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Abstract Despite the best efforts of basic and applied

science, the identity of the human ‘‘cough receptor’’

remains elusive. The attraction of identifying a single

‘‘catch all’’ cough receptor is obvious, although such an

objective is unlikely to be realised given the concept of

‘‘cough hypersensitivity,’’ which is now considered the

most clinically relevant description of what underlies

problem coughing. One means of progressing this area is to

join the thinking and experimental effort of basic science

and clinical research in an effective manner. Some of the

best examples of cooperative and translational research

over the years together with an update on the most recent

work will be discussed in this article.
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Introduction

The cough reflex has evolved primarily to protect the air-

way from noxious stimuli and is activated by a range of

mechanical, thermal, and chemical stimuli [1]. There is

evidence from animal and human studies for the existence

of both mechano-sensing and chemo-sensing airway cough

receptors [2, 3]. Much of what we currently know has

emerged from experimental models involving the

mechanical probing and chemical stimulation of rodent

airways and from observing human subjects inhale tussive

stimuli, such as capsaicin or citric acid. Whereas the

limitations of using animals (especially anaesthetised) to

faithfully model human cough are recognised [4] and the

value of inhalation cough challenge testing to reflect clin-

ical cough has been questioned [5], both have helped to

advance what we currently know about the human cough

receptor. However, there are important knowledge gaps

and resolving these will help to advance the treatment

options not only for patients with acute and chronic cough

but for those with common respiratory diseases, including

chronic obstructive pulmonary disease (COPD), pulmonary

fibrosis, and lung cancer where cough often is a disabling

and intractable problem. The key therapeutic objective in

the management of cough is to ‘‘reset’’ the hypersensitive

cough reflex while maintaining its protective role. Ideally,

the identification of a peripheral cough receptor or one

located centrally that could be modulated in a very selec-

tive fashion would overcome the ‘‘off-target’’ effects that

limit existing treatment options. Using recent advances in

basic science and clinical research techniques significant

progress has been made in understanding mechanisms of

peripheral and central cough reflex sensitisation. How these

findings relate to clinical cough and associated sensations,

such as ‘‘urge to cough’’ are currently being determined.

The purpose of this article is to provide a brief overview of

some of the important ‘‘cough receptor’’ literature of the

past 60 years together with comment on how this has

helped our understanding and management of human

cough.

The Early Work in Search of Cough Receptors

In the original studies of the early 1950s conducted by

Widdicombe [6–8], it was observed that both mechanical

probing and chemical irritation of the airways of both
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spontaneously breathing and anaesthetised cats readily

evoked cough. Coughing (described as an inspiratory effort

followed by expiration) was observed on mechanical

stimulation, an effect that could be abolished with vagot-

omy. The most sensitive area identified for mechanically

eliciting cough was the larynx followed by the tracheal

bifurcation and distal portion of the trachea. These obser-

vations provided important clues about where mechano-

sensitive ‘‘cough receptors’’ were located. The mechanical

distension and volume change that occurred following

inflation of air into the trachea and larger airways also was

noted to induce coughing. In addition, chemical stimulation

evoked coughing, although in some cases only ‘‘expira-

tion’’-type efforts were observed. Unlike mechanically

induced coughing, a chemically induced cough could not

be readily abolished following vagotomy. It also was noted

that repeated stimulation with sulphur dioxide induced

chemical but not mechanical cough receptor refractoriness.

Interestingly, a more vigorous response to chemical acti-

vation was noted when the stimulus was delivered to more

distal airways compared with the trachea and the larger

more proximal airways. To summarise these findings, it

was apparent that cough could be elicited by the mechan-

ical and chemical stimulation of two quite distinct

receptors located on vagal nerves and distributed in the

larynx, trachea, and throughout the bronchial tree (Fig. 1).

Furthermore, the notion that the mechanosensitive cough

receptors that appeared to be located proximally where

they could be readily activated was entirely consistent with

their assumed physiological role in airway protection. It

was also tempting to speculate that chemosensitive recep-

tors might be responsible for the cough associated with

disease processes in the smaller more distal airways [9].

Although the majority of research at this time focused on

the peripheral afferent and efferent components of the

cough reflex, some attention was devoted to the central

nervous system and its role in modulating the cough

response [10]. May and Widdicombe studied the effect of

opiates, which were known to act centrally, on cough reflex

responses. They observed that opiates inhibited both

chemically and mechanically induced cough and concluded

that opiates exerted their antitussive effect via a central

rather than peripheral mechanism [10]. The pioneering

work of Widdicombe and colleagues [11–16] at this time

provided a clear direction of travel for subsequent

researchers to study the peripheral [2, 17] and central [18–

26] mechanisms associated with coughing more

completely.

