in clinical centers [37, 38]. Some scoring 
systems developed before the pandemic are also being used, 
such as APACHE II, which has shown promising results in 
predicting in-hospital patient mortality [39]. Chest X-ray 
(CXR), and CT scans have been proposed to predict the 
severity of COVID-19 by indicating the lung involvement 
score [40]. Another assessment model, COVID-19 BUR-
DEN, based on the clinical features and laboratory data is 
available at the patient’s admission to the hospital. This 
model appears to improve the early detection of patients 
who are at a high risk of developing severe disease [41]. 
Among the best-validated models are those developed by 
Clift et al. and Knight et al. [42, 43]. The strongest predictors 
in these models are patient age, available clinical charac-
teristics, treatments, and laboratory values. Recent studies 
have shown that machine-learning models can predict clini-
cal severity based on commonly collected clinical data from 
the first 24 h of hospital admission [44].

Our patient cohort was scored according to the WHO 
Clinical Progression Scale (WHO-CPS), which ranks 0–10 
patient illnesses by tracking progress through the health-
care system [12]. Based on the WHO grading system, 5 out 
of 19 COVID-19 patients had the highest 9 score, i.e., ICU 
admission and risk of death (3 patients died). The remaining 
14 patients had lower scores (between 1 and 7) and better 
predictive scores (only one patient died). As reflected by the 
WHO-CPS scores, the serum levels of some of the inflam-
matory markers were also higher in patients with severe 
disease. Therefore, based on WHO-CPS scores, we asked 
whether serum from COVID-19 patients with the highest or 

lower scores differs in their effects on the HBEC transcrip-
tome. For this, we used a 2D HBEC culture, in which we 
applied 2% patient serum and incubated the cells for 18 h.

IL-8 is a potent chemoattractant and activator of immune 
cells and its production in epithelial cells is induced by 
cytokines, growth factors, bacterial and viral products, oxi-
dants, and other factors. Accordingly, serum from patients 
with WHO-CPS = 9 (n = 5) induced more pronounced IL-8 
secretion than serum from patients with WHO-CPS below 
9 (n = 14). This result is consistent with the notion that IL-8 
expression and release from HBEC correlate with disease 
activity [45, 46]. Next, we found that HBEC exposed to 
serum from 5 patients with score = 9 showed significantly 
lower ACE2, CDH1, and HMOX1 expression than cells 
exposed to 14 patient serum with lower scores. In general, 
expression of ACE2 was very low which is in line with 
previous studies showing that ACE2 is highly expressed in 
nasal epithelial cells but much less in HBEC [47]. Accord-
ing to other studies, higher ACE2 levels have a protective 
effect against COVID-19 and associated complications, 
particularly cardiac adverse events [48, 49]. In fact, the 
expression of ACE2 is decreased post viral entry [50]. The 
CDH1 gene encodes E-cadherin, a transmembrane calcium-
dependent adhesion molecule expressed in epithelial cells 
[51]. CDH1 has been identified as a potential regulator 
of epithelial barrier function [52], showing lower expres-
sion in SARS-CoV-2-infected cells [50, 53]. Studies have 
demonstrated that SARS-CoV-2 infection also decreases 
the expression of antioxidant genes, such as HMOX1 [54]. 
The HMOX1 pathway can inhibit platelet aggregation and 
has anti-thrombotic and anti-inflammatory properties, all of 
which are compromised during critical medical conditions in 
COVID-19 patients [55, 56]. Taken together, the decrease in 
the expression of CDH1, ACE2, and HMOX1 genes suggests 
that HBECs exposed to serum from the most severe COVID-
19 patients (WHO-CPS = 9) acquire a dysfunctional and/or 
infected phenotype.

To further characterize the changes that occur in HBEC 
exposed to the serum of COVID-19 patients, we profiled the 
cell transcriptomics. The core-expression signature based on 
500 genes segregated cells into two subsets: those exposed 
to the serum of four (subset I) and 15 (subset II) patients. It 
is important to note that all four patients in cell subset I had 
a WHO-CPS of 9, while one patient with a WHO-CPS of 
9 occurred in cell subset II. Unfortunately, by reviewing all 
available clinical and laboratory data for the latter patient, 
we were unable to explain this discrepancy.

The cells exposed to serum from four patients (subset I) 
showed 5566 DEGs compared to cells treated with serum 
from subset II patients (n = 15). Among other genes, higher 
expression of TLR4 and CXCL8 but lower CDH1 was found 
in cell subset I than in subset II. In general, these four serum 
samples had the strongest effects on genes involved in 
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metabolic regulation, cytoskeleton organization, and kinase 
activity pathways. Notably, changes in kinase activity are 
typically associated with viral infection, and kinases repre-
sent ideal drug targets.

