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Abstract

Background We studied the occurrence of intraoperative

tidal alveolar recruitment/derecruitment, exhaled nitric

oxide (eNO), and lung dysfunction in patients with and

without chronic obstructive pulmonary disease (COPD)

undergoing coronary artery bypass grafting (CABG).

Methods We performed a prospective observational

physiological study at a university hospital. Respiratory

mechanics, shunt, and eNO were assessed in moderate

COPD patients undergoing on-pump (n = 12) and off-

pump (n = 8) CABG and on-pump controls (n = 8) before

sternotomy (baseline), after sternotomy and before car-

diopulmonary bypass (CPB), and following CPB before

and after chest closure. Respiratory system resistance (Rrs),

elastance (Ers), and stress index (to quantify tidal recruit-

ment) were estimated using regression analysis. eNO was

measured with chemiluminescence.

Results Mechanical evidence of tidal recruitment/dere-

cruitment (stress index \1.0) was observed in all patients,

with stress index\0.8 in 29% of measurements. Rrs in on-

pump COPD was larger than in controls (p \ 0.05). Ers

increased in controls from baseline to end of surgery

(19.4 ± 5.5 to 27.0 ± 8.5 ml cm H2O-1, p \ 0.01), asso-

ciated with increased shunt (p \ 0.05). Neither Ers nor

shunt increased significantly in the COPD on-pump group.

eNO was comparable in the control (11.7 ± 7.0 ppb) and

COPD on-pump (9.9 ± 6.8 ppb) groups at baseline, and

decreased similarly by 29% at end of surgery(p \ 0.05).

Changes in eNO were not correlated to changes in lung

function.

Conclusions Tidal recruitment/derecruitment occurs fre-

quently during CABG and represents a risk for ventilator-

associated lung injury. eNO changes are consistent with

small airway injury, including that from tidal recruitment

injury. However, those changes are not correlated with

respiratory dysfunction. Controls have higher susceptibility

to develop complete lung derecruitment.
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Introduction

Chronic obstructive pulmonary disease (COPD) is present

in 4–27% of patients undergoing coronary artery bypass

grafting (CABG) surgery [1]. The National Center for

Health Statistics estimates that a total of 408,000 CABG

procedures were performed in the United States in 2007

[2]. COPD is associated with risk for major perioperative

complications after CABG such as prolonged mechanical

ventilation [3], extubation failure [4], and increased hos-

pital and 30-day mortality [5–7]. Chronic inflammation in
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COPD patients could compound the acute inflammatory

response to surgery and cardiopulmonary bypass (CPB) [8]

to produce intraoperative lung collapse and longer post-

operative recovery times. Conversely, the increased respi-

ratory resistance and reduced elastic recoil found in COPD

could provide a mechanism to retard or even prevent the

development of intraoperative atelectasis [9]. Despite these

pathophysiological particularities of COPD patients and

the significant number of COPD patients undergoing

CABG, there is minimal information on perioperative lung

dysfunction specifically addressing these patients.

Mechanical ventilation settings influence the magnitude

of lung inflammation during cardiac surgery. Protective

ventilatory strategies with low tidal volume (VT) and higher

positive end-expiratory pressure (PEEP) have been shown

to result in less inflammatory markers in both the bron-

choalveolar lavage fluid and plasma [10, 11], and less time

to extubation and the need for reintubation of cardiac

surgical patients [12]. Such findings suggest that limiting

maximal lung stretch and low-volume lung injury would

reduce lung inflammation and morbidity in patients

undergoing cardiac surgery. Minimization of pulmonary

morbidity is an important goal because although the inci-

dence of acute respiratory distress syndrome and acute lung

injury after CPB is low (\2%), the associated mortality is

high ([50%) [13, 14]. Moreover, after CABG surgery,

hypoxemia has been reported as the most common cause

for prolonged mechanical ventilation [15]. COPD patients

present an exacerbated inflammatory response [16, 17] and

could be at increased risk for respiratory complications.

It is currently unknown whether perioperative functional

changes occur to justify each of the protective ventilatory

interventions, i.e., PEEP and low VT, during the intraop-

erative period of cardiac surgery. If hyperinflation would

be the predominant dysfunction, limitation of lung stretch

(low VT) would be the relevant intervention. Instead, if

tidal alveolar recruitment would be frequent, use of PEEP

would be warranted since tidal opening and closing of

alveoli and small airways in atelectatic regions during

mechanical ventilation could increase the risk of ventilator-

induced lung injury. Given that atelectasis is frequently

present and the main cause of shunting and hypoxemia

during cardiac surgery [18, 19], cyclic lung recruitment and

concentration of mechanical forces [20] are likely during

mechanical ventilation. The associated low-volume stress

has been shown to be injurious in several models of acute

lung injury [21, 22]. However, it is unknown to what

degree low- and high-lung-volume stresses are present in

patients with and without COPD undergoing cardiac

surgery.

