Skip to main content

Advertisement

Log in

Sesamin Induces the Transdifferentiation of Type II Alveolar Epithelial Cells via AnnexinA1 and TRPV1

  • ACUTE LUNG INJURY
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Acute lung injury (ALI) with high rates of morbidity is often accompanied by the apoptosis in the type I alveolar epithelial cells (ATIs). Thus, the transdifferentiation of type II alveolar epithelial cells (ATIIs) into ATIs is crucial for the maintenance of alveolar epithelial functions. We aimed to elucidate the role of sesamin in the transdifferentiation of ATIIs to ATIs and the involvement of the TRPV1/AKT pathway.

Methods

In vivo, the mouse model of ALI was simulated by intraperitoneal and intratracheal injections of lipopolysaccharide (LPS), respectively. The protective effects of sesamin on ALI were investigated using the survival rate, lung/body weight ratio, histological analysis of lung with HE staining, and mRNA levels of inflammatory factors. Western blot analysis and immunofluorescence detection of ATIs marker AQP5 were used to evaluate the protective effect of sesamin on ATIs. Western blot, EdU, and qPCR analyses were applied to detect changes in apoptosis, proliferation, and transdifferentiation markers of ATII A549 cell lines. Small interfering RNA (siRNA) was used to detect the involvement and relationships between the sesamin receptors (ANXA1 and TRPV1) and the AKT pathway in transdifferentiation.

Results

Sesamin (200 mg/kg) significantly improved LPS-induced ALI and inhibited LPS-induced ATIs reduction. A low concentration of sesamin (20 μM) promoted the transdifferentiation of ATIIs to ATIs. Both ANXA1 and TRPV1 were involved in sesamin-promoted transdifferentiation, while the P-AKT (S473) level was down-regulated by TRPV1 siRNA.

Conclusion

Sesamin may promote transdifferentiation of ATII to ATI to ultimately rescue ALI, with TRPV1/AKT pathway involved in this transdifferentiation. This study revealed a novel role of sesamin in promoting the transdifferentiation of ATIIs to ATIs, providing experimental supports for the potential targets of ALI therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AKT:

Protein kinase B

ALI:

Acute lung injury

ANXA1:

Annexin A1

AQP5:

Aquaporin-5

ATIs:

Type I alveolar epithelial cells

ATIIs:

Type II alveolar epithelial cells

CFTR:

Cystic fibrosis transmembrane regulator

DMSO:

Dimethyl sulfoxide

LPS:

Lipopolysaccharide

PDPN:

Podoplanin

RAGE:

Advanced glycosylation end product-specific receptor

SFTPC:

Surfactant protein C

TRPV1:

Transient receptor potential vanilloid 1

References

  1. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ng CS et al (2006) Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today 36(3):205–214

    Article  CAS  PubMed  Google Scholar 

  3. Butt Y, Kurdowska A, Allen TC (2016) Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med 140(4):345–350

    Article  CAS  PubMed  Google Scholar 

  4. Dobbs LG et al (2010) The great big alveolar TI cell: evolving concepts and paradigms. Cell Physiol Biochem 25(1):55–62

    Article  CAS  PubMed  Google Scholar 

  5. Evans MJ et al (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22(1):142–150

    Article  CAS  PubMed  Google Scholar 

  6. Kondo H et al (2015) Differential regulation of gene expression of alveolar epithelial cell markers in human lung adenocarcinoma-derived A549 clones. Stem Cells Int 2015:165867

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Li L, Xiu F (2022) Sesamin suppresses high glucose-induced microglial inflammation in the retina in vitro and in vivo. J Neurophysiol 127(2):405–411

    Article  CAS  PubMed  Google Scholar 

  8. Majdalawieh AF, Dalibalta S, Yousef SM (2020) Effects of sesamin on fatty acid and cholesterol metabolism, macrophage cholesterol homeostasis and serum lipid profile: a comprehensive review. Eur J Pharmacol 885:173417

    Article  CAS  PubMed  Google Scholar 

  9. Qiang L et al (2016) Sesamin attenuates lipopolysaccharide-induced acute lung injury by inhibition of TLR4 signaling pathways. Inflammation 39(1):467–472

    Article  PubMed  Google Scholar 

  10. Aspal M, Zemans RL (2020) Mechanisms of ATII-to-ATI cell differentiation during lung regeneration. Int J Mol Sci 21(9):3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabe Y et al (2020) Annexin A1 accounts for an anti-inflammatory binding target of sesamin metabolites. NPJ Sci Food 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moran MM, Szallasi A (2018) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol 175(12):2185–2203

    Article  CAS  PubMed  Google Scholar 

  13. Yang F, Zheng J (2017) Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 8(3):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pham TH et al (2020) Sesamin induces endothelial nitric oxide synthase activation via transient receptor potential vanilloid type 1. J Agric Food Chem 68(11):3474–3484