Our study has a few limitations. First, we had a small 
patient cohort and serum effects were investigated in a 
HBEC monolayer culture derived from a single healthy 
donor. In recent years, studies prefer to use various bronchial 
cell air–liquid interface culture (ALI) protocols to generate 
differentiated monocultures of bronchial epithelium. How-
ever, ALI models also have limitations, such as that complex 
differentiation protocols harbor problems with the reproduc-
ibility, the growth surface is much stiffer than the in vivo tis-
sue microenvironment; ALIs lack cell–cell interactions with 
non-epithelial cells and the extracellular matrix [57]. These 
latter affect the HBE phenotype, heterogeneity, and function-
ality in vitro. The morphological structure and heterogeneity 
of the ALI epithelium is also affected by the collection sites 
and techniques used for collecting donor cells, and by donor-
specific variations. Therefore, accessible and easy-to-handle 
HBEC-based model may be useful to complement 2D ALIs 
as well as novel 3D organ tissue equivalent (OTE) airway 
models [58], and help to obtain initial data on the putative 
serum activity.

Next, human respiratory epithelium is the main target of 
viral infections and acts as an innate immune sensor dur-
ing infections, it expresses pattern recognition receptors, 
pro-inflammatory cytokines, chemokines, and growth fac-
tors [59]. The interactions between viral infection-induced 
inflammatory molecules and the apical epithelial surface-
initiated secretion of cytokines and chemokines from 
these cells lead to leukocyte recruitment and escalation of 
inflammatory responses. The specific signaling pathways 
that play a role in this scenario are not fully understood. 
We are aware that inflammatory molecules are not the same 
qualitatively and quantitatively in the peripheral blood and 
locally in the airways. However, from critical-ill patients, it 
is often not possible to obtain local fluids for experimental 
studies. The choice of serum was also because the shedding 
of blood proteins actively contributes to the formation of 
a pro-inflammatory environment. Therefore, results from a 
simple blood serum test model using HEBC can be valu-
able in the development of more complex analyses/models 
in clinical research. For example, HBECs are SARS-CoV-2 
target cells as they express ACE2 that is used by SARS-
CoV-2 as a receptor for entry and the proteases TMPRSS2 
and cathepsin L for priming the S protein. The SARS-
CoV-2 infected epithelial and ciliated airway cells potenti-
ate immune cell activation and systemic hyper-inflammatory 
state of COVID-19 patient [60]. Studies suggest that strong 
immune response characterized by cytokine/chemokine 
storm rather than direct virus-induced damage is responsible 
for COVID-19 pathogenesis [61]. In line, we demonstrate 

that serum molecules from clinically well-characterized 
COVID-19 patients reflect bystander effect of SARS-CoV-2 
on HBECs. Serum from most severe COVID-19 patients 
(WHO-CPS = 9) gave stronger effects on genes involved in 
metabolic regulation, and cytoskeleton organization path-
ways. Results from NHBE cells infected with SARS-CoV 
also found dysregulation in cytoskeleton-related genes 
[62]. Other investigators reported that treatment of HBEC 
with serum from COPD patients increased expression of 
senescence markers and the secretion of IL-8, CXCL5, and 
VEGF-A relative to serum from healthy controls [63]. These 
studies further support an idea that serum-induced altera-
tions in HBEC reflect inflammatory status.

Conclusion

We demonstrate that HBEC may be a simple model useful to 
validate the bronchial epithelial responses to serum biomark-
ers related to the inflammatory state caused by COVID-19 or 
other infections. Although numerous data support the sys-
temic inflammatory component in patients with respiratory 
diseases, it is often not possible to predict disease develop-
ment based on one or a few specific inflammatory factors 
per se. Serum inflammation-based scores can be useful in 
predicting disease severity and outcomes; however, some 
patients may have unknown/unreported diseases, as well as 
infections, influencing markers of systemic inflammation. 
On the other hand, many serum markers are not routinely 
measured in clinical laboratories and are not studied or not 
used or in clinical practice. Therefore, 2D models of epi-
thelial cells can be useful for characterizing the serum of 
patients with different degrees of inflammation and disease 
severity. Longitudinal samples from patients would be use-
ful for correlating the clinical course with changes in HBEC 
transcriptional properties.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00408- 024- 00679-1.

Author Contributions S.J., N.J., and T.Y. designed the study. K.S., J.H., 
M.B., and S.W. analyzed patient serum and performed cell culture 
experiments. B.M.D and G.G.M. performed RNA sequencing analysis. 
B.L. and D.S.D. calculated gene expression data. T.I. and S.V. provided 
patient samples and clinical data. K.S. and S.W. analyzed the data 
and helped with manuscript preparation. T.I., S.V., B.O., and T.W. 
conducted writing-review and editing. All authors read and approved 
the final manuscript. All authors attest they meet the ICMJE criteria 
for authorship.

Funding Open Access funding enabled and organized by Projekt 
DEAL. This study was supported by COVAAT-TP1: “Alpha-1-
Antitrypsin Zur COVID-19 Therapie,” ZW7-85152684 from the 
Enterprise Europe Network Niedersachsen (EEN) of the NBank, 
German Center for Lung Research, Grant number 82DZL002B1, Polish 

https://doi.org/10.1007/s00408-024-00679-1


168 Lung (2024) 202:157–170

National Science Centre Grant 2015/17/B/NZ5/01370, and a research 
grant from ExcellGene SA (19400532).

