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Abstract
Themanuscripts and writings of the fifteenth-century astronomer and physician Lewis
Caerleon (d. c. 1495) have been largely overlooked. To fill this gap, this article focuses
on his writings and working methods through a case study of his canons and table for
the equation of time. In the first part, an account of his life and writings is given on
the basis of new evidence. The context in which his work on the equation of time
was produced is explored in detail by reviewing the three key periods of his scientific
production. His heavy reliance on Simon Bredon’s Commentum super Almagesti is
also analyzed. The article also provides editions of Lewis Caerleon’s canons for cal-
culating his table for the equation of time and a critical edition of Simon Bredon’s
Commentum super Almagesti, III, 22–24. In the second part of this article, we analyze
the table for the equation of time derived by Lewis around 1485. In addition to the final
table, there is a unique table with intermediate results that records every step of his
derivation. By following and discussing the details of this derivation, we shed a new
light on tabular practices in mathematical astronomy. Following Lewis in his histori-
cal mathematical procedure, we argue, offers a novel historiographical approach that
allows us to identify different sources and practices used by historical actors. There-
fore, beyond the exchange of parameters residing in modern mathematical analysis,
this novel approach offers a promising refinement for the analysis of the transmission
of knowledge across space, time, and culture.
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1 Introduction

By his astronomical tables drawn up on 16 March 1485, in the tower of London,
where he had been placed at the command ofKingRichard III, Lewis of Caerleon
called attention not only to his own plight but also to his abiding interest in
astronomical phenomena. Yet he has failed to receive more than passing notice
from recent writers, despite the several manuscripts containing the works of
leading astronomers andmathematicians of bothOxford andCambridge towhich
Lewis’s name and notes are attached, as well as his alleged participation in the
stirring events that preceded the accession of Henry VII (Tudor) to the throne of
England.1

Those few lines are excerpted from Pearl Kibre’s introduction to her article on
Lewis Caerleon published in Isis in 1952. She provided the first modern study on
Henry VII’s physician, then better known for his alleged heroic involvement in a plot
to overthrow Richard III, than for his writings. Not only did Kibre disentangle the
confusion between Lewis Caerleon and Lewis Charlton, conveyed by John Leland (d.
1552) and then Thomas Tanner (d. 1735), but she also shed a new light on his career,
works and extant manuscripts.2 Although Kibre’s work should now be updated, it
remains a seminal study on Lewis. In the same article, Kibre regretted that he had not
received more than passing attention from recent writers. The same conclusion can
be drawn today. Despite Kibre’s article, Lewis Caerleon’s writings have yet to benefit
from a detailed study and editions. This is not to say that no studies have been produced
since 1952, but Lewis’s manuscripts or works were only studied in contexts removed

1 Pearl Kibre, ‘Lewis of Caerleon, Doctor of Medicine, Astronomer, and Mathematician (d. 1494?)’, Isis
43/2 (1952), 100–108, p. 100.
2 Pearl Kibre provided a valuable overview of his manuscripts, and a list of Lewis Caerleon’s own writings
in an appendix to her article, ibid. p. 104–105; though valuable, his known manuscripts and this list should
be revised. This is what we will do in a future article.
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from their own scientific interest. Indeed, in his edition of Richard of Wallingford’s
writings John North devoted an appendix to Lewis’s quotations and extensive bor-
rowings from the Albion and the Quadripartitum of the abbot of St Albans.3 Later,
North and Hilary Carey, respectively, dedicated studies on the anonymous astrological
treatise Cum rerum motu, the only complete copy of which is contained in Lewis’s
notebook (Cambridge, University Library, Ee.3.61, hereafter CUL).4 Lewis’s career
as a Royal physician, courtier and a likely astrologer was further explored by Carey
on the basis of a manuscript compiled for Henry VII (London, BL, Arundel MS
66).5 Indeed, the picture of Lewis Caerleon as a Royal adviser, well-connected to
the court and the university is also conveyed by a contemporary chronicler, such as
Polydore Vergil, or early modern historians.6 This involvement in royal politics during
the troubled decades of the Wars of the Roses is also prevalent in his writings where
his imprisonment and despoliation due to Richard III is used as a topos.7 Thanks to
Kibre’s article and the aforementioned later contributions, Thomas Trout’s 1887 entry
in the Dictionary of National Biography of the ‘obscure fifteenth-century scholar’ was
finally revised in 2004 by Keith Snedegar based on the most recent research by North
and Carey.8 More recently, Laure Miolo (one of the present article’s co-authors) ded-
icated a study to his notebook providing new evidence about his life and manuscripts,
also suggesting that some of his eclipse writings are mainly based on the works of

