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Abstract
Purpose Pulmonary fibrosis is a life-threatening lung disorder. A comprehensive understanding of the pathophysiological 
changes in the development of pulmonary fibrosis will lead to new insights into its treatment.
Methods We used a paraquat (PQ)-induced rhesus monkey model of pulmonary fibrosis to comprehensively investigate the 
process of pulmonary fibrosis development. Rhesus monkeys were orally administered PQ at concentrations of 25 mg/kg, 
40 mg/kg, and 80 mg/kg. The dose was given once. Behavior and clinical data, such as PQ concentration, arterial oxygen 
saturation, biochemical evaluation, lung histopathology, and medical imaging, were continuously observed.
Results Paraquat-exposed monkeys developed pulmonary fibrosis following an expected time course, especially at 25 mg/
kg. CT images showed ground-glass lesions in the lung after 4 weeks, and pulmonary fibrosis persisted until the end of 
follow-up. Using pathological examination, the lung sustained collagen deposition and slight inflammatory cell infiltration. 
All rhesus monkeys had obvious inflammatory infiltration within 1 week according to the immunohistochemical results and 
the number of leukocytes in the blood. The CT results showed that pulmonary fibrosis had not formed, indicating that drugs 
with powerful anti-inflammatory ability are potential candidates for early pulmonary fibrosis treatment.
Conclusion Our study describes the dynamic process of paraquat-induced pulmonary fibrosis in rhesus monkeys and provided 
a pathophysiological basis for the treatment of pulmonary fibrosis.
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Introduction

Pulmonary fibrosis is a life-threatening disease characterized 
by progressive dyspnea and worsening of pulmonary func-
tion [1]. It manifests as progressive pulmonary interstitial 
fibrous tissue hyperplasia, significant thickening of alveo-
lar walls, and reduction of pulmonary capillaries, leading 

to pulmonary vein and pulmonary hypertension and severe 
right heart failure [2]. Treatment of pulmonary fibrosis with 
pirfenidone and nintedanib has been shown to slow disease 
progression, but these drugs do not cure pulmonary fibrosis 
[3]. In particular, patients with severe COVID-19 develop 
pulmonary fibrosis [4]. To understand the pathogenesis and 
clinical treatment of pulmonary fibrosis, it is important to 
use large nonhuman primate models to examine the process 
of pulmonary fibrosis panoramically and dynamically.

To understand the process of pulmonary fibrosis in 
animals, a simple, convenient, and efficient animal model 
for pulmonary fibrosis is needed. At present, methods of 
inducing pulmonary fibrosis in animals are mainly divided 
into two categories: biological factors and nonbiological 
factors. Models induced by biological factors are more 
common in the study of cytokine overexpression or when 
targeting type II alveolar epithelial cell injury [5, 6]. These 
models are more similar to the late clinical manifestations 
of pulmonary fibrosis, but are also more expensive. Induc-
tion by abiotic factors has the advantages of diversity in 
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drug selection and administration routes, simple operation 
and low price, and is therefore a more common choice for 
modeling pulmonary fibrosis. This modeling approach is 
mainly based on drug or toxic factors (e.g., bleomycin or 
paraquat), environmental factors (e.g., silica or asbestos), 
and other factors [7]. At present, the most common method 
is animal pulmonary fibrosis induced by bleomycin. How-
ever, this modeling method has many shortcomings, such 
as high animal mortality, complicated operation, severe 
acute lung injury, mild collagen metabolism disorder, and 
uneven distribution of lesions [8–10]. In models induced 
by environmental factors, the best inducer is silicon diox-
ide [11]. However, it is rarely used because the environ-
mental factors pose risk to the human body during the 
modeling process. Therefore, a more convenient and con-
sistent model of the pathogenesis of pulmonary fibrosis 
is still needed.