    Article  CAS  PubMed  Google Scholar 

  15. Yajima M, Yajima T, Kuwata T (2005) Intraperitoneal injection of lactoferrin ameliorates severe albumin extravasation and neutrophilia in LPS-induced inflammation in neonatal rats. Biomed Res 26(6):249–255

    Article  CAS  PubMed  Google Scholar 

  16. Ehrentraut H et al (2019) Inducing acute lung injury in mice by direct intratracheal lipopolysaccharide instillation. J Vis Exp. https://doi.org/10.3791/59999

    Article  PubMed  Google Scholar 

  17. Thuy TD et al (2017) Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction. Mol Med Rep 15(5):2949–2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hai DM et al (2021) Protective effects of sesamin on cytoxan-induced spermatogenesis dysfunction by regulating RNF8-ubH2A/ubH2B pathways in male mice. Front Pharmacol 12:708467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang C et al (2019) YY1 mediates TGF-beta1-induced EMT and pro-fibrogenesis in alveolar epithelial cells. Respir Res 20(1):249

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang S et al (2020) Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential. Korean J Physiol Pharmacol 24(3):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu CW et al (2018) PM(2.5)-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part Fibre Toxicol 15(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Y et al (2022) Gandan oral liquid improves exudative pneumonia by upregulating bacteria clearance via regulating AQP5 and MUC5AC in rats. Evid Based Complement Alternat Med 2022:3890347

    PubMed  PubMed Central  Google Scholar 

  23. Yang Y, Li L (2021) Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-kappaB pathway. J Drug Target 29(4):420–429

    Article  CAS  PubMed  Google Scholar 

  24. Jansing NL et al (2017) Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am J Respir Cell Mol Biol 57(5):519–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster KA et al (1998) Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243(2):359–366

    Article  CAS  PubMed  Google Scholar 

  26. Wu J et al (2017) Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res 51(2):e6950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moimas S et al (2019) miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation. ERJ Open Res. https://doi.org/10.1183/23120541.00138-2019

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen Y et al (2020) Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway. Toxicol Appl Pharmacol 387:114848

    Article  CAS  PubMed  Google Scholar 

  29. Bai X et al (2019) Sesamin enhances Nrf2-mediated protective defense against oxidative stress and inflammation in colitis via AKT and ERK activation. Oxid Med Cell Longev 2019:2432416

    Article  PubMed  PubMed Central  Google Scholar 

  30. Enkhbaatar P, Traber DL (2004) Pathophysiology of acute lung injury in combined burn and smoke inhalation injury. Clin Sci (Lond) 107(2):137–143

    Article  CAS  PubMed  Google Scholar 

  31. Long ME, Mallampalli RK, Horowitz JC (2022) Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 136(10):747–769

    Article  CAS  PubMed  Google Scholar 

  32. Jiang C et al (2021) Divergent regulation of alveolar type 2 Cell and fibroblast apoptosis by plasminogen activator inhibitor 1 in lung fibrosis. Am J Pathol 191(7):1227–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Messier EM et al (2013) Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke. Cell Death Dis 4(4):e573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mainardi S et al (2014) Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc Natl Acad Sci USA 111(1):255–260

    Article  CAS  PubMed  Google Scholar 

  35. Guo N et al (2020) Lung adenocarcinoma-related TNF-alpha-dependent inflammation upregulates MHC-II on alveolar type II cells through CXCR-2 to contribute to Treg expansion. FASEB J 34(9):12197–12213

    Article  CAS  PubMed  Google Scholar 

  36. Leach SM et al (2019) The Kinome of human alveolar type II and basal cells, and its reprogramming in lung cancer. Am J Respir Cell Mol Biol 61(4):481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li P et al (2022) Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int 22(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bai F et al (2020) Targeting ANXA1 abrogates Treg-mediated immune suppression in triple-negative breast cancer. J Immunother Cancer 8(1):e000169

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rakoczy K et al (2021) Therapeutic role of vanillin receptors in cancer. Adv Clin Exp Med 30(12):1293–1301

    Article  PubMed  Google Scholar 

  40. Abbas MA (2020) Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 330:109178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sen Wang, Haiyan Yu, Xiaomin Zhao, Yuyu Guo at the State Key Laboratory of Microbial Technology, Shandong University, for the assistance in microimaging of fluorescence microscope analysis.

Funding

This work was supported by the project of Shandong Shilixiang Sesame Products Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by JZ. JZ, JZ, and YY carried out the experiments. YC, ZL, and YL analyzed the data. JZ and JZ wrote the first draft of this manuscript. JZ and JZ finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhou, J., Yu, Y. et al. Sesamin Induces the Transdifferentiation of Type II Alveolar Epithelial Cells via AnnexinA1 and TRPV1. Lung 201, 65–77 (2023). https://doi.org/10.1007/s00408-023-00598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00598-7

Keywords

Navigation