Declarations 

Competing interests The authors report no financial interest and no 
conflicts of interest in this work.

Ethical Approval The ethics committee of the Hannover Medical 
School (MHH, 9001_BO_K and MHH-6895) approved the sampling 
and analyses.

Consent to Participate All patients included in this study signed a 
written consent on the use of their biomaterials and data for medical 
research projects prior to study commencement.

Consent to Publish Not applicable.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

 1. Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi SA, Sull-
man MJM, Ahmadian Heris J, Ansarin K, Mansournia MA, 
Collins GS, Kolahi A-A, Kaufman JS (2022) Burden of chronic 
obstructive pulmonary disease and its attributable risk factors in 
204 countries and territories, 1990–2019: results from the Global 
Burden of Disease Study 2019. BMJ 378:e069679. https:// doi. org/ 
10. 1136/ bmj- 2021- 069679

 2. Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu 
A, Zhou S, Morrisey EE (2020) Defining the role of pulmonary 
endothelial cell heterogeneity in the response to acute lung injury. 
elife 9:e53072. https:// doi. org/ 10. 7554/ eLife. 53072

 3. Hewitt RJ, Lloyd CM (2021) Regulation of immune responses by 
the airway epithelial cell landscape. Nat Rev Immunol 21(6):347–
362. https:// doi. org/ 10. 1038/ s41577- 020- 00477-9

 4. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott 
F, Debnath O, Thürmann L, Kurth F, Völker MT, Kazmierski J, 
Timmermann B, Twardziok S, Schneider S, Machleidt F, Müller-
Redetzky H, Maier M, Krannich A, Schmidt S, Balzer F, Liebig 
J, Loske J, Suttorp N, Eils J, Ishaque N, Liebert UG, von Kalle C, 
Hocke A, Witzenrath M, Goffinet C, Drosten C, Laudi S, Lehmann 
I, Conrad C, Sander L-E, Eils R (2020) COVID-19 severity cor-
relates with airway epithelium–immune cell interactions identified 
by single-cell analysis. Nat Biotechnol 38(8):970–979. https:// doi. 
org/ 10. 1038/ s41587- 020- 0602-4

 5. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, 
Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, 
Chen T, Han M, Li S, Luo X, Zhao J, Ning Q (2020) Clinical 
and immunological features of severe and moderate coronavirus 

disease 2019. J Clin Invest 130(5):2620–2629. https:// doi. org/ 10. 
1172/ jci13 7244

 6. Martin TR (2022) Lung injury and repair in coronavirus disease 
2019-related acute lung injury. Am J Pathol 192(3):406–409. 
https:// doi. org/ 10. 1016/j. ajpath. 2022. 01. 001

 7. Upadhya S, Rehman J, Malik AB, Chen S (2022) Mechanisms 
of lung injury induced by SARS-CoV-2 infection. Physiology 
37(2):88–100. https:// doi. org/ 10. 1152/ physi ol. 00033. 2021

 8. Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, 
Hashemian SMR, Mirzaei H (2022) Comprehensive overview 
of COVID-19-related respiratory failure: focus on cellular inter-
actions. Cell Mol Biol Lett 27(1):63. https:// doi. org/ 10. 1186/ 
s11658- 022- 00363-3

 9. Busse WW, Lemanske RF Jr, Gern JE (2010) Role of viral res-
piratory infections in asthma and asthma exacerbations. Lancet 
376(9743):826–834. https:// doi. org/ 10. 1016/ s0140- 6736(10) 
61380-3

 10. Greenberg SB (2002) Respiratory viral infections in adults. Curr 
Opin Pulm Med 8(3):201–208. https:// doi. org/ 10. 1097/ 00063 198- 
20020 5000- 00009

 11. Kopfnagel V, Bernemann I, Klopp N, Kersting M, Nizhegorodt-
seva N, Prokein J, Lehmann U, Stark H, Illig T (2021) The Hanno-
ver Unified Biobank (HUB)—centralized standardised biobanking 
at Hannover Medical School. Open J Bioresour. https:// doi. org/ 
10. 5334/ ojb. 70

 12. Characterisation WHOWGotC, Management of C-i (2020) A 
minimal common outcome measure set for COVID-19 clinical 
research. Lancet Infect Dis 20(8):e192–e197. https:// doi. org/ 10. 
1016/ S1473- 3099(20) 30483-7

 13. Ercetin E, Richtmann S, Delgado BM, Gomez-Mariano G, 
Wrenger S, Korenbaum E, Liu B, DeLuca D, Kuhnel MP, Jonigk 
D, Yuskaeva K, Warth A, Muley T, Winter H, Meister M, Welte 
T, Janciauskiene S, Schneider MA (2019) Clinical significance of 
SERPINA1 gene and its encoded Alpha1-antitrypsin protein in 
NSCLC. Cancers 11(9):1306. https:// doi. org/ 10. 3390/ cance rs110 
91306

