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Abstract
Introduction  Maximising alternative sample types for genomics in advanced lung cancer is important because broncho-
scopic samples may sometimes be insufficient for this purpose. Further, the clinical applications of comprehensive molecular 
analysis such as whole genome sequencing (WGS) are rapidly developing. Diff-Quik cytology smears from EBUS TBNA 
is an alternative source of DNA, but its feasibility for WGS has not been previously demonstrated.
Methods  Diff-Quik smears were collected along with research cell pellets.
Results  Tumour content of smears were compared to research cell pellets from 42 patients, which showed good correlation 
(Spearman correlation 0.85, P < 0.0001). A subset of eight smears underwent WGS, which presented similar mutation profiles 
to WGS of the matched cell pellet. DNA yield was predicted using a regression equation of the smears cytology features, 
which correctly predicted DNA yield > 1500 ng in 7 out of 8 smears.
Conclusions  WGS of commonly collected Diff-Quik slides is feasible and their DNA yield can be predicted.

Keywords  Cytology · Endobronchial ultrasound–guided transbronchial needle aspiration (EBUS TBNA) · Lung cancer · 
Molecular diagnostics · Whole genome sequencing

Introduction

When a tissue diagnosis of lung cancer is made the sam-
ples must be simultaneously used for immunohistochemical 
subtyping and molecular genetic testing to assess for the 

presence of actionable mutations. Endobronchial ultrasound-
guided, transbronchial needle aspiration (EBUS TBNA) is a 
common procedure to make the tissue diagnosis of advanced 
lung cancer [1, 2]. Small amounts of material from fine nee-
dle aspirates are deposited on smears for microscopy in the 
procedure room (Diff-Quik smears) and for formal micros-
copy (pap smears), while the majority of the sample is col-
lected to make formalin-fixed paraffin-embedded (FFPE) Gunter Hartel, Katia Nones and Peter T. Simpson have contributed 
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cell blocks [3, 4]. FFPE cell blocks from EBUS TBNA may 
have adequate tumour content for molecular analysis in as 
few as 43% of samples [5]. Regarding next generation panel 
sequencing success rates for EBUS TBNA acquired FFPE 
cell blocks range from 60 to 93% [6–10]. Conversely Diff-
Quik smears contain cancer cells in over 90% of lung can-
cer patients [11] and are typically never required after their 
use in the procedure room [12]. These smears have great 
potential for molecular testing. They allow a rapid estima-
tion of tumour cell content and avoid the impact of formalin 
on DNA [12]. We and others have shown > 95% success of 
sequencing of these smears, including with large sequencing 
panels [12–14]. Using smears for sequencing preserves the 
FFPE cellblock for immunohistochemistry and other devel-
oping spatial techniques [15].

In this brief report we take Diff-Quik smears further 
by exploring their potential for whole genome sequencing 
(WGS). WGS is not standard of care at this time, however 
with progressively falling costs it could be more widely used 
in the clinic [16–18]. WGS can detect all forms of molecu-
lar abnormalities including point mutations, fusion genes, 
and chromosomal damage [19], indicating it can detect all 
actionable mutation types in lung cancer. Further, WGS 
future-proofs the need to incrementally expand the size of 
molecular panels.

Successful performance of WGS testing of Diff-Quik 
smears is highly dependent on the tumour content of the 
sample, with the proportion of malignant cells preferably to 
be > 40% and the slide to yield > 1500 ng DNA. We recently 
showed that over a third of smears had > 1500 ng DNA and 
all of which had > 40% tumour cellularity [12], suggesting 
WGS is potential feasibility for a significant number of Diff-
Quik samples. Further, it is important to show that the Diff-
Quick smear is representative of the FFPE cell block, such 
that they demonstrate similar tumour content, especially 
when considering the cell blocks are representative of mul-
tiple needle aspirates from the same lymph node, whereas 
each smear represents just one needle pass.

In demonstrating feasibility of Diff-Quik smears for 
WGS, we therefore sought to determine (i) whether Diff-
Quik smears could yield sufficient tumour content compared 
with matched research cell pellets; (ii) whether we can pre-
dict the amount of DNA on a smear using a simple set of 
microscopy criteria [12] prior to attempting WGS; and (iii) 
whether Diff-Quik smears could represent the sole source 
of WGS material when cell pellets do not yield sufficient 
material for sequencing.