In recent years, many researchers have used paraquat to 
induce pulmonary fibrosis in animals. Paraquat (PQ) is a 
fast-acting and nonselective contact herbicide. The lungs are 
a specific target for the pathological effects of PQ because 
of its selective accumulation by this organ. PQ pulmonary 
concentrations can be 6 to 10 times higher than those in the 
plasma [12]. Many patients with PQ poisoning may develop 
lung damage and subsequently develop pulmonary fibrosis 
after ingestion of PQ of at least 20 mg/kg by oral, inhala-
tion, and skin exposure. If PQ intake is higher than 40 mg/
kg, it will cause shock and lethality within 24–48 h [13]. In 
addition, PQ can also successfully induce pulmonary fibro-
sis in experimental animals such as mice, rats, and rabbits, 
usually by a one-time oral perfusion or intraperitoneal injec-
tion [14–16]. The method of PQ-induced pulmonary fibrosis 
avoids non-specific damage and can be specifically enriched 
in the lungs to form lung damage. Therefore, the PQ-induced 
animal model may be a simple, rapid, and consistent method 
of modeling pulmonary fibrosis.

Due to the lack of knowledge of the pathophysiological 
process in the pathogenesis of pulmonary fibrosis, the devel-
opment of therapeutic strategies has been largely hindered. 
The current knowledge of the pathophysiological processes 
underlying pulmonary fibrosis comes from small animal 
studies and is limited by substantial differences in species. 
Most laboratory animals, such as rodents, require special-
ized imaging facilities, and the ability to assess lung injury 
with imaging is limited by other factors as well. It is also 
difficult to obtain enough arterial blood from rodents, espe-
cially mice, thus making it infeasible to generate continuous 
dynamic data from an individual animal [17]. To avoid these 
problems, we chose rhesus monkeys as model animals in our 
study. They are phylogenetically similar to humans, so they 
have similarities in related behaviors, anatomy, and physiol-
ogy, and the degree of pulmonary fibrosis can be assessed 
by computed tomography (CT), which can provide a more 

comprehensive understanding of the dynamic process of 
pulmonary fibrosis.

At present, there are almost no reports on PQ-induced 
pulmonary fibrosis in rhesus monkey models. Hui Chen 
et al. reported 80 mg/kg PQ-induced pulmonary fibrosis 
using intragastric intoxication in Wistar rats [18]. Experi-
mental dosages were calculated according to the surface 
area-to-volume ratio and were equivalent to 55 mg/kg (in 
rhesus monkey terms). However, the method and dosage of 
PQ-induced pulmonary fibrosis in mice and Wistar rats are 
not identical [18–22]. To fully understand the development 
process of pulmonary fibrosis in nonprimate animals, we 
used orally-administered paraquat in rhesus monkeys to con-
struct a pulmonary fibrosis model. We recorded the continu-
ous clinical data of rhesus monkeys induced by oral doses 
of PQ at 25 mg/kg, 40 mg/kg, and 80 mg/kg. Among these, 
oral paraquat at 25 mg/kg was the most effective in induc-
ing pulmonary fibrosis, which we discuss in detail, includ-
ing biochemical indicators, CT, and pathological results. 
Inflammation is more pronounced in the first week and can 
be treated with anti-inflammatory agents. In the later stage, 
fibrosis occurs without obvious inflammation, and treatment 
for pulmonary fibrosis is needed. Our data can provide an 
experimental basis for exploring the pathophysiology of pul-
monary fibrosis and evaluating potential treatment strategies.

Materials and Methods

Animals

The animal protocols used in this study were approved 
by the Animal Ethics Committee of West China Hospi-
tal of Sichuan University (approval number, 2020093A). 
Healthy adult experimental rhesus monkeys were provided 
by Chengdu Ping’an Experimental Animal Reproduction 
Center (License No.: SCXK [CHUAN] 2014–013, Chengdu, 
China). The monkeys were housed singly in standard cages 
with a 12-h light/dark cycle. For all invasive operations, the 
monkeys were anesthetized using ketamine and propofol for 
subsequent intubation and ventilation using isoflurane to 
maintain anesthesia. All monkeys were provided with stand-
ard dry monkey food and water ad libitum. The monkeys 
were scheduled for euthanasia when they displayed the fol-
lowing symptoms: inability to eat and drink, flapping tremor, 
and inability to wake up. Rhesus monkeys were submitted to 
a full necropsy after death.

Experimental Design and Treatments

All rhesus monkeys in this experiment were male, weighing 
between 4 and 5 kg, and were born in 2014. Based on previ-
ous data [13, 18], we used different doses in the process of 
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constructing PQ-induced models of pulmonary fibrosis in 
rhesus monkeys, including 25 mg/kg, 40 mg/kg, and 80 mg/
kg of PQ administered orally. The experiments were con-
ducted simultaneously. Since rhesus monkeys are expensive 
and not readily available, we performed experiments with 
only three rhesus monkeys per group.