The ‘‘stress index’’ is a parameter derived from the

airway pressure–time curve obtained at bedside during

constant flow inflation to detect tidal recruitment and

hyperinflation [23]. It was associated with computed

tomography findings of tidal recruitment in experimental

models of healthy [24] and surfactant-depleted lungs [23,

24]. Exhaled NO (eNO) reduction has been proposed as a

marker of lung injury in the setting of CPB [25, 26]. In

experimental ventilator-induced lung injury, a decline in

eNO has been associated with cyclic opening and closing

of peripheral airways during ventilation at low volume [21,

27]. In contrast to those eNO declines as indicators of

injury, in COPD patients high eNO has been suggested as a

surrogate marker of disease exacerbation [28].

In this study we measured respiratory mechanics,

including the stress index, eNO, and gas exchange, in the

intraoperative period of CABG surgery with cardiopul-

monary bypass to (1) investigate whether tidal recruitment

and hyperinflation occur at different surgical phases in

patients with and without COPD; (2) evaluate whether eNO

changes differ in those patient groups and whether those

changes correspond to deterioration in respiratory

mechanics and gas exchange; and (3) characterize lung

function patterns in patients with moderate COPD in

comparison with patients with no previous history of pul-

monary disease. Finally, we also studied those variables in

a group of COPD patients undergoing off-pump CABG

surgery.

Methods

Patients

The study was approved by the Institutional Review Board of

the Massachusetts General Hospital and written informed

consent was obtained from all subjects. We sequentially

studied 28 patients: 20 with moderate COPD as defined by

GOLD criteria [29] and 8 nonsmokers without a history of

pulmonary disease (controls). Exclusion criteria were pres-

ence of acute respiratory failure and emergency surgery.

From the 20 COPD patients, 12 underwent on-pump CABG

(COPD on-pump group) and 8 off-pump CABG (COPD

off-pump group). Controls underwent on-pump CABG.

Off-pump CABG was performed mainly because of severe

ascending aortic atheromatosis.

Regular medication was maintained until surgery.

Patients were premedicated with midazolam, induced with

fentanyl and propofol, maintained with isoflurane, midaz-

olam, and fentanyl, and had muscle paralysis with cisat-

racurium or pancuronium. Methylprednisolone 1 g was

administered after intubation. Monitoring included a radial

artery and a pulmonary artery catheter. Patients were

mechanically ventilated with tidal volume (VT) = 8 ml/kg,

inspired oxygen fraction (FIO2) = 100%, PEEP = 2.5 cm

H2O, with respiratory rate adjusted to normocarbia.
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Ventilator parameters were kept constant before and after

revascularization. A nitroglycerin infusion was used after

revascularization at 50 mcg/min.

Procedures

All surgeries were done through a median sternotomy. We

maintained the activated clotting time above 480 s. CPB

was performed with systemic cooling to 30–33�C, double-

stage venous cannula, and ascending aorta cannulation.

Cardiac arrest was achieved by cold or warm blood ante-

grade and retrograde cardioplegia. The flow was main-

tained at 2.4 L/min/m2, with a mean arterial pressure

[50 mmHg. During CPB, the expiratory limb of the

breathing circuit was opened to atmosphere with lungs

passively deflated. Before weaning from CPB, at least one

recruitment maneuver to a peak inspiratory pressure of

20–25 cm H2O with direct visualization of lung expansion

was performed. Off-pump CABG surgery was performed

using a Genzyme stabilizing system (Genzyme Corpora-

tion; Cambridge, MA), Silastic rubber sutures were placed

proximal and distal to the anastomotic site as coronary

artery occluders, an intraluminal shunt was placed in case

of hemodynamic instability, and a blower was used for

insufflating humidified CO2 to ensure a bloodless operative

field. No conversion to CPB occurred.