 14. Wickham H (2011) ggplot2. Wiley Interdiscip Rev 3(2):180–185. 
https:// doi. org/ 10. 1002/ wics. 147

 15. Kolde R, Kolde MR (2015) Package ‘pheatmap.’ R package 
1(7):790

 16. Slowikowski K, Hughes S, Lukauskas S, risson J-O, Kamvar ZN, 
Ryan T, Christopher D, Hiroaki Y, Gramme P (2018) Package 
ggrepel. Automatically position non-overlapping text labels with 
‘ggplot2’. https:// CRAN.R- proje ct. org/ packa ge= ggrep el

 17. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, 
Clark NR, Ma’ayan A (2013) Enrichr: interactive and collabora-
tive HTML5 gene list enrichment analysis tool. BMC Bioinform 
14:128. https:// doi. org/ 10. 1186/ 1471- 2105- 14- 128

 18. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan 
Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann 
A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A 
(2016) Enrichr: a comprehensive gene set enrichment analysis 
web server 2016 update. Nucleic Acids Res 44(W1):W90-97. 
https:// doi. org/ 10. 1093/ nar/ gkw377

 19. Heinen N, Klohn M, Steinmann E, Pfaender S (2021) In vitro lung 
models and their application to study SARS-CoV-2 pathogenesis 
and disease. Viruses 13(5):792. https:// doi. org/ 10. 3390/ v1305 
0792

 20. Mulay A, Konda B, Garcia G Jr, Yao C, Beil S, Sen C, Pur-
kayastha A, Kolls JK, Pociask DA, Pessina P, de Aja JS, Garcia-
de-Alba C, Kim CF, Gomperts B, Arumugaswami V, Stripp BR 
(2020) SARS-CoV-2 infection of primary human lung epithelium 
for COVID-19 modeling and drug discovery. bioRxiv. https:// doi. 
org/ 10. 1101/ 2020. 06. 29. 174623

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1136/bmj-2021-069679
https://doi.org/10.1136/bmj-2021-069679
https://doi.org/10.7554/eLife.53072
https://doi.org/10.1038/s41577-020-00477-9
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1172/jci137244
https://doi.org/10.1172/jci137244
https://doi.org/10.1016/j.ajpath.2022.01.001
https://doi.org/10.1152/physiol.00033.2021
https://doi.org/10.1186/s11658-022-00363-3
https://doi.org/10.1186/s11658-022-00363-3
https://doi.org/10.1016/s0140-6736(10)61380-3
https://doi.org/10.1016/s0140-6736(10)61380-3
https://doi.org/10.1097/00063198-200205000-00009
https://doi.org/10.1097/00063198-200205000-00009
https://doi.org/10.5334/ojb.70
https://doi.org/10.5334/ojb.70
https://doi.org/10.1016/S1473-3099(20)30483-7
https://doi.org/10.1016/S1473-3099(20)30483-7
https://doi.org/10.3390/cancers11091306
https://doi.org/10.3390/cancers11091306
https://doi.org/10.1002/wics.147
https://CRAN.R-project.org/package=ggrepel
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.3390/v13050792
https://doi.org/10.3390/v13050792
https://doi.org/10.1101/2020.06.29.174623
https://doi.org/10.1101/2020.06.29.174623


169Lung (2024) 202:157–170 

 21. Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell 
culture for drug delivery applications. Eur J Pharm Biopharm 
60(2):193–205. https:// doi. org/ 10. 1016/j. ejpb. 2005. 02. 010

 22. Huang DT, Lu CY, Chi YH, Li WL, Chang LY, Lai MJ, Chen 
JS, Hsu WM, Huang LM (2017) Adaptation of influenza A 
(H7N9) virus in primary human airway epithelial cells. Sci Rep 
7(1):11300. https:// doi. org/ 10. 1038/ s41598- 017- 10749-5

 23. Xiao L-N, Ran X, Zhong Y-X, Li S-S (2021) Clinical value 
of blood markers to assess the severity of coronavirus disease 
2019. BMC Infect Dis 21(1):921. https:// doi. org/ 10. 1186/ 
s12879- 021- 06623-5

 24. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Man-
son JJ (2020) COVID-19: consider cytokine storm syndromes and 
immunosuppression. Lancet 395(10229):1033–1034. https:// doi. 
org/ 10. 1016/ s0140- 6736(20) 30628-0

 25. Shibabaw T (2020) Inflammatory cytokine: IL-17A signaling 
pathway in patients present with COVID-19 and current treatment 
strategy. J Inflamm Res 13:673–680. https:// doi. org/ 10. 2147/ jir. 
S2783 35

 26. Bordoni V, Mariotti D, Matusali G, Colavita F, Cimini E, Ippolito 
G, Agrati C (2022) SARS-CoV-2 infection of airway epithelium 
triggers pulmonary endothelial cell activation and senescence 
associated with type I IFN production. Cells 11(18):2912. https:// 
doi. org/ 10. 3390/ cells 11182 912