3 John D. North, Richard of Wallingford: An Edition of His Writings, 3 vols (Oxford: Clarendon Press,
1976), III, pp. 217–220.
4 John D. North, Horoscopes and History (London: The Warburg Institute, 1986); Hilary Carey, Courting
Disaster: Astrology at the English Court and University in the Later Middle Ages (London: Macmillan,
1992).
5 Carey (1992); Hilary Carey, ‘Henry VII’s Book of Astrology and the Tudor Renaissance’, Renaissance
Quarterly, 65/3 (2012), 661–710.
6 See Polydore Vergil, Anglica Historia, ‘Polydore Vergil, Anglica Historia (1555 version)’, ed. and tr.
D. F. Sutton in The Philological Museum, University of Birmingham, 2010, < https://philological.cal.
bham.ac.uk/polverg/ > (accessed 1 February 2023); John Leland, Commentarii de scriptoribus Britannicis,
(eds) Thomas Goodlad; Anthony Hall, Oxford: Sheldonian Theatre, 1709; John Bale, Index Britanniae
scriptorum: quos ex variis bibliothecis non parvo labore collegit Ioannes Baleus, cum aliis � John Bale’s
Index of British and other writers, ed. by Reginald L. Poole and Mary Bateson, Oxford, 1902; Thomas
Tanner, Bibliotheca Britannico-Hibernica sive, De scriptoribus, qui in Anglia, Scotia, et Hibernia ad sæculi
17 initium floruerunt, literarum ordine juxta familiarum nomina dispositis commentarius, London, 1748.
7 E.g., ‘Nota quod post compositionem istarum tabularum quas amiseram per exspolationemRegis Ricardi,
ego existens incarceratus in turre Londonarum, composui alias tabulas eclipsium que discordant ab istis in
paucis secundis, cuius causa est quia latitudo lune vera et visa differt ab ista aliquando per unum secundum
et aliquando per 30 tertia tantum’, Cambridge, St John’s College MS B. 19, fol. 1r; London, British Library,
Royal MS 12 G I, fol. 1r; London, BL, Add MS 89442; ‘Require alios canones in fine proximi quaterni
quos primo composui priusquam fueram incarceratus per Regem Ricardum’, Cambridge, St John’s College
MS B. 19, fol. 6r; London, British Library, Royal MS 12 G I, fol. 6r.
8 Thomas Trout’s short entry on Lewis Caerleonwas included in the note dedicated to Lewis Charleton, see:
Thomas Trout, ‘Charlton or Cherleton, Lewis’, Dictionary of National Biography, 1887, 10, p. 118;), Keith
Snedegar,‘Caerleon, Lewis (d. in or after 1495), physician and astronomer’, Oxford Dictionary of National
Biography, from < https://www-oxforddnb-com.ezproxy-prd.bodleian.ox.ac.uk/view/10.1093/ref:odnb/97
80198614128.001.0001/odnb-9780198614128-e-4324 > (accessed February 2023).
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two little-known fifteenth-century astronomers from Merton College, Oxford.9 How-
ever, in line with this renewed interest in Lewis Caerleon’s manuscripts, his scientific
writings deserve critical editions and more attention. This is our endeavor here with
an edition and a commentary of his work on the equation of time, comprising tables
and canons.10 The first section presents the author and provides evidence that may
be gleaned from various sources. The second section explores the context in which
this work was composed and situates it within the other writings of Lewis Caerleon.
The third section provides a comment on the sources used by the author, and more
particularly the strong interest he had in the works of Simon Bredon (d. 1372). The last
two sections are devoted to Lewis’s table of the equation of time and the mathematical
details of his method for computing it.