Physiological Measurements

Physiological measurements were performed at four time

points chosen to represent major interventional phases

encompassing the period of initial lung insult: (1) follow-

ing intubation, before sternotomy; (2) after sternotomy,

before revascularization; (3) before chest closure, follow-

ing revascularization (i.e., after CPB for on-pump CABG);

and (4) after chest closure, at the end of surgery. Hemo-

dynamic measurements consisted of heart rate, systemic

and pulmonary artery pressure, central venous pressure,

and cardiac output. Gas exchange measurements included

arterial and mixed venous blood gases and shunt [30]. A

respiratory analyzer (NICO, Respironics) was used for

intraoperative monitoring of capnography and lung

mechanics.

Respiratory Mechanics

The elastance and resistance of the respiratory system (Ers

and Rrs), and lungs (EL and RL) were estimated from

measurements of airway (Paw) and esophageal (Pes) pres-

sures and respiratory flow _V
� �

(Ventrak, Novametrix). The

equation P = R� _V ? E�V ? EEP was fit to measured data

using multiple linear regression, where EEP was the

pressure at the end of expiration; the respiratory volume

(V) was computed from the integral of _V ; and P = Paw for

estimates of Ers and Rrs or P = (Paw - Pes) for estimates

of EL and RL [31].

Tidal recruitment and hyperinflation were assessed

through estimation of the stress index [23]. This index was

computed by fitting the patient’s Paw versus time (t) curve

with the power equation Paw(t) = ati
b ? c, where ti was the

time from the beginning of the constant flow inspiration,

and a, b, and c were constants. The coefficient b (stress

index) describes the shape of the Paw–t curve: b = 1,

straight curve (constant compliance during lung inflation,

minimal stress); b \ 1, progressive decrease in slope

(increasing compliance during lung inflation, tidal recruit-

ment with low-volume stress); and b [ 1, progressive

increase in slope (decreasing compliance during lung

inflation, tidal hyperinflation with high-volume stress).

Quality of fitting was assessed with the coefficient of

determination (R2). One-minute epochs were analyzed

using the Levenberg–Marquardt method (Mecanica, built

in Matlab�, The MathWorks, Inc., Natick, MA). A respi-

ratory cycle was discarded if (1) a constant inspiratory flow

portion was not present, (2) the constant flow period was

less than one third of the inspiratory time, and (3)

R2 \ 0.95.

Exhaled Nitric Oxide

eNO was measured continuously by chemiluminescence

(Sievers model NOA 280; Sievers Instruments, Boulder,

CO) with response time of 170 ms [32]. The analyzer was

calibrated before each case with 0 and 45 ppm NO. The

eNO signal was either digitized at 100 Hz or registered on

paper. Gas was sampled at a rate of 250 ml/min through a

Teflon tube connected to the Y-piece of the breathing cir-

cuit. Measurements of inspired NO were always less than

2 ppb. eNO was measured as the mean end-expiratory

value of at least five breathing cycles. The mean values

were taken from the point corresponding to the plateau of

the end exhaled CO2 reading, representing the lower

respiratory tract sample.

Statistics

All results are expressed as the mean ± standard deviation

(SD) or as median [interquartile range]. We based the

sample size calculation on expected shunt and eNO dif-

ferences between groups, and in the same group from

baseline to end of surgery. For shunt, a difference of 8%

between at least two of the three groups with SD = 5.5%

and a change from baseline to end of surgery of 6% were

Lung (2011) 189:499–509 501

123



used. For eNO, values as observed in normals [33] and

COPD exacerbation [34] were applied, as well as a within-

group (pairwise) expected change in eNO of 4 ppb with

a SD = 6 ppb. An ANOVA-based power analysis for a

power of 0.80 (p \ 0.05) and equal variance led to a

minimum sample size of 8 patients per group. Repeated-

measures ANOVA with between-subjects factors were

used to compare time points and groups. Post-hoc com-

parisons were performed with the Sidak correction for

multiple comparisons. A linear correlation coefficient was

used for computation of correlations. v2 analysis was used

to compare proportions. Analysis was performed using

SAS statistical software ver. 9 (SAS Institute Inc., Cary,

NC). Two-tailed values of p \ 0.05 were used to establish

statistical significance.

Results

Demographic characteristics were similar in all groups

(Table 1). Hemodynamics showed higher central venous

pressures in both COPD groups and higher pulmonary

artery pressures in COPD on-pump than controls at base-

line (Table 2). The increased heart rate after chest closure

was due to pacing.

Respiratory Mechanics

Rrs in the on-pump COPD group was larger than in controls

at all time points (Fig. 1a). Following sternotomy, Rrs was

significantly decreased in both COPD groups. In all groups,

Rrs significantly increased after chest closure, returning to

values similar to baseline.