 27. Dupont A, Rauch A, Staessens S, Moussa M, Rosa M, Corseaux 
D, Jeanpierre E, Goutay J, Caplan M, Varlet P, Lefevre G, Las-
salle F, Bauters A, Faure K, Lambert M, Duhamel A, Labreuche 
J, Garrigue D, De Meyer SF, Staels B, Vincent F, Rousse N, Kip-
nis E, Lenting P, Poissy J, Susen S (2021) Vascular endothelial 
damage in the pathogenesis of organ injury in severe COVID-19. 
Arterioscler Thromb Vasc Biol 41(5):1760–1773. https:// doi. org/ 
10. 1161/ atvba ha. 120. 315595

 28. Tong M, Jiang Y, Xia D, Xiong Y, Zheng Q, Chen F, Zou L, 
Xiao W, Zhu Y (2020) Elevated expression of serum endothe-
lial cell adhesion molecules in COVID-19 patients. J Infect Dis 
222(6):894–898. https:// doi. org/ 10. 1093/ infdis/ jiaa3 49

 29. Lowenstein CJ, Solomon SD (2020) Severe COVID-19 is a micro-
vascular disease. Circulation 142(17):1609–1611. https:// doi. org/ 
10. 1161/ circu latio naha. 120. 050354

 30. Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) COVID-
19: the vasculature unleashed. Nat Rev Immunol 20(7):389–391. 
https:// doi. org/ 10. 1038/ s41577- 020- 0343-0

 31. Shang Y, Liu T, Wei Y, Li J, Shao L, Liu M, Zhang Y, Zhao Z, Xu 
H, Peng Z, Zhou F, Wang X (2020) Scoring systems for predicting 
mortality for severe patients with COVID-19. EClinicalMedicine 
24:100426. https:// doi. org/ 10. 1016/j. eclinm. 2020. 100426

 32. Xi X, Guo Y, Zhu M, Wei Y, Li G, Du B, Wang Y (2021) Higher 
expression of monocyte chemotactic protein 1 in mild COVID-19 
patients might be correlated with inhibition of Type I IFN signal-
ing. Virol J 18(1):12. https:// doi. org/ 10. 1186/ s12985- 020- 01478-9

 33. Aziz M, Fatima R, Lee-Smith W, Assaly R (2020) The association 
of low serum albumin level with severe COVID-19: a systematic 
review and meta-analysis. Crit Care 24(1):255. https:// doi. org/ 10. 
1186/ s13054- 020- 02995-3

 34. Paliogiannis P, Mangoni AA, Cangemi M, Fois AG, Carru C, 
Zinellu A (2021) Serum albumin concentrations are associated 
with disease severity and outcomes in coronavirus 19 disease 
(COVID-19): a systematic review and meta-analysis. Clin Exp 
Med 21(3):343–354. https:// doi. org/ 10. 1007/ s10238- 021- 00686-z

 35. Cao Y, Su Y, Guo C, He L, Ding N (2023) Albumin level is 
associated with short-term and long-term outcomes in sepsis 
patients admitted in the ICU: a large public database retrospec-
tive research. Clin Epidemiol 15:263–273. https:// doi. org/ 10. 
2147/ CLEP. S3962 47

 36. Ward ES, Gelinas D, Dreesen E, Van Santbergen J, Andersen JT, 
Silvestri NJ, Kiss JE, Sleep D, Rader DJ, Kastelein JJP, Louagie E, 

Vidarsson G, Spriet I (2022) Clinical significance of serum albu-
min and implications of FcRn inhibitor treatment in IgG-mediated 
autoimmune disorders. Front Immunol 13:892534. https:// doi. org/ 
10. 3389/ fimmu. 2022. 892534

 37. Dilek O, Demirel E, Akkaya H, Belibagli MC, Soker G, Gulek 
B (2022) Different chest CT scoring systems in patients with 
COVID-19: could baseline CT be a helpful tool in predicting sur-
vival in patients with matched ages and co-morbid conditions? 
Acta Radiol 63(5):615–622. https:// doi. org/ 10. 1177/ 02841 85121 
10063 16

 38. Monk M, Torres J, Vickery K, Jayaraman G, Sarva ST, Kesavan R 
(2023) A comparison of ICU mortality scoring systems applied to 
COVID-19. Cureus 15(2):e35423. https:// doi. org/ 10. 7759/ cureus. 
35423

 39. Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, Yu S, Jing L, Li D, 
Huang J (2020) Acute Physiology and Chronic Health Evaluation 
II score as a predictor of hospital mortality in patients of corona-
virus disease 2019. Crit Care Med 48(8):e657–e665. https:// doi. 
org/ 10. 1097/ CCM. 00000 00000 004411

 40. Majrashi NAA (2022) The value of chest X-ray and CT severity 
scoring systems in the diagnosis of COVID-19: a review. Front 
Med 9:1076184. https:// doi. org/ 10. 3389/ fmed. 2022. 10761 84