Methods

The samples were part of a large prospective study explor-
ing the benefits of Diff-Quik smears (Institutional Review 
Board approval (HREC/17/QRBW/301); QIMR P2404) 
[20]. Patients with suspected lung cancer undergoing EBUS 
TBNA sampling had standard of care testing including Diff-
Quik smears, PAP smears and FFPE cell blocks. Research 
samples were collected frozen or in RNALater for creation 
of cell pellets. Diff-Quik smears were evaluated by two cyto-
pathologists to estimate the percent of malignant cells and 
overall malignant cell count on the slide. The smear evalua-
tion process by the two cyto-pathologists took approximately 
10 min per smear. In addition, smear area was measured 
from digital slide scans [15]. These 3 parameters were 
included in a lognormal regression [12] model to estimate 
DNA yield, as follows:

EXP([1.6 if malignant cells are ≥ 50% malignant cells] + [ 
1.2 for malignant cell count estimate ≥ score 2 or 1000 
cells] + [0.255* % slide area covered by smear] + 4.14) = ng 
DNA for that smear.

DNA was extracted from research cell pellets using the 
AllPrep DNA/RNA Mini Kit, from matched blood samples 
using the QiAmp DNA Blood Mini Kit, and from smears 
using the QiAmp DNA Micro Kit (Qiagen). DNA quantity 
and integrity were measured by Qubit Assay (Thermo Fis-
cher) and TapeStation (Agilent). DNA from research pellets 
and Diff-Quik slides, with matched normal DNA, were ana-
lysed by Infinium Global Screening SNP arrays (Illumina) 
to determine the tumour content (% tumour) of the samples 
[21]. Eight smears with > 1ug of DNA and > 40% tumour 
content [22–24] estimated by SNP arrays underwent WGS: 
four smears had concomitant WGS from fresh cell pellet 
to allow comparison of genome data and four smears were 
selected to see if we could “rescue” cases where the fresh 
cell pellet was inadequate for WGS.

DNA from Diff-Quik smear, cell pellet and matched 
blood were subjected to WGS. Samples were sequenced to 
an average read depth of 36.9x (range 31.5 to 44.1) for blood 
and 70.3x (range of 50 to 77.5x) for tumour samples (smear 
or cell pellet). The detection of somatic mutations was per-
formed as previously described [25, 26]. Results of standard 
of care pathology and molecular testing were recorded.

Results

The tumour content was estimated by SNP arrays for 55 
Diff-Quik smears and 44 fresh samples from 42 patients. 
Figure 1 shows comparisons of tumour content and sequenc-
ing of fresh tissue and Diff-Quik smears. Median DNA yield 
of these smears was 1,965 ng (range: 216–12,690 ng) and 
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the median DNA integrity (DIN) was 4.3 (range: 1.9–6.6). 
Fresh sample results were 17,600 ng (range 434–19,6200 ng) 
and 6.8 DIN (range 1.8–8.8), respectively. Tumour content 
estimated by SNP arrays for the two sample types (research 
cell pellet and Diff-Quik) showed good correlation (Spear-
man correlation 0.85, p < 0.0001) (Fig. 1A).

Table 1 shows the clinical and sample information of the 
eight cases that underwent WGS, including the extracted 
DNA yield and quality, as well as the DNA yield predicted 
by cytopathology scores. In these 8 patients which under-
went WGS the median number of TBNA needle passes 
overall was 4.0 ± 1.0. All the smears with actual DNA con-
tent > 1500 ng had predicted DNA values also of > 1500 ng. 
This value was selected as an approximate value of DNA 
required to perform DNA quality control by SNP array and 
then WGS. For case D01_18_034, the smear had a DNA 

yield of 1452 ng and a predicted yield of 252 ng; the dis-
crepancy likely due to microscopy raw scores being at the 
low margin of the algorithm, in particular the smear surface 
area was only 7% of the slide area.

Both smears and the research cell pellets obtained from 
the same procedure demonstrated good agreement in the 
number and type of somatic single nucleotide variants, copy 
number alterations, and structural rearrangements detected 
by WGS (Fig. 1B). Circos plots (Fig. 1C) illustrate the con-
cordance in the pattern of structural alterations and Venn 
diagrams (Fig. 1D) indicates that the majority (67–91%) of 
point mutations detected in the freshly collected specimens 
were also detected in the diagnostic Diff-Quik smears.

In four samples where the fresh cell pellet did not 
provide appropriate material for WGS, the smear sam-
ples were successfully sequenced (Fig. 2). The somatic 

Fig. 1   Comparison of Diff-Quik smears and fresh cell pellet samples 
obtained from the same EBUS TBNA procedures. A Tumour content 
estimated using SNP arrays for Diff-Quik samples and fresh cell pel-
lets collected during the same EBUS TBNA procedure of advanced 
lung cancers. Spearman correlation = 0.85 (p < 0.0001). Orange dots 
are samples that both Diff-Quik smears and fresh cell pellet were 
subjected to whole genome sequencing. Green dots represent sam-
ples where only Diff-Quik smears were sequenced by WGS, as fresh 
samples had insufficient tumour content (< 40%) or DNA yield. B 
Number and distribution of tumour specific mutations, including 