Patients in the control and COPD off-pump groups

showed a significant increase in Ers at the end of surgery

(Fig. 1b). The increase in Ers relative to baseline was larger

in controls than in the COPD groups.

The partitioning of the respiratory system mechanics

into lung and chest wall components showed that most of

the changes in respiratory system mechanics were due to

changes in lung properties. Ers had a high correlation

(r = 0.80, p \ 0.0001) with EL, and Rrs with RL (r = 0.97,

p \ 0.0001).

The stress index was similar for all groups at baseline.

Values were under 1 (=tidal recruitment, low-volume

stress) for most measurement points (Fig. 2). In fact, the

stress index was under 0.8 (associated with computed

tomography findings of tidal recruitment) for 35% of

measurements in the on-pump COPD group, 19% in the

control group, and 31% in the off-pump COPD group.

During open chest conditions in on-pump cases, COPD

patients tended to have stress indices below 0.9 (related to

histological and inflammatory changes in experimental

ventilator-induced lung injury) more frequently than con-

trols (p \ 0.1), with 6 of 12 COPD patients having stress

indices under 0.9 before CPB and 5 of those 12 after CPB,

whereas 1 of 8 control patients had a stress index in that

range for the same time points. When all patients were

pooled, chest opening led to a significant decrease in the

number of stress indices under 1 (p \ 0.05), and chest

closure had the reverse effect (p \ 0.001). In specific

groups, the stress index increased after chest opening in the

COPD off-pump group and decreased after chest closure in

the control and COPD off-pump groups. Measurements at

the end of surgery were not significantly different from

those at baseline.

Table 1 Demographic,

spirometric, clinical, and

intraoperative data

Values are mean ± SD or

median [interquartile range]

COPD chronic obstructive

pulmonary disease, FEV1 forced

expiratory volume in 1 s, CABG
coronary artery bypass grafting,

ICU intensive care unit

Controls on-pump

(n = 8)

COPD off-pump

(n = 8)

COPD on-pump

(n = 12)

Age (years) 65 [56–79] 77 [67–82] 74 [64–75]

Body mass index 26.6 ± 4.0 26.3 ± 4.8 28.9 ± 6.2

Women (n) 2 1 1

FEV1 (% predicted) 93 [71–96] 54 [40–60] 58 [48–70]

Pack-years 0 50 [50–93] 68 [58–80]

Diabetes mellitus (n) 1 3 4

Hypertension (n) 7 6 8

Myocardial infarction (n) 3 5 4

Angina class III or IV (n) 2 6 5

No. of diseased vessels 2.5 ± 0.9 2.5 ± 0.7 2.7 ± 1.0

Prior CABG surgery (n) 0 1 1

Aortic cross-clamping time (min) 73 ± 32 76 ± 33

Bypass time (min) 92 ± 41 102 ± 40

Length of ICU stay (h) 21 ± 8 22 ± 10 36 ± 26

Time to extubation (h) 7 ± 4 12 ± 7 12 ± 7

502 Lung (2011) 189:499–509

123



Exhaled NO

eNO was lower at the end of surgery than at baseline for

patients undergoing CPB in the control and COPD on-

pump groups (Fig. 3). In fact, eNO was already reduced

during open chest conditions from before to after CPB in

controls (29%, p = 0.04) and on-pump COPD patients

(26%, p = 0.01). There was a high correlation between

mean eNO before and after sternotomy (r = 0.92,

p \ 0.001) and before and after chest closure (r = 0.93,

p \ 0.001), and no change in mean eNO within groups was

observed following opening or closure of the chest.

Absolute and percent changes in eNO were not correlated

to corresponding changes in Ers, Rrs, PaO2, or PaCO2

Table 2 Intraoperative hemodynamic and arterial blood gas data of patients at baseline, before chest opening, and at the end of surgery, after

chest closure

Controls on-pump (n = 8) COPD off-pump (n = 8) COPD on-pump (n = 12)

Baseline Closed chest Baseline Closed chest Baseline Closed chest

Temperature (8C) 35.3 ± 0.7 35.9 ± 0.5 35.8 ± 0.5 36.2 ± 0.7 35.7 ± 0.7 35.7 ± 0.6

Heart rate (beats min-1) 52 ± 10 86 ± 2b 51 ± 7 84 ± 24b 54 ± 9 86 ± 6b

Mean arterial pressure (mmHg) 76 ± 9 74 ± 11 77 ± 10 84 ± 12a 82 ± 13 72 ± 7b,c

Mean pulmonary artery pressure (mmHg) 17 ± 6 17 ± 4 21 ± 3 20 ± 5 22 ± 5a 18 ± 4b