 41. Imanieh MH, Amirzadehfard F, Zoghi S, Sehatpour F, Jafari P, 
Hassanipour H, Feili M, Mollaie M, Bostanian P, Mehrabi S, 
Dashtianeh R, Feili A (2023) A novel scoring system for early 
assessment of the risk of the COVID-19-associated mortality 
in hospitalized patients: COVID-19 BURDEN. Eur J Med Res 
28(1):4. https:// doi. org/ 10. 1186/ s40001- 022- 00908-4

 42. Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson 
E, Harrison EM, Hayward A, Hemingway H, Horby P, Mehta 
N, Benger J, Khunti K, Spiegelhalter D, Sheikh A, Valabhji J, 
Lyons RA, Robson J, Semple MG, Kee F, Johnson P, Jebb S, Wil-
liams T, Hippisley-Cox J (2020) Living risk prediction algorithm 
(QCOVID) for risk of hospital admission and mortality from coro-
navirus 19 in adults: national derivation and validation cohort 
study. BMJ 371:m3731. https:// doi. org/ 10. 1136/ bmj. m3731

 43. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dun-
ning J, Fairfield CJ, Gamble C, Green CA, Gupta R, Halpin 
S, Hardwick HE, Holden KA, Horby PW, Jackson C, McLean 
KA, Merson L, Nguyen-Van-Tam JS, Norman L, Noursadeghi 
M, Olliaro PL, Pritchard MG, Russell CD, Shaw CA, Sheikh A, 
Solomon T, Sudlow C, Swann OV, Turtle LC, Openshaw PJ, Bail-
lie JK, Semple MG, Docherty AB, Harrison EM, IC investigators 
(2020) Risk stratification of patients admitted to hospital with 
covid-19 using the ISARIC WHO Clinical Characterisation Pro-
tocol: development and validation of the 4C Mortality Score. BMJ 
370:m3339. https:// doi. org/ 10. 1136/ bmj. m3339

 44. Bennett TD, Moffitt RA, Hajagos JG, Amor B, Anand A, Bissell 
MM, Bradwell KR, Bremer C, Byrd JB, Denham A, DeWitt PE, 
Gabriel D, Garibaldi BT, Girvin AT, Guinney J, Hill EL, Hong 
SS, Jimenez H, Kavuluru R, Kostka K, Lehmann HP, Levitt E, 
Mallipattu SK, Manna A, McMurry JA, Morris M, Muschelli J, 
Neumann AJ, Palchuk MB, Pfaff ER, Qian Z, Qureshi N, Russell 
S, Spratt H, Walden A, Williams AE, Wooldridge JT, Yoo YJ, 
Zhang XT, Zhu RL, Austin CP, Saltz JH, Gersing KR, Haendel 
MA, Chute CG, National CCCC (2021) Clinical characteriza-
tion and prediction of clinical severity of SARS-CoV-2 infection 
among US adults using data from the US national COVID cohort 
collaborative. JAMA Netw Open 4(7):e2116901. https:// doi. org/ 
10. 1001/ jaman etwor kopen. 2021. 16901

 45. Lipskaia L, Maisonnasse P, Fouillade C, Sencio V, Pascal Q, Fla-
man JM, Born E, Londono-Vallejo A, Le Grand R, Bernard D, 
Trottein F, Adnot S (2022) Evidence that SARS-CoV-2 induces 
lung cell senescence: potential impact on COVID-19 lung dis-
ease. Am J Respir Cell Mol Biol 66(1):107–111. https:// doi. org/ 
10. 1165/ rcmb. 2021- 0205LE

https://doi.org/10.1016/j.ejpb.2005.02.010
https://doi.org/10.1038/s41598-017-10749-5
https://doi.org/10.1186/s12879-021-06623-5
https://doi.org/10.1186/s12879-021-06623-5
https://doi.org/10.1016/s0140-6736(20)30628-0
https://doi.org/10.1016/s0140-6736(20)30628-0
https://doi.org/10.2147/jir.S278335
https://doi.org/10.2147/jir.S278335
https://doi.org/10.3390/cells11182912
https://doi.org/10.3390/cells11182912
https://doi.org/10.1161/atvbaha.120.315595
https://doi.org/10.1161/atvbaha.120.315595
https://doi.org/10.1093/infdis/jiaa349
https://doi.org/10.1161/circulationaha.120.050354
https://doi.org/10.1161/circulationaha.120.050354
https://doi.org/10.1038/s41577-020-0343-0
https://doi.org/10.1016/j.eclinm.2020.100426
https://doi.org/10.1186/s12985-020-01478-9
https://doi.org/10.1186/s13054-020-02995-3
https://doi.org/10.1186/s13054-020-02995-3
https://doi.org/10.1007/s10238-021-00686-z
https://doi.org/10.2147/CLEP.S396247
https://doi.org/10.2147/CLEP.S396247
https://doi.org/10.3389/fimmu.2022.892534
https://doi.org/10.3389/fimmu.2022.892534
https://doi.org/10.1177/02841851211006316
https://doi.org/10.1177/02841851211006316
https://doi.org/10.7759/cureus.35423
https://doi.org/10.7759/cureus.35423
https://doi.org/10.1097/CCM.0000000000004411
https://doi.org/10.1097/CCM.0000000000004411
https://doi.org/10.3389/fmed.2022.1076184
https://doi.org/10.1186/s40001-022-00908-4
https://doi.org/10.1136/bmj.m3731
https://doi.org/10.1136/bmj.m3339
https://doi.org/10.1001/jamanetworkopen.2021.16901
https://doi.org/10.1001/jamanetworkopen.2021.16901
https://doi.org/10.1165/rcmb.2021-0205LE
https://doi.org/10.1165/rcmb.2021-0205LE