In this experiment, rhesus monkeys were fasted for a day 
before induction. The anesthetized rhesus monkeys were 
given PQ orally once by gavage. They then underwent CT 
scanning on a regular basis at the West China Hospital of 
Sichuan University. The arterial blood of rhesus monkeys 
was extracted to measure arterial oxygen saturation and 
serum potassium, as well as other indicators. Venous blood 
was collected, and lung puncture was performed. Autopsy 
performed after rhesus monkey dies.

CT‑guided Lung Biopsy

All procedures were performed by interventional radiolo-
gists experienced in performing percutaneous lung biopsies. 
During the time of biopsy, CT images through the area of 
interest were obtained in helical scan mode using a 3- to 
5-mm thickness to avoid emphysematous lung and pulmo-
nary vessels and cross the smallest number of pleural sur-
faces. Rhesus monkeys were in a supine position to provide 
the shortest and safest route for lung biopsy. The rhesus 
monkey's chest required skin preparation and was prepped 
with an antiseptic solution and then local anesthesia using 
1% lidocaine. A 19-gauge puncture needle was introduced, 
and new tomographic images were obtained to confirm and 
modify the needle position. After the procedure, a chest CT 
scan was routinely performed to detect the presence of pos-
sible complications. The biopsy tract in the lung was gently 
injected with 3 to 5 mL of sterile 0.9% saline while with-
drawing the coaxial sheath.

Transbronchial Lung Biopsy (TBLB)

After determining the most suitable PQ-induced rhesus 
monkey pulmonary fibrosis model, we selected three rhe-
sus monkeys to explore the dynamic physiological process 
of early pulmonary fibrosis. We collected bronchoalveolar 
lavage fluid (BALF) from rhesus monkeys at 25 mg/kg at 
12, 36, and 60 h.

A fiberoptic bronchoscope was used to reach the selected 
segmental bronchus. The biopsy forceps were advanced, and 
then withdrawn 1–2 cm until resistance was encountered. 
Generally, it entered a depth of 4 cm from the segmental 
bronchus opening. The biopsy forceps were then opened, 
and the forceps were advanced by an additional 1 cm at the 
end of expiration. Then, the tissue was clamped and quickly 
withdrawn.

Histology

We performed immunohistochemistry on the monkey lung 
and other organ specimens. For hematoxylin and eosin (HE) 
staining and Masson and Sirius red staining, tissues were 
fixed in 10% neutral buffered formalin for 48 h, embedded 
in paraffin, sectioned at 5 µm, and stained. Immunohisto-
chemistry for CD68 (1:100, Abcam, Cambridge, UK) and 
F4/80 (1:100, Abcam, Cambridge, UK) was used to label 
pulmonary macrophages. MAC387 (1:200, Thermo Fisher, 
Grand Island, NY) is a monocyte marker that is positively 
expressed during early infiltration in certain inflammatory 
states. We used α-SMA (1:200, Abcam, Cambridge, UK) as 
an immunohistochemical marker of alpha-smooth muscle 
actin, a feature of myofibroblasts. Lung pathology analyses 
were performed by two pathologists independently.

Behavioral Testing

During this study, the behaviors of the rhesus monkeys were 
observed every day, including self-biting, self-grabbing, eye-
poke, finger sucking, hair pulling, bouncing, shaking, body 
turning and stepping, eating, yawning, cage shaking, explor-
ing, and foraging.

Biochemical Analyses

Blood serum, plasma, and BALF were isolated by centrifu-
gation at 1500 × g for 10 min at 4 °C for biochemical evalua-
tion and PQ concentration detection. All the parameters were 
analyzed in a standard clinical laboratory at West China 
Hospital, Sichuan University.

Results

We first analyzed the performance of the rhesus monkeys 
after PQ poisoning. Rhesus monkeys behaved normally in 
the initial stage, but within 12–30 h, they exhibited one or 
more of the following clinical symptoms: lethargy, decreased 
activity, vomiting, abdominal distension, and drooling. 
Rhesus monkeys treated with 25 mg/kg and 40 mg/kg PQ 
survived until the end of follow-up, while rhesus monkeys 
treated with 80 mg/kg PQ died after 1 week (Supplementary 
Fig. 1).