2 Lewis Caerleon in context

2.1 The university years

First, the name Lewis Caerleon (instead of Lewis de Caerleon) seems to have been
preferred by the physician himself as testified by his autograph signatures: ‘Lewys
Caerlyon’ or ‘Lodowycus Caerlyon’.11 Although his name points to his Welsh ori-
gins, as is clearly underlined by Polydore Vergil who designates him as ‘from Wales’
(natione Wallo) and John Leland, who describes the small Roman town of Caerleon
in his entry, the first evidence about his life is found in England.12 The earliest hint
may be found in Cambridge where Lewis was a student at the Faculty of Medicine.
In the fifteenth century, the Faculty of Medicine of the University of Cambridge was
certainly not well endowed with students and masters, and in certain more precarious
years it was even unable to admit any students. In the fifteenth century, the number
of professors and students diminished to such an extent that a certain proportion of
students in medicine at Cambridge decided to pursue their studies abroad on the con-
tinent, particularly in Italy, where the teaching had long been renowned.13 This does
not seem to have been the case for Lewis though, at least for years 1465–1466 when he
was first admitted bachelor of medicine and in 1466 received a fine for not lecturing
in this discipline.14 However, we know nothing of his student years in Cambridge.

9 See Laure Miolo, ‘A bibliophile performing eclipse computations. Lewis Caerleon and his notebook’, in
Manuscripts and Performances in Religions, Arts and Sciences, ed. A. Brita et al., 117–186. (Berlin: De
Gruyter, 2024).
10 An edition of his eclipse tables and canons will be pursued in a future work.
11 E.g., CUL, fol. 14v, 81r.
12 ‘Margareta invaletudinis causa utebaturmedico nomine Ludovico nationeWallo, et quia vir gravis erat ac
non minimi usus, saepe cum eo solebat libere loqui et familiariter suspirare. […]’, Vergil (1555), translated
by Sutton (2010); in John Leland’s statement, ‘Joannes, cui ab urbe Legionum, in ripis Iscae fluminis
condita, nomen Cairleon vulgo inditum’, Leland (1709), p. 471.
13 Damian Riehl Leader, A History of the University of Cambridge. Volume 1, the University to 1546
(Cambridge: Cambridge University Press, 1988), 202–210, Thomas Denman (d. 1501), and John Argentine
(d. 1508) both went to the Continent to pursue their medical education.
14 ‘Item Lodowicus Carlyon quia non legit in medicinis XX’. Cambridge University Archives, Reg. I.2.32.
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A plausible assumption is that he was a fellow of Clare Hall (now Clare College),15

since two of his manuscripts were there. They are mentioned by John Leland during
his visitation of Clare College in 1535:

[1] ‘6. Tabulae Ludovici de Cairlion doctoris medicinae de eisdem rebus Londini
scriptae 1482’, it may be associated with the previous item described as: ‘5.
Tabulae magistri Simonis Bredon de rebus astronomicis.’16

[2] ‘14. Quadripartitum Richardi Walingford abbatis Sancti Albani de sinibus
de mensuratis (sic). Quia canones non perfecte tradunt notitiam sinus etc.’ and
‘15. Commentum Symonis Bredon super aliquas demonstrationes Ptolemaei
Almagesti. Nunc superest ostendere.17

The first manuscript may correspond to a Clare College codex described slightly
later by John Bale in his Index Britanniae (1548–1552). His description is much more
detailed, although the contents are neither ordered nor entirely listed:

Ludovicus Caerlion, astronomus peritus, scripsit:
De eclipsi ac lunari: ‘Modus operandi pro eclipsi lune’
Tabulas eclipsium: ‘Altitudo lune in arcu longitudo’
Canones eclipsium ‘Eclipsim solis quantitatem et dur (sic) [durationem]’
De tabulis umbrarum: ‘Circa compositionem tabularum umbrarum.’
Atque alia plura composuit.
Ludovicus Caerlion, Britannus, doctor in medicinis et astronomus, Londoni
claruit 1482.
Ex aula Clarensi Cantabrigie.18