170 Lung (2024) 202:157–170

 46. Qazi BS, Tang K, Qazi A (2011) Recent advances in underlying 
pathologies provide insight into interleukin-8 expression-mediated 
inflammation and angiogenesis. Int J Inflam 2011:908468. https:// 
doi. org/ 10. 4061/ 2011/ 908468

 47. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Din-
non KH 3rd, Kato T, Lee RE, Yount BL, Mascenik TM, Chen G, 
Olivier KN, Ghio A, Tse LV, Leist SR, Gralinski LE, Schäfer A, 
Dang H, Gilmore R, Nakano S, Sun L, Fulcher ML, Livraghi-
Butrico A, Nicely NI, Cameron M, Cameron C, Kelvin DJ, de 
Silva A, Margolis DM, Markmann A, Bartelt L, Zumwalt R, Mar-
tinez FJ, Salvatore SP, Borczuk A, Tata PR, Sontake V, Kimple A, 
Jaspers I, O’Neal WK, Randell SH, Boucher RC, Baric RS (2020) 
SARS-CoV-2 reverse genetics reveals a variable infection gradient 
in the respiratory tract. Cell 182(2):429-446.e414. https:// doi. org/ 
10. 1016/j. cell. 2020. 05. 042

 48. Guo J, Huang Z, Lin L, Lv J (2020) Coronavirus disease 2019 
(COVID-19) and cardiovascular disease: a viewpoint on the 
potential influence of angiotensin-converting enzyme inhibitors/
angiotensin receptor blockers on onset and severity of severe acute 
respiratory syndrome coronavirus 2 infection. J Am Heart Assoc 
9(7):e016219. https:// doi. org/ 10. 1161/ jaha. 120. 016219

 49. Yalcin HC, Sukumaran V, Al-Ruweidi M, Shurbaji S (2021) Do 
changes in ACE-2 expression affect SARS-CoV-2 virulence and 
related complications: a closer look into membrane-bound and 
soluble forms. Int J Mol Sci 22(13):6703. https:// doi. org/ 10. 3390/ 
ijms2 21367 03

 50. Osman IO, Garrec C, de Souza GAP, Zarubica A, Belhaouari DB, 
Baudoin JP, Lepidi H, Mege JL, Malissen B, Scola B, Devaux CA 
(2022) Control of CDH1/E-cadherin gene expression and release 
of a soluble form of E-cadherin in SARS-CoV-2 infected caco-2 
intestinal cells: physiopathological consequences for the intesti-
nal forms of COVID-19. Front Cell Infect Microbiol 12:798767. 
https:// doi. org/ 10. 3389/ fcimb. 2022. 798767

 51. Ye T, Li J, Sun Z, Liu D, Zeng B, Zhao Q, Wang J, Xing HR 
(2020) Cdh1 functions as an oncogene by inducing self-renewal 
of lung cancer stem-like cells via oncogenic pathways. Int J Biol 
Sci 16(3):447–459. https:// doi. org/ 10. 7150/ ijbs. 38672

 52. de Vries M, Nwozor KO, Muizer K, Wisman M, Timens W, 
van den Berge M, Faiz A, Hackett TL, Heijink IH, Brandsma 
CA (2022) The relation between age and airway epithelial bar-
rier function. Respir Res 23(1):43. https:// doi. org/ 10. 1186/ 
s12931- 022- 01961-7

 53. Xu J, Xu X, Jiang L, Dua K, Hansbro PM, Liu G (2020) SARS-
CoV-2 induces transcriptional signatures in human lung epithelial 
cells that promote lung fibrosis. Respir Res 21(1):182. https:// doi. 
org/ 10. 1186/ s12931- 020- 01445-6

 54. Zhang S, Wang J, Wang L, Aliyari S, Cheng G (2022) SARS-
CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by target-
ing Sirtuin 1. Cell Mol Immunol 19(8):872–882. https:// doi. org/ 
10. 1038/ s41423- 022- 00887-w

 55. Batra N, De Souza C, Batra J, Raetz AG, Yu AM (2020) The 
HMOX1 pathway as a promising target for the treatment and 

prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Mol Sci 
21(17):6412. https:// doi. org/ 10. 3390/ ijms2 11764 12

 56. Qu Y, Haas de Mello A, Morris DR, Jones-Hall YL, Ivanciuc 
T, Sattler RA, Paessler S, Menachery VD, Garofalo RP, Casola 
A (2023) SARS-CoV-2 inhibits NRF2-mediated antioxidant 
responses in airway epithelial cells and in the lung of a murine 
model of infection. Microbiol Spectr 11(3):e0037823. https:// doi. 
org/ 10. 1128/ spect rum. 00378- 23