The concentration of PQ in rhesus monkey blood was 
the highest at 12 h. At that point, the PQ concentration in 
the blood of those treated with 25 mg/kg was 170.83 ng/mL 
(Fig. 1A). The PQ concentration in the blood of those treated 
with 40 mg/kg was 330.33 ng/mL. The PQ concentration in 
the blood of those treated with 80 mg/kg was 966.75 ng/mL 
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at 12 h and 114.56 ng/mL at 36 h (Fig. 1A, Supplementary 
Fig. 2A). Over time, the concentration of PQ in the blood 
decreased until it was undetectable.

The blood pressure of the rhesus monkeys did not change 
significantly. The arterial oxygen saturation (SaO2) of the 
rhesus monkeys treated with 25 or 40 mg/kg PQ decreased 
briefly at 60 h. However, the SaO2 of the rhesus monkeys 
treated with 80 mg/kg decreased at 12 h (Fig. 1B, Supple-
mentary Fig. 2B). Hypokalemia is a negative prognostic 
marker in paraquat poisoning [23]. Therefore, we analyzed 
the serum potassium concentration. There was a slight fluc-
tuation in serum potassium concentration in rhesus mon-
keys treated with 25 or 40 mg/kg PQ. The serum potassium 
of rhesus monkeys treated with 80 mg/kg PQ increased to 
5.3 mmol/L at 1 week (Fig. 1C, Supplementary Fig. 2C). 
The proportion of white blood cells and neutrophils in their 
blood increased in the early stage of PQ poisoning and 
returned to normal 1 week later (Fig. 1D, Supplementary 
Fig. 2D).

Serum levels of alanine transaminase (ALT) and aspartate 
transaminase (AST) in the blood of rhesus monkeys treated 
with 25 or 40 mg/kg PQ increased from 12 to 60 h and 
then gradually decreased. In rhesus monkeys treated with 
80 mg/kg PQ, AST increased significantly at 12 to 48 h, 
but ALT did not change significantly (Fig. 2A, Supplemen-
tary Fig. 3A). Markers of renal function, such as creati-
nine (CREA), uric acid (UA), and urea, of rhesus monkeys 
treated with 40 mg/kg PQ was higher than normal in the first 

4 weeks. Rhesus monkeys treated with 25 or 80 mg/kg PQ 
showed only small fluctuations in renal function (Fig. 2B, 
Supplementary Fig. 3B). Creatine kinase (CK), hydroxybu-
tyrate dehydrogenase (HBDH) and lactate dehydrogenase 
(LDH) are relevant markers for cardiac injury, hepatic or 
muscle injury, and hemolysis. These markers were signifi-
cantly increased in the early stage and essentially returned 
to normal 2 weeks later (Fig. 2C, Supplementary Fig. 3C).

The CT images of rhesus monkeys induced with 25 mg/
kg PQ were evaluated as follows. At 12 h, pneumomediasti-
num appeared in the lungs, with exudative changes in both 
lungs. At 60 h, the right lung was atelectatic, and there was 
a small amount of exudate in the middle lobe. After 1 week, 
the lung markings were disorganized, with left subpleural 
changes and thickening of the interlobar fissures (Fig. 3A). 
At 4 weeks, ground-glass lesions appeared in the lungs. Dif-
fuse ground-glass lesions were more obvious at 12 weeks. 
The CT results revealed that pulmonary fibrosis may have 
developed in rhesus monkeys after 4 weeks (Fig. 3B, Sup-
plementary Table 1).

Lung CT images of rhesus monkeys treated with 40 mg/
kg PQ showed obvious mediastinal emphysema at 12 h. At 
60 h, there was pneumothorax and hemorrhage in the right 
lung. The apex of the upper lobe of the lung showed con-
solidation exudation, compressed atelectasis, pleural effu-
sion, and mediastinal emphysema aggravation. Mediastinal 
emphysema disappeared at 1 week (Fig. 3A). At 4 weeks, 
pneumothorax and mediastinal emphysema appeared again 

Fig. 1  Blood results in a rhesus monkey model with pulmonary fibro-
sis induced by oral PQ at 25, 40, or 80  mg/kg. B Changes in arte-
rial oxygen saturation  (SaO2) during modeling. C Changes in serum 
potassium concentration. D Counts of white blood cells, neutro-
phils, and lymphocytes in blood. The B–D legend is the same as A. 