VAGAL AFFERENT SUBTYPES AND RECEPTORS IN

LARGE BRONCHI AND PERIPHERAL AIRWAYS

Sensory Afferents Activated by

RAR mechanical distention, mucus, 
oedema, 

low pH (citric acid), capsaicin

‘Cough’ receptors mechanical, low pH (citric 
acid)

C fibres capsaicin, bradykinin, prostaglandins

VAGAL AFFERENT SUBTYPES AND RECEPTORS IN

LARYNX AND TRACHEA

Sensory afferents Activated by

RAR Mechanical distention, 

Punctuate stimulation (foreign body)     

A nociceptors Low pH, capsaicin,    
bradyknin

‘Cough’ receptors Mechanical, low pH (citric 
acid)

C fibres Bradykinin, low pH, SO2

UPPER AND LOWER AIRWAY AFFERENT RECEPTORS

Receptor Activated by

TRPV1: heat, low pH, capsaicin      

TRPA1: noxious cold, mechanical, Cigarette smoke, 

low pH, pungent chemicals (cinnamon, wasabi)

TRPM8 Cool, menthol, Thymol

ASICs low pH (citric acid), mechanical

Fig. 1 A schematic of upper and lower airway vagal sensory afferents and receptors with putative role in cough. RAR rapidly adapting receptor,

TRPA1 transient receptor potential A1, TRPV1 transient receptor potential vanilloid 1, TRPM8 transient receptor potential M8
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Further Characterisation of the Afferent Cough

Receptors

There has been considerable debate about the precise vagal

afferent subtype responsible for coughing [27]. Vagal afferent

nerve fibres are distinguished not just by their response to spe-

cific irritant stimuli but by their site of origin (arising either from

the nodose or jugular ganglia), their site of termination in the

airway, and a number of physiological properties, including

conduction velocity, neuropeptide content, and extent of mye-

lination. Using this information, two functional subtypes of

afferent nerve fibres are recognised, which have been termed Ad
and C fibres, respectively. Ad fibres can be further categorised

into rapidly adapting receptors (RARs) and slow conducting

fibres or slowly adapting receptors, SARs [28]. Using this

information, Canning et al. [2] were able to demonstrate in an

anaesthetized guinea-pig model that within the laryngeal and

tracheal portions of the airway, cough was regulated by Ad
fibres arising from the nodose ganglion. They identified a par-

ticular subset of these afferent neurones (with no characteristic

features of either RARs or SARs) but which were exquisitely

sensitive to mechanical and acid stimulation but insensitive to

chemical (capsaicin) activation and which they considered

essential for cough reflex regulation [2]. They proposed the role

of capsaicin sensitive C fibres to be less relevant to direct acti-

vation of cough but did recognise their role in regulating cough.

In particular, the observation that capsaicin induced cough in

conscious animals (and humans) but not anaesthetized animals

suggested that consciousness plays a part in C-fibre-dependent

cough. C-fibres therefore may be responsible for the ‘‘urge’’ or

sensation of the ‘‘need to cough’’ rather than the ‘‘protective’’

reflex cough response to an inhaled foreign body. As an

extension to their earlier work, Canning and colleagues [18]

reported the selective expression of a sodium pump isozyme on

the terminals of the Ad fibres. They proposed that this isozyme,

the alpha-3 subunit of the Na/K ATP’ase, was integral to cough

regulation and a potential target for cough therapy [18]. Work is

ongoing to further develop this exciting observation.

Activation of a single receptor on airway sensory nerves is

in isolation insufficient to induce a cough. Following receptor

activation a nonpropagated action potential called a ‘‘gener-

ator potential’’ is produced, which if of sufficient magnitude

activates a voltage-gated Na channel. This in turn evokes an

action potential that is conducted along the neural axon cen-

trally and ultimately leading to a cough [29]. The effect of

blocking Na channels as a treatment for cough will be dis-

cussed later in this article.