 57. Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent 
L (2019) Airway epithelial derived cytokines and chemokines and 
their role in the immune response to respiratory syncytial virus 
infection. Pathogens 8(3):106. https:// doi. org/ 10. 3390/ patho gens8 
030106

 58. Leach T, Gandhi U, Reeves KD, Stumpf K, Okuda K, Marini FC, 
Walker SJ, Boucher R, Chan J, Cox LA, Atala A, Murphy SV 
(2023) Development of a novel air-liquid interface airway tissue 
equivalent model for in vitro respiratory modeling studies. Sci Rep 
13(1):10137. https:// doi. org/ 10. 1038/ s41598- 023- 36863-1

 59. Tilemann L, Gindner L, Meyer F, Szecsenyi J, Schneider A 
(2011) Differences in local and systemic inflammatory markers 
in patients with obstructive airways disease. Prim Care Respir J 
20(4):407–414. https:// doi. org/ 10. 4104/ pcrj. 2011. 00069

 60. Munjal M, Das S, Chatterjee N, Setra AE, Govil D (2020) Sys-
temic involvement of novel Coronavirus (COVID-19): a review 
of literature. Indian J Crit Care Med 24(7):565–569. https:// doi. 
org/ 10. 5005/ jp- journ als- 10071- 23498

 61. Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, 
Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow 
RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, 
Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki 
A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, 
Wilen CB (2021) Single-cell longitudinal analysis of SARS-
CoV-2 infection in human airway epithelium identifies target cells, 
alterations in gene expression, and cell state changes. PLoS Biol 
19(3):e3001143. https:// doi. org/ 10. 1371/ journ al. pbio. 30011 43

 62. Nunnari G, Sanfilippo C, Castrogiovanni P, Imbesi R, Li Volti 
G, Barbagallo I, Musumeci G, Di Rosa M (2020) Network per-
turbation analysis in human bronchial epithelial cells following 
SARS-CoV2 infection. Exp Cell Res 395(2):112204. https:// doi. 
org/ 10. 1016/j. yexcr. 2020. 112204

 63. Kuznar-Kaminska B, Mikula-Pietrasik J, Witucka A, Romaniuk 
A, Konieczna N, Rubis B, Ksiazek K, Tykarski A, Batura-Gabryel 
H (2018) Serum from patients with chronic obstructive pulmo-
nary disease induces senescence-related phenotype in bronchial 
epithelial cells. Sci Rep 8(1):12940. https:// doi. org/ 10. 1038/ 
s41598- 018- 31037-w

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.4061/2011/908468
https://doi.org/10.4061/2011/908468
https://doi.org/10.1016/j.cell.2020.05.042
https://doi.org/10.1016/j.cell.2020.05.042
https://doi.org/10.1161/jaha.120.016219
https://doi.org/10.3390/ijms22136703
https://doi.org/10.3390/ijms22136703
https://doi.org/10.3389/fcimb.2022.798767
https://doi.org/10.7150/ijbs.38672
https://doi.org/10.1186/s12931-022-01961-7
https://doi.org/10.1186/s12931-022-01961-7
https://doi.org/10.1186/s12931-020-01445-6
https://doi.org/10.1186/s12931-020-01445-6
https://doi.org/10.1038/s41423-022-00887-w
https://doi.org/10.1038/s41423-022-00887-w
https://doi.org/10.3390/ijms21176412
https://doi.org/10.1128/spectrum.00378-23
https://doi.org/10.1128/spectrum.00378-23
https://doi.org/10.3390/pathogens8030106
https://doi.org/10.3390/pathogens8030106
https://doi.org/10.1038/s41598-023-36863-1
https://doi.org/10.4104/pcrj.2011.00069
https://doi.org/10.5005/jp-journals-10071-23498
https://doi.org/10.5005/jp-journals-10071-23498
https://doi.org/10.1371/journal.pbio.3001143
https://doi.org/10.1016/j.yexcr.2020.112204
https://doi.org/10.1016/j.yexcr.2020.112204
https://doi.org/10.1038/s41598-018-31037-w
https://doi.org/10.1038/s41598-018-31037-w

	Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and Methods
	Patients and Biomaterial
	Multiplex Immunoassay
	Cell Culture
	Lactate Dehydrogenase (LDH) Cytotoxicity Assay
	Trypan Blue Viability Assay
	RNA Isolation, Reverse Transcription, and Quantitative Real-Time PCR
	ELISA
	RNA Sequencing (RNA-seq) Analysis
	Statistical Analysis

	Results
	Patient Demographics
	Serum CytokineChemokine Levels in COVID-19 Patients
	Effects of Patient Serum on IL-8 Release and Inflammatory Gene Expression in HBEpC
	Transcriptome Analysis of HBEC Cultured in Medium Supplemented with Patient Serum

	Discussion
	Conclusion
	References