PQ paraquat. Data are presented as the mean ± SEM (error bars). 
n = 3 per group. Between-group comparison at 25 mg/kg vs. 40 mg/
kg, *p < 0.05. Between-group comparison at 25 mg/kg vs. 80 mg/kg, 
#p < 0.05
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in the lungs, and there was a small bilateral subpleural effu-
sion. Atelectasis was also observed at 5 weeks, and there 
was no pulmonary fibrosis detected by CT until 8 weeks 
(Fig. 3C, Supplementary Table 1). Rhesus monkeys treated 
with 40 mg/kg PQ showed a more severe progression com-
pared to the clinical pulmonary fibrosis course, but no obvi-
ous fibrosis was seen by CT until 8 weeks. In addition, CT 
images of rhesus monkeys treated with 80 mg/kg PQ also 
did not show pulmonary fibrosis.

We further observed the pathological changes in the lung 
during the induction of pulmonary fibrosis by histopathol-
ogy of lung biopsy samples. Lung biopsy tissue samples of 
rhesus monkeys treated with 25 mg/kg PQ showed extensive 
cellular thickening of the interalveolar septa, inflammatory 

cell infiltration, and alveolar structural disorder or destruction 
in the early stages. The results of Masson's trichrome stain-
ing and Sirius red staining also indicated that PQ may have 
induced excessive collagen deposition in lung tissue (Fig. 4, 
Supplementary Fig. 4, Supplementary Table 2). After 1 week, 
it still displayed inflammatory cell infiltration, increased inter-
stitial cells with a fibroblastic appearance, and fibrogenesis. 
After 4 weeks, lung tissue exhibited fibrosis and obvious 
inflammatory infiltration (Fig. 5, Supplementary Fig. 4). We 
used α-SMA as an immunohistochemical marker of alpha-
smooth muscle actin, a feature of myofibroblasts. The results 
showed significant collagen deposition at 12 weeks (Fig. 5). 
The α-SMA staining was consistent with the results of Mas-
son staining (Fig. 5). The expression of α-SMA was high at 
4–12 weeks in the rhesus monkeys treated with 25 mg/kg. 
Even at 12 weeks, pulmonary fibrosis was still present, which 
was consistent with the CT results.

The lungs of the rhesus monkeys treated with 40 mg/kg 
PQ showed diffuse hemorrhage at an early stage. Collagen 
deposition appeared at all time points after 1 week (Fig. 4, 
Supplementary Table 2). From 1 to 2 weeks, inflammatory 
cells infiltrated and exudated obviously in the alveolar cav-
ity (Fig. 5). Masson and Sirius red staining showed collagen 
deposition up to 8 weeks. The α-SMA staining results were 
consistent with the Masson and Sirius red staining results.

After 1 week, rhesus monkeys treated with 80 mg/kg PQ 
died of poisoning. Lung histopathology showed mild inflam-
mation and no obvious collagen deposition. However, alveolar 
edema and collapse were observed. Hemorrhagic foci were 
observed in the lung tissue. High doses of oral PQ also caused 
intestinal mucosal cell shedding. The liver and kidneys were 
also damaged (Fig. 6).

We found that oral administration of 25 mg/kg PQ in rhesus 
monkeys was more consistent with the development of pulmo-
nary fibrosis. To understand the early changes in the lung at 
this dose, we replicated PQ poisoning in rhesus monkeys with 
an oral dose of 25 mg/kg. Then, BALF and lung tissues from 
transbronchial lung biopsies were collected. The concentra-
tion of PQ in BALF was 46.7 ng/mL (Fig. 7A). In the BALF, 
white blood cells increased at 12 h and gradually returned to 
normal (Fig. 7B). The biochemical indices of the rhesus mon-
keys treated with 25 mg/kg peaked at 36 h and then returned to 
normal (Fig. 7C). Lung tissue sections obtained by transbron-
chial lung biopsy displayed extensive cellular thickening of the 
interalveolar septa, interstitial edema, and inflammatory cell 
infiltration. The results demonstrated that the alveolar structure 
was damaged, with extensive collagen deposition at 36 h and 
60 h (Fig. 7D).