point mutations, copy number changes and structural rearrange-
ments detected in Diff-Quik smears and fresh cell pellets. C Circos 
plots for fresh cell pellets and Diff-Quik samples. Each plot shows 
chromosomes in the outer ring, followed by copy number alterations 
(green = loss, red = gain), inner ring represents B-allele frequency 
data which can be used to identify regions of loss of heterozygosity, 
lines in the middle of the circos plot indicate structural rearrange-
ments. D Venn-diagrams show the overlap in somatic point mutations 
detected in Diff-Quik samples and fresh cell pellet from each patient
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mutations identified included reportable mutations 
revealed by standard of care testing, i.e. KRAS: c. 35G > C 
p. (Gly12Ala) in case D01_19_046 and a fusion between 
ROS1 and CD74 in case D01_21_090, which was reported 
diagnostically as a ROS1 rearrangement by immunohisto-
chemistry, and fluorescence in-situ hybridisation (Fig. 2C).

In three cases, extra mutations in KRAS and STK11 
(Tier 4 mutations) were detected by WGS (Table 1). Con-
sidering the added overall benefit, from the 8 smears there 
was added molecular information from this WGS single 
test in 4 patients (50%): 3 with tier 4 mutations and 1 
with a ROS 1 fusion. These 4 include 1 patient where the 
standard of care cell block was “insufficient for testing.”

Discussion

Others have demonstrated that WGS is feasible from EBUS-
TBNA specimens [27]. Here we advance this knowledge to 
demonstrate for the first time the feasibility of conducting 
WGS on Diff-Quick smears. A common clinical problem 
arises when the FFPE cell block yields insufficient material 
for genomic testing; here we show that not only can Diff-
Quik smears negate this problem, but also that they can yield 
comprehensive genomic data capturing multiple types of 
somatic mutations in one molecular test.

To demonstrate the utility of WGS, we observed good 
agreement between smear and fresh tissue WGS for point 
mutations (67 to 91% agreement), copy number alterations 
and structural rearrangements. Importantly, WGS identified 

Fig. 2   Somatic alterations detected in Diff-Quik smears from cases 
where the matched fresh cell pellet was not suitable for whole 
genome sequencing. A Number of point mutations and indels, per-
centage of the genomes affected by copy number, and the number 
and types of structural rearrangements. B Circos plots for individual 
cases, showing chromosomes in the outer ring, followed by copy 
number alterations (green = loss, red = gain), inner ring represents 
B-allele frequency data which can be used to identify regions of 

loss of heterozygosity, lines in the middle of the circos plot indi-
cate structural rearrangements. C Images from diagnostic testing for 
case D01_21_090 (adenocarcinoma, CT core biopsy prior to EBUS 
TBNA staging), showing haematoxylin and eosin, ROS1 immunohis-
tochemistry (H-score of 220) and ROS1 FISH (Zytolight SPEC ROS1 
(6q22.1) Dual Colour, Break Apart Rearrangement Probe). ROS1 
fusion positive cells were indicated by single red and green signals, 
as observed here
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Tier 1 somatic alterations reported by accredited methodol-
ogy and Tier 4 mutations with potential relevance to future 
genomic based therapies. Further, smears permitted WGS 
for cases where the fresh tissue and/or FFPE cell pellets had 
insufficient material. In three NSCLC cases, smears pro-
vided sufficient material for comprehensive genomic test-
ing where SOC testing was insufficient or had no reportable 
mutations.

Good correlation of tumour content between fresh cell 
pellets and smears gives confidence that a carefully selected 
Diff-Quik smear can represent an average of all needle 
passes made into the node.

Not all smears will have sufficient DNA (> 1500 ng) for 
WGS or have sufficient malignant cell content (> 40%). We 
suggest the use of our cytology-based prediction algorithm 
can assist in selecting smears that will yield sufficient DNA. 
Further this prediction could allow selection of the best of all 
the smears from a procedure for sequencing. The algorithm 
will continue to be improved with further samples from the 
clinic. Generally, our predictions under-estimated the actual 
yield of DNA obtained from the smears, however all smears 
with > 1500 ng DNA were correctly predicted above that 
threshold. Two cases significantly underestimated DNA con-
tent, as scores for estimating cell counts are arbitrarily set 
at a maximum of 4000 cells some smears clearly have many 
more cells than this. Some samples at the lower marginal 
end of the prediction algorithm may be excluded, but con-
versely the correct identification of samples with > 1500 ng 
can rule them in.

In our study, Diff-Quik smears were one or two years old, 
which might have impacted the DNA quality obtained. We 
would expect freshy collected smears to have DIN approach-
ing that of fresh cell pellets.

Two smears were from patients with SCLC and were 
chosen for their tumour content to contribute to this proof-
of-concept study. Presently there are no specific molecular 
targets for SCLC however WGS could have a future role in 
aiding treatment decision making in the future [28].
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