Human Airway Challenge with Tussive Agents

Bickerman first reported the tussive effects of inhaled citric

acid in healthy human subjects almost 50 years ago [30]. A

few years later in a series of experiments designed to study

the irritant airway responses in patients with obstructive

airways disease, Simonsson et al. [31] observed coughing

in response to a range of physical and chemical irritants,

including aerosols of citric acid, histamine and charcoal

dust and cold (-20 �C) air inhalation. The coughing

observed with each stimulus occurred within seconds of

inhalation and could be blocked by atropine, which was

consistent with the view that cough reflex activation

occurred through stimulation of receptors present on air-

way vagal afferents. In this study, Simonsson and col-

leagues suggested that the patients with airway disease

(they had studied asthmatic subjects and chronic bronchitic

patients) had sensitized cough receptors. In addition to

cough, many of the patients reported additional symptoms,

including a ‘‘tickle’’ sensation in the throat and the feeling

of an urge or desire to cough. Although the precise identity

of the human cough receptor could not be established from

these experiments, it did confirm that cough could be

activated by a range of distinct irritants and introduced for

the first time the idea that in airway disease cough receptors

appeared to be sensitized. This concept of cough hyper-

sensitivity is now widely considered as central to the

understanding of persistent cough and the symptom profile

and trigger factors typically described by patients [31–33].

The mechanism of cough reflex sensitisation is not fully

understood, but activation of both peripheral and central

neuronal processes is likely to be important. Comprehen-

sive programmes of research developed to address central

mechanisms are ongoing [26, 34–36], but more detailed

discussion of these is outside the scope of this article. Some

of the experimental work undertaken to elucidate the

peripheral events will now be discussed.

Airway inflammation and tissue acidosis are both con-

sistent features in acute and chronic pulmonary diseases

associated with cough. Acid aerosols are known to provoke

cough in a dose-dependent manner in both healthy subjects

[37, 38], in patients with chronic cough [39] and other

respiratory conditions, such as COPD [40]. These obser-

vations suggest an important role for protons in the acti-

vation of cough receptors. Further information about the

identity of such a receptor was provided by Fox et al. [41]

who demonstrated that acid activation of C-fibre afferents

from guinea pig trachea could be inhibited by capsazepine,

which at the time was considered a capsaicin receptor

antagonist. This receptor was subsequently cloned and

identified as transient receptor potential vanilloid 1

(TRPV1), a member of the TRP family of ion channels

[42]. It became apparent that additional receptors were

likely to be responsible for acid-induced neural activation,

because acid was observed to activate non-TRPV1-

expressing airway vagal afferents [43]. Using a stepwise

reduction in the pH of perfusing buffer, Gu and Lee [17]
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noted that responses could not be blocked by capsazepine

but were attenuated by amiloride a known blocker of the

acid sensing ion channel (ASIC). Whereas there is some

evidence that ASIC channels are involved in rhinitis [44],

little attention has been given to their role in clinical cough.

By way of contrast, the TRPV1 receptor, which has been

studied extensively, is now considered together with

number of other members of the TRP channel family as

promising therapeutic target for cough.

Evidence for TRP Channels as the Human Cough

Receptors?

The exact mechanism responsible for the hypersensitive

cough response is unknown, but upregulation of receptors

responsible for sensing chemical and physical stimuli is

one such possibility. Members of the TRP channel family,

which are expressed on many cell types, including airway

sensory nerves [45, 46], have the capacity to detect noxious

physical and chemical stimuli and therefore represent

potential candidate receptors. A number of TRP channel

gene polymorphisms have recently been found to be

associated with asthma [47], COPD [48], and cough [49].

Several TRP channels, in particular TRP channel, sub-

family vanilloid, member 1 (TRPV1) [42], TRP channel

melastatin member 8 (TRPM8) [50], TRP channel, sub-

family A, member 1 (TRPA1) [51], which are directly

activated by chemical, thermal, and mechanical stimuli, are

of particular interest.

TRPV1 and TRPA1 in particular have now acquired an

established role in the understanding of cough. Capsaicin,

which directly activates the TRPV1 receptor, has been

widely used both in the clinical assessment of cough reflex

sensitivity and in human and animal research. In patients

with chronic cough, TRPV1 is overexpressed in airway

sensory neurones compared with healthy controls [46].

Recently, functional TRPV1 channels (sensitive to acid and

capsaicin stimulation) have been expressed in the human

airway epithelium and are overexpressed in the airways of

severe asthmatics [52]. It is now apparent that TRPV1 is a

polymodal receptor, which can be activated not only

directly by factors, including noxious heat ([42 �C), cap-

saicin, and low pH, but indirectly by the binding of pro-

inflammatory mediators to G protein coupled receptors on

the cell membrane, which initiate intracellular signalling

cascades, the net effect of which is to modify the TRPV1

channel sensitivity by lowering its activation threshold.