Fig. 2  The results of liver function, kidney function, and cardiac 
enzyme profile in the blood of three rhesus monkeys. A Changes in 
ALT and AST. B The contents of CREA, UA, and UREA in renal 
function in serum with the passage of time. C Change trend of 
related indices of cardiac enzyme profile. The B–D legend is the 
same as in A. AST aspartate aminotransferase, ALT alanine ami-
notransferase, CREA creatinine, UA uric acid, CK creatine kinase, 
HBDH hydroxybutyrate dehydrogenase, LDH lactate dehydrogenase. 
Data are presented as the mean ± SEM (error bars). n = 3 per group. 
Between-group comparison at 25  mg/kg vs. 40  mg/kg, *p < 0.05. 
Between-group comparison at 25 mg/kg vs. 80 mg/kg, #p < 0.05
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Fig. 3  Computed tomography (CT) imaging results of rhesus mon-
keys. A The results of rhesus monkeys during the early stages of PQ 
induction. B In rhesus monkeys treated with 25 mg/kg PQ, ground-
glass lesions after 4  weeks of follow-up. C CT of rhesus monkeys 
treated with 40 mg/kg PQ during weeks 2–8. Arrows are annotated 
as follows: in the 25 mg/kg group, exudative changes in both lungs at 

12 h; exudation in the upper left lung at 36 h; right atelectasis at 60 h; 
right lung shrinkage and poor light transmittance at 2 weeks; ground-
glass lesions at 12 weeks. In the 40 mg/kg group, pneumothorax ①, 
mediastinal emphysema ② occurred at 12 h; pneumothorax ①, medi-
astinal emphysema ②, lung apex consolidation exudation ③ at 60 h; 
pneumothorax occurred at 4 weeks; atelectasis occurred at 5 weeks
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Fig. 4  Lung histopathological results of three PQ-poisoned rhesus 
monkeys. A The results of HE, Masson and Sirius red staining in 
lung tissue. B Pathological results of rhesus monkeys poisoned with 
25  mg/kg PQ for 12  weeks. C The results of rhesus monkeys poi-

soned with 40 mg/kg PQ for 8 weeks. D and E was the semi-quanti-
tative statistical result of collagen on Masson staining and Sirius red 
staining, respectively. Scale bars = 50 μm
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Discussion

PQ poisoning involves acute damage to multiple organs, 
including the liver, heart, kidneys and lungs. There are two 
clinical stages in the development of lung lesions, which are 
divided into early-stage acute lung injury and late-stage pul-
monary fibrosis [24]. In the first week of induction with PQ, 
we also found that rhesus monkeys developed more obvious 
acute lung injury (ALI). ALI can further lead to respiratory 
distress and eventually develop into pulmonary fibrosis [25, 
26]. We observed early-stage ALI, including the tissue infil-
tration of inflammatory cells, pulmonary edema, and arte-
rial hypoxemia, which damage the vascular endothelium and 
alveolar epithelium, thus diminishing lung function. Thus, 
drugs with powerful anti-inflammatory ability are potential 
candidates for early pulmonary fibrosis treatment.

During the experiment, we found inconsistencies between 
CT images and pathological results. Masson and Sirius red 
within 60 h after oral administration of 25 mg/kg PQ in 

rhesus monkeys showed a large amount of collagen exuda-
tion, while the CT showed no significant change. In addi-
tion, before the death of the rhesus monkey model orally 
administered 80 mg/kg PQ, there was no significant abnor-
mality in medical imaging, but there was alveolar edema 
and collapse in lung pathology, and obvious bleeding on 
the lung surface could be observed in autopsy results. This 
difference is clinically important and should not be ignored. 
Kelahan LC et al. suggest that when an image-guided biopsy 
is finished, if the resulting pathologic diagnosis does not 
appear consistent (concordant) with the imaging findings 
that prompted the biopsy, this should prompt further evalu-
ation [27]. Therefore, respiratory physicians and radiologists 
need to be informed that there is a discrepancy between CT 
images and pathology after drug poisoning, which can be 
used as a reference in clinical treatment.

The timeline of the laboratory values, histology and 
CT follow-up were different. We closely tracked the per-
formance of rhesus monkeys treated with 25 or 40 mg/kg 

Fig. 5  The IHC results of CD68, F4/80, MAC 387, and α-SMA in lung tissue. Between-group comparison at 25 mg/kg vs. 40 mg/kg, *p < 0.05
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PQ until 8 weeks and found that only 25 mg/kg PQ rhesus 
monkeys showed similar clinical pulmonary fibrosis from 
4 weeks by CT and histopathology. To determine the stabil-
ity of the 25 mg/kg PQ model, we continued to focus on 
12 weeks to determine the stable presence of pulmonary 
fibrosis in this model. Due to the high cost of CT and biopsy 
and the need for experienced clinicians to operate, we only 

collected laboratory values to determine the animal's sur-
vival status, routine blood test and degree of organ damage 
during follow-up after 12 weeks.