Central venous pressure (mmHg) 5 ± 3 7 ± 2 10 ± 2a 8 ± 4 9 ± 2a 7 ± 3b

Cardiac output (L min-1) 4.1 ± 0.9 5.0 ± 1.9 4.3 ± 1.8 3.9 ± 1.0 4.7 ± 1.1 4.6 ± 1.0

PaO2 (mmHg) 431 ± 71 213 ± 104b 419 ± 51 292 ± 73b 369 ± 116 272 ± 113b

PaCO2 (mmHg) 39 ± 6 41 ± 4 40 ± 5 45 ± 6 44 ± 6 47 ± 6

pH 7.43 ± 0.04 7.32 ± 0.06 7.45 ± 0.05 7.32 ± 0.07 7.38 ± 0.04 7.30 ± 0.05

Values are mean ± SD

COPD chronic obstructive pulmonary disease
a p \ 0.05 compared to control group
b p \ 0.05 compared to baseline
c p \ 0.05 compared to COPD off-pump

*

 

 

 

* ** *

*

 

 

 

*

*

*

 

a b

Fig. 1 Respiratory system resistance and elastance for the three

studied groups at four surgical time points. Data are presented (1)

following intubation, before sternotomy (Baseline); (2) after sternot-

omy, before revascularization (Pre-revasc); (3) before chest closure,

following revascularization (Post-revasc, i.e., following cardiopul-

monary bypass for control and COPD on-pump groups); and (4) after

chest closure, at the end of the procedure (Closed chest). a Patients

with chronic obstructive pulmonary disease (COPD) had higher

resistance than controls throughout the whole intraoperative period

(p \ 0.05). The resistance decreased in the COPD groups after

opening the chest and increased in all groups following chest closure.

b There was an increase in elastance after chest closure, more marked

for the control group. Values are mean ± standard deviation.

*p \ 0.05; �p \ 0.01
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(p = NS for all correlations). The COPD off-pump group

had significantly lower eNO than controls at baseline and

these did not change at the end of surgery.

Gas Exchange

Mean PaO2 decreased in all groups at the end of surgery:

51% in controls, 26% in COPD on-pump, and 30% in

COPD off-pump patients (Table 2). Right-to-left shunt was

similar at baseline for all groups in the patients mechani-

cally ventilated with 100% O2 (Fig. 4). Shunt in controls

increased from 19 to 26% from baseline to end of surgery

and was larger than that in the COPD on-pump group after

chest closure. In contrast, shunt was not significantly

changed in COPD patients (Fig. 4). An increase in shunt in

controls was already observed in open chest conditions

following revascularization.

Despite the high alveolar-arterial gradient of O2

(AaDO2) in controls at arrival in the intensive care unit

(ICU) (328 mmHg), consistent with the higher shunts in

controls at the end of surgery, the improvement in AaDO2

per hour until extubation tended to be faster in controls

than in on-pump COPD patients (p = 0.08, Fig. 5), a trend

confirmed when all COPD patients were included

(p \ 0.05, Fig. 5). This paralleled the trend for shorter time

to extubation in the control group and the longer ICU stay

in COPD on-pump patients (Table 1).

 

 *
*

*

Fig. 2 Individual measurements of stress indices in the three studied

groups at the four surgical time points. The majority of measurements

for all groups were below 1, a range compatible with tidal recruitment

of alveoli and small airways. A significant percentage of the

measurements were under 0.8 and few were above 1.2. There was a

significant reduction in the stress index after chest closure in the

control and off-pump chronic obstructive pulmonary disease (COPD)

groups. Dashes indicate mean values for each group and time point.

Time points are described in Fig. 1. *p \ 0.05; �p \ 0.01

 

 *

*
*

Fig. 3 Exhaled nitric oxide for the three studied groups at four

surgical time points. Exhaled nitric oxide decreased from Baseline to

Closed Chest and from before to after revascularization, i.e.,

cardiopulmonary bypass, in the control and the chronic obstructive

pulmonary disease (COPD) on-pump groups. Time points are

described in Fig. 1. Values are mean ± standard deviation.