The list of inflammatory proteins associated with this

sensitisation of the TRPV1 channel is long and includes

bradykinin, BK [53], nerve growth factor [54], and aden-

osine triphosphate (ATP) [55] together with many other

proinflammatory cytokines [56]. These findings provide

insight into how inflammation and tissue acidosis associ-

ated with acute and chronic respiratory disease can activate

and sensitise cough receptors and may help to identify

novel anti-inflammatory strategies, which may be effective

to treat cough. Recent, experimental evidence shows that

activation of the TRPA1 channel can cause coughing in

both animals and human subjects [51]. TRPA1 also has

been identified as a mediator of irritant responses evoked

by certain pungent foods, such as wasabi, garlic, and cin-

namon, and by volatile irritants, such as acrolein and cro-

tonaldehyde, both of which are common chemical

constituents in cigarette smoke [57]. TRPA1 and TRPV1

are known to be coexpressed in sensory neurones in rodent

airways [58], and like TRPV1, the TRPA1 channel can be

sensitised via the indirect action of inflammatory sub-

stances, including BK and PGE2 [59].

Menthol, which is an agonist of the cold sensing channel

TRPM8, is a constituent in many over-the-counter (OTC)

cough therapies. When menthol is applied as a nasal

vapour (but interestingly not when delivered to the lower

airway), it has been shown to inhibit cough responses to

inhaled citric acid in guinea pigs. The researchers con-

cluded that the cough suppression observed with menthol

was mediated primarily by a nasal reflex [60]. Thymol,

another cooling agent that also is found in many OTC

cough treatments, is an agonist of the TRPV3 receptor.

Both thymol and menthol when applied nasally have been

shown to reduce capsaicin-induced cough responses in

healthy volunteers [61]. These findings raise the possibility

that targeting TRP channels on nasal trigeminal afferents

may prove effective in modulating the cough response.

This may be of particular relevance as rhinovirus, the most

frequent cause of the common cold, can infect human

neuronal cells and upregulate the expression of TRP

channels [62].

Current Experience of Treatments Directed

at the ‘Cough Receptors’

TRP channels represent important target candidates for the

development of novel drugs for the treatment for cough.

The antitussive potential of TRPV1 antagonists appeared

promising at least in animal models with one such com-

pound inhibiting capsaicin-induced cough in guinea pigs

with similar efficacy to codeine [63]. This provided pre-

clinical support for the development of a TRPV1 antago-

nist for cough; however, further progress of this molecule

was halted because of marked hyperthermia observed in

the early clinical studies [64]. The results of a recent phase

II clinical study of another TRPV1 antagonist for the

treatment of cough has been disappointing [65]. In contrast

TRPA1 antagonists have been shown to have no effect on
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temperature regulation or pain sensation and may represent

a more suitable alternative [66]. TRPA1 antagonists have

recently entered clinical trials for the treatment of cough

and the results are awaited [67]. There are case reports of

lignocaine, a nonselective blocker of voltage-gated Na

channels, being used for the treatment of refractory cough

[68]. However, any efficacy is significantly limited by loss

of airway protection and cardiotoxicity [69]. The use of

more selective inhibition of Na channels may prove more

promising. A number of voltage-gated Na channel isoforms

are expressed in sensory neurons [70] and one in particular

(Nav 1.7) seems to have a key role in the regulation of

cough [71]. The selective blockade this channel may prove

to be an effective strategy for the treatment of cough.

Conclusions

The rapid progress in experimental technology has added

pace to the progress of cough research and helped to shape

thinking on disease mechanisms [72]. However, to date, the

initial excitement around a number of potential candidate

molecules, most notably the TRPV1 channel, has been

offset by disappointing results from early-phase proof-of-

concept trials. Newer, TRPV1 antagonists with preclinical

and early-phase clinical evidence suggesting cleaner safety

profiles have been described [73]. This receptor and a

number of other TRP channels remain attractive thera-

peutic targets for cough.

Finally, it is worth remembering that we are not alone

and there is a lot to learn from the experience of

researchers and clinicians in other therapeutic areas in

particular pain. Change in the existing strategy for dis-

covery science is required if optimal therapeutic target

selection is to be achieved. There is broad recognition that

no single researcher or company is likely to achieve this

alone, hence the importance of cooperative precompetitive

effort [74]. The challenges associated with identifying the

correct cough receptor and developing effective treatments

are enormous but so too are the rewards.

Conflict of interest None.
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