In our study, the results of Masson and Sirius red staining 
showed that both the 25 mg/kg and 40 mg/kg groups had 
collagen deposition after 4 weeks, but the CT results showed 
that only the 25 mg/kg group had obvious ground-glass 

Fig. 6  Autopsy lung pathology results of 80 mg/kg PQ-poisoned rhesus monkeys at 1 week (A) and HE staining of other organs (B). Scale 
bars = 200 μm
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lesions at a later stage, while not observed in the 40 mg/kg 
group. But we don't know the reason for this phenomenon. 
We hypothesize that this experiment had the disadvantage 
that the sample size was not large enough, which may mis-
lead our conclusions. In addition, clinically, moderate to 
severe poisoning usually occurs after ingestion of 20–40 mg/
kg. Patients may develop pulmonary fibrosis, but pulmonary 
fibrosis may not appear for days or weeks [28]. In terms of 
clinical outcomes, pulmonary fibrosis may not be entirely 
dose-dependent. The 40 mg/kg group had severe pulmonary 
exudation and edema (Fig. 4 at 12 h), and pneumothorax 
(Fig. 3 at 12 h, 60 h, and 4 w) also showed moderate to 

severe poisoning. Rhesus monkeys did not develop pulmo-
nary fibrosis for several weeks, which was similar to the 
clinical phenomenon. We hope to expand the sample size to 
verify the experimental results in the future.

Although this study provides a dynamic model of the 
pathophysiological process of rhesus monkeys during pul-
monary fibrosis, there are still many deficiencies. First, rhe-
sus monkeys are too expensive to be validated as a model in 
large numbers, which is a shortcoming of this study. Second, 
the absorption of PQ occurs mainly in the small intestine 
[29]. In this experiment, rhesus monkeys were fasted for a 
day before modeling, but CT images showed that they still 

Fig. 7  BALF results and transbronchial lung biopsy histopathology of 
rhesus monkeys treated orally with 25 mg/kg PQ. A PQ concentration 
in BALF. B Classification of white blood cells, neutrophils, and lym-
phocytes in BALF. C Changes in liver function, kidney function, and 

myocardial enzyme profile in BALF. D Pathology results of trans-
bronchial lung biopsy. BALF bronchoalveolar lavage fluid, PQ para-
quat. Scale bars = 50 μm. n = 3 per group
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had food residues in their stomachs. This may have impacted 
the results. Third, most of the lung tissues in this study were 
obtained by biopsy, and the samples were small, so the fibro-
sis of the whole lung could not be determined by pathology, 
which affected the convincingness of the conclusion. Fourth, 
although we provided CT scan information, there were no 
data on lung function in these animals, which was a limita-
tion of the experimental conditions.

Because the pathogenesis of pulmonary fibrosis is not 
fully understood, no efficient therapeutics have been devel-
oped to treat this condition. The large species difference 
between small animals and humans, as well as the lack 
of information on the early changes in lung tissue and the 
internal environment, have hindered the understanding of 
the pathophysiological processes in pulmonary fibrosis. We 
followed the pathophysiology of toxin-induced pulmonary 
fibrosis in nonhuman primates, including changes in clini-
cal features, histopathology, imaging, and lifespan. Clinical 
manifestations of pulmonary fibrosis in nonhuman primates 
may be used to investigate the mechanisms underlying the 
initiation and development of pulmonary fibrosis, providing 
a research basis for the follow-up exploration of pulmonary 
fibrosis treatment.

Conclusions

In summary, we used a large, nonhuman primate model to 
provide novel insights into the pathophysiological process of 
pulmonary fibrosis. Our work demonstrates that inflamma-
tory infiltration is prominent in the early stage and may play 
an important role in the development of pulmonary fibrosis 
as a potential therapeutic target for this disease. In addition, 
the rhesus monkey model with oral administration of 25 mg/
kg PQ is more similar to the natural process of pulmonary 
fibrosis, and therefore has the potential to be used for drug 
development for pulmonary fibrosis.
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