*p \ 0.05; �p \ 0.01

*

*

Fig. 4 Right-to-left shunt for the three studied groups at four surgical

time points. There was significant increase in shunt in the control

group after cardiopulmonary bypass and chest closure, but no

significant changes in patients with chronic obstructive pulmonary

disease (COPD). Time points are described in Fig. 1. Values are

mean ± standard deviation. *p \ 0.05; �p \ 0.01
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Discussion

The main findings of this study were as follows: (1) Intra-

operative respiratory mechanics in patients with and without

COPD undergoing CABG surgery is more frequently con-

sistent with tidal recruitment of alveoli and/or small airways

than with hyperinflation when commonly used ventilatory

settings are applied. In open chest conditions, tidal recruit-

ment tended to be more marked in COPD patients. (2) eNO

is reduced after on-pump CABG in patients with and

without COPD, compatible with small airway injury. (3)

Moderate-COPD patients appear to be less susceptible to

development of shunt immediately after CPB than controls.

Pulmonary complications, including acute lung injury,

are important factors in lung morbidity during and after

cardiac surgery [35, 36]. In fact, it has been suggested that

CPB leads to greater pulmonary than systemic inflamma-

tory response [37]. When ARDS occurs after CPB (\2%),

the associated mortality is high ([50%) [13]. After CABG

surgery, early extubation failure was reported in 35–40% of

patients [15, 38], and hypoxemia was implicated as the

most common cause for prolonged mechanical ventilation

([24 h) occurring in 9% of the patients [15]. COPD is

associated with increased risk for major morbidity and

mortality after cardiac surgery [3–7, 39]. Patients with

COPD present a differential and magnified inflammatory

response during cardiac surgery, with likely both at the

systemic and pulmonary level [16, 17]. At least part of the

pulmonary inflammatory response during cardiac surgery

could be related to cyclic recruitment or lung hyperinfla-

tion, given that lung protective strategies using higher

PEEP and lower tidal volumes reduced the inflammatory

response following CPB [10, 11]. Atelectasis is an

important perioperative pathogenic factor [40] and is fre-

quently present during cardiac surgery [18, 19]. Thus,

understanding of the respiratory dysfunction in patients

with and without COPD can be important to minimize

perioperative respiratory morbidity.

Respiratory Mechanics and Gas Exchange

Our results indicate that lungs of CABG surgery patients

with or without COPD frequently undergo tidal recruitment

intraoperatively. Stress indices were mostly under 1.0

throughout surgery. A value under 0.8 corresponded in

previous studies to the initial low-volume nonlinear portion

of their lungs’ pressure–volume curve and to computed

tomography findings of tidal recruitment in experimental

models of healthy [24] and surfactant-depleted lungs [23,

24]. A value under 0.9 best discriminated experimental

histological and inflammatory evidence of ventilator-

induced lung injury [41]. A significant percentage of our

measurements were under those values, with a trend for a

larger percentage in COPD patients during open chest

conditions. Thus, our findings suggest that the studied

patients were frequently at increased risk for ventilator-

associated lung injury.

Our results are compatible with those of former studies

that showed less inflammatory response in cardiac surgery

when protective modes of ventilation were used [10, 11].

We expand those former findings by suggesting that the

effect of those protective modes was likely due to their

effects on low-volume stress. Thus, our observations

emphasize the importance of ventilation strategies that

include the prevention of low-volume injury, such as the

use of PEEP, to reduce perioperative lung damage during

CABG surgery. Considering the ongoing discussion on

‘‘open lung’’ versus ‘‘lung rest’’ mechanical ventilatory

strategies [42], our observations suggest a potential benefit

of open lung approaches and justify conducting clinical

studies to address minimization of low-volume lung injury

during cardiac surgery. This could be particularly impor-

tant in patients at increased risk for lung injury such as

those subject to significant blood transfusion. Finally, we

also observed a sizable variability in respiratory parameters

in the different patient groups. This indicates that avail-

ability of bedside measurements such as the stress index or

the more sophisticated electrical impedance tomography

could, in the future, facilitate the titration of ventilatory

parameters to individual patients [43].

In contrast to the relatively unchanged stress index in

on-pump COPD patients from before to after revasculari-

zation, there was a significant increase in stress index in

the off-pump COPD patients. Overall, average changes in

the stress indices between those time points were within the

Fig. 5 Change rates of the alveolar-arterial PaO2 (AaDO2) gradients

in mmHg/h for the three studied groups following admission to the

intensive care unit. The control group tends to have more negative

values than the chronic obstructive pulmonary disease (COPD)

groups, representing a faster reduction in AaDO2 following surgery.

AaDO2 change rates were also significantly smaller for controls than

for the combined COPD groups (p \ 0.05). Dashes indicate mean

values for each group. §p = 0.08

Lung (2011) 189:499–509 505

123



0.9–1.1 range, i.e., a range within normal values reported in

previous studies [41]. Those observed differences likely

characterize the mechanical response of the COPD lung to

the very distinct set of intraoperative conditions occurring

between those two time points: Whereas the on-pump

COPD lungs were exposed to the acute inflammatory

response to CPB and an average of 102 min of passive lung

deflation, the off-pump COPD group was continuously

ventilated and not subjected to the inflammatory response

to CPB. The correlations of the changes in the stress index

and the respiratory mechanics and shunt provide insight on

the potential causes for the observations. In the on-pump

COPD group, there was a significant correlation between

the ratio of the stress index after to before revascularization

and the shunt ratio (r = 0.61, p \ 0.05), suggesting that

changes in stress index were predominantly influenced by

lung collapse. In contrast, for the off-pump group the stress

index ratio was inversely correlated to the Rrs ratio at the

same time points (r = -0.90, p \ 0.005). The larger

the Rrs reduction after revascularization, the more inflated

the lung conditions. In the patients not subjected to CPB,

continuous mechanical ventilation with an open chest

could have facilitated progressive airway expansion, with

recruitment of collapsed areas and shifting to a more

inflated condition of the COPD lung. Controls had an

average but nonsignificant increase in the stress index after

revascularization. Interestingly, in controls, also exposed to

CPB, the stress index ratio correlated with the shunt ratio

(r = 0.74, p \ 0.05) and tended to correlate with the Rrs

ratio (r = -0.66, p \ 0.08). This could indicate a combi-

nation of effects, including increased lung collapsibility

associated with CPB and Rrs contribution leading to more

lung inflation as Rrs decreased. Redistribution of regional

lung aeration probably occurs in the studied cases and leads

to complex effects on the stress index [24]. Studies using

measurements of regional perfusion and aeration will be

required to provide an accurate explanation for these

respiratory mechanics and associated gas exchange

findings.

Increases in Ers and Rrs during CABG have been

described [44, 45]. Less is known about perioperative lung

function in specific groups, a relevant point since distinct

mechanisms of respiratory dysfunction can imply different

management strategies. Baseline measurements of Ers and

Rrs were consistent with those of previous studies [44, 45],

with Rrs in COPD patients larger than that in controls. Rrs

did not increase in COPD patients and controls after CPB,

in contrast to most [45, 46] but not all [44] studies.

While COPD patients did not show significant intraop-

erative worsening of Rrs, they had significantly slower

improvement in oxygenation in the ICU than controls,

indicating a limited capacity to recover postoperatively,

which is compatible with their higher risk for

complications [3, 6] and their observed longer time to

extubation and ICU stay [3, 4, 47]. Such observations may

be at least partially explained by the role of absorption

atelectasis as the main determinant of AaDO2 in controls.

Such regions of derecruited lung would be progressively

reduced in the ICU as PEEP and FIO2 \ 100% were

applied. In contrast, the major determinant of AaDO2 in

COPD patients is ventilation-perfusion mismatch associ-

ated with the severity of emphysema and small airway and

vascular abnormalities, potentially exacerbated periopera-

tively [48–50]. Indeed, COPD patients have a differential

inflammatory response during cardiac surgery with

increased release of cysteinyl leukotrienes [16]. This could

add to the potential small airway dysfunction discussed

above. Additionally, inhibition of the hypoxic pulmonary

vasoconstriction due to inflammatory mediators and vaso-

active medications [51–53] could contribute to perfusion

heterogeneity. Such factors could have combined with the

chronic inflammation [54] and lung dysfunction [49, 50]

during COPD to produce the trend toward slower

improvement in oxygenation observed in our COPD

patients.

Ers increased significantly in controls after chest clo-

sure, which is consistent with previous studies [44–46].

Shunt increased concurrently in controls, suggesting that

at least part of the derecruited lung remained perfused. In

contrast, Ers did not increase significantly in the COPD

on-pump group. This indicates that the process of peri-

operative lung derecruitment in moderate COPD patients

differs from that in controls. Patients with healthy lungs

typically present perioperative atelectasis and shunt [40,

55]. In contrast, Gunnarson et al. [56] observed increased

ventilation-perfusion mismatch but no increase in shunt

(mean 1%) in COPD patients during enflurane anesthesia.

These patients had minor or no atelectasis on computed

tomography and minimal reduction of chest dimensions,

suggesting minimally affected functional residual capacity

[56]. These findings are consistent with the resistance of

spontaneously breathing nonintubated COPD patients to

develop oxygen absorption atelectasis [49, 56], thought to

be additionally associated with increased collateral ven-

tilation, and their more homogeneous vertical distribution

of density and ventilation [50]. Our findings expand those

observations by suggesting that this reduced propensity

to lung derecruitment is also present in intubated,

mechanically ventilated COPD patients undergoing car-

diac surgery. Thus, the presence of airway obstruction and

prolonged expiratory time constants found in COPD,

generating a potentially protective auto-PEEP effect,

combined with the reduced elastic recoil limiting the

perioperative reduction of functional residual capacity

likely contributed to the observed maintenance of lung

elastance.
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Changes in Ers and Rrs were smaller than previously

reported [44, 45]. A possible explanation is the relatively

small number of patients in the studies, with differences

due to distinct patient samples and the fact that previous

studies did not stratify patients according to their initial

pulmonary function. Since the studies were performed

years ago, our findings may also represent management

improvements such as biocompatibility of the CPB system

and cardiac protection techniques resulting in less lung

dysfunction.

Exhaled Nitric Oxide

There is limited information on eNO in intubated COPD

patients. We found similar baseline eNO in on-pump

COPD and control groups, consistent with measurements

in nonintubated stable COPD patients and controls [34, 57],

but in contrast with increased eNO observed in stable

COPD by others [58]. Such discrepancies may be

explained by differences in COPD classification, smoking

history [58], eNO assessment methods, and use of steroids.

eNO was reduced after on-pump CABG in subjects with

and without COPD. This is compatible with observations of

decreased eNO induced by CPB in CABG surgery [25, 59,

60]. D’Angelo et al. [21, 27] found a significant relationship

between the decrease in eNO and bronchiolar epithelial

damage in an experimental model of low-volume lung injury

and proposed the use of eNO reduction as a sign of peripheral

airway injury. Reduced eNO has also been suggested as

reflective of bronchial epithelial dysfunction after hypoxia

and reoxygenation on CPB [61]. Low levels of eNO have

been associated with lung damage in other conditions such as

with impaired function in cystic fibrosis [62] and different

forms of smoke inhalation [63–65]. Thus, our findings of

reduced eNO after CPB and of a stress index under 0.8 in a

significant percentage of patients could suggest decreased

endogenous production and/or elimination due to injury to

the airway epithelium. This could have resulted from tidal

opening–closing of small airways, in addition to periopera-

tive ischemia–reperfusion associated with cardiac surgery

[21, 27]. Given that many other factors influence eNO

changes [25, 27, 60, 66–68], further studies will be required

to clarify the causes of reduced perioperative eNO in patients

with and without COPD.

Finally, it is apparent that eNO did not reflect exclu-

sively pulmonary injury. Although reduced after on-pump

CABG, eNO was not correlated to any variable related to

pulmonary dysfunction. Indeed, whereas eNO changes

were similar in on-pump COPD patients and controls,

respiratory mechanics and gas exchange were distinct. This

is also consistent with the dissociation between lung

function and inflammatory markers in COPD outpatients

[69]. Consequently, our results suggest that in the

intraoperative period of CABG surgery, eNO is not an

accurate predictor of acute lung injury.

This study has several limitations. Clinical COPD is

significantly heterogeneous. Thus, the limited number of

patients in our study does not allow for generalization

of our results to all subsets of COPD patients. Computation

of the stress index in COPD patients may be influenced by

the volume dependence of their airway resistance, which

decreases during inspiration [70]. This could result in a

downward concavity in the pressure–time curve and lead to

overestimation of tidal recruitment. Our analysis of eNO is

a significant simplification compared to compartmental

models that address airway and alveolar contributions to

eNO [71]. Future studies will be necessary to establish

whether the similar perioperative changes in eNO in con-

trols and COPD patients are distinct at the compartmental

level.

In conclusion, intraoperative respiratory mechanics

during CABG surgery were compatible with tidal alveolar

recruitment during CABG surgery in patients with and

without COPD and are suggestive of risk for ventilator-

associated lung injury. Strategies to limit low-volume

injury during mechanical ventilation may be particularly

relevant in these patients. Changes in respiratory function

in the perioperative period showed greater susceptibility to

lung derecruitment in controls, with worsening of elastance

and development of shunt. Controls and patients with

moderate COPD showed an equivalent and significant

decrease in eNO after CABG surgery, which is compatible

with small-airway injury and likely has a multifactorial

mechanism. The decrease in eNO was not uniquely related

to perioperative respiratory dysfunction.
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