This manuscript may probably be identified as London, BL, Add. MS 89442 (here-
after BLa), since no other manuscripts of Lewis’s display similar associations. This
volume is indeed the only extant codex to retain the tables of shadows and their canons
composed by Lewis in London on the 30th of April 1482.19 Moreover, in the descrip-
tion provided by Leland, the table of Simon Bredon (tabulae magistri Simonis Bredon)
mentioned is probably the tables of chords opening this same manuscript. Therefore,
Leland and Bale seem to have described the same manuscript, although with different
degrees of detail.

The second volume described by Leland in 1535 provides more information as it
exactly quotes the manuscript’s rubrics and incipits. It should be noted that Leland’s
description also encompasses two items (numbers 14 and 15). It corresponds to the

15 Cf.Miolo (2024), ‘A bibliophile performing eclipse computations’, art. cit.
16 Peter D. Clarke, The University and College Libraries of Cambridge (Corpus of BritishMedieval Library
Catalogues, 10), (London: British Library, 2002), p. 152.
17 Clarke (2002), p. 153.
18 Bale (ed. by Poole and Bateson 1902) , p. 284.
19 For the material related to shadows, see: BL, Add. MS 89442, pp. 34–35, for the tables, and p. 36 for
the canons beginning: ‘Circa compositionem tabularum umbrarum’. Page 38 displays an example of the
computation of altitude of the shadow, this short passage concludes by providing the date of composition of
the shadow tables: ‘Explicit opus Lodowyci Caerlyon in medicinis doctoris, circa tabulas umbrarum, anno
incarnationis imperfecto 1482°, 30 die mensis Aprilis apud Londonum’.
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part of Oxford, Bodleian Library, MS Digby 178, fols. 15r–87v,20 which was com-
missioned by and belonged to Lewis. This volume contains Richard of Wallingford’s
Quadripartitum (fols. 15r–38r), heavily annotated by Lewis, also including a lengthy
comment of his (fols. 38r–38v) and Simon Bredon, Commentum super Almagesti,
fols. 39r–86v. MS Digby 178 ends with Lewis’s note and diagram on the distance
between the Earth and the Moon (fols. 87r–87v). As we shall see, this codex and
particularly Simon Bredon’s treatise played a central role in the elaboration of the
tables and canons for the equation of time by Lewis. Both manuscripts passed to Clare
College before 1535 and were probably donated by Lewis or bequeathed by him. That
Clare was Lewis’s College is also reinforced by the fact that its statutes mention the
study of medicine and that the aula Clarae hosted students in medicine.21

In any event, one also learns from two autograph notes written in his notebook
that he donated tables to the universities of Cambridge and Oxford.22 In Oxford, a
donation of astronomical tables was made by Lewis in 1490 to ‘the use and benefit
of the students’ of Merton College.23 However, it is difficult to know whether this
mention refers to similar benefactions made to Clare College and Merton College or
additional ones. Those notes and donations certainly provide evidence about the next
stages of his career. From 1481, Lewis mentions himself as a doctor of medicine,
although no extant records allow us to say where he earned his degree from.24 Despite
the lack of evidence about his education between 1466 and 1481, one may assume
that Lewis left Cambridge for Oxford, where a better-endowed and larger faculty of
medicine existed. Thismay explain the donation toMertonCollege, but also the various
astronomical tables he worked on based on the Oxford meridian. As we shall see, it
is likely that Lewis maintained—directly or indirectly—relationships with Merton
College and some fellows there.25

20 On the whole history of this composite manuscript, see: Andrew G. Watson ‘A Merton College
Manuscript Reconstructed: Harley 625; Digby 178, fols 1-14, 88-115; Cotton Tiberius B. IX, fols 1-4, 225-
35’, Bodleian Library Record, 9 (1976), 207–217 [reprinted in Watson A. G (2004), Medieval Manuscripts
in Post-Medieval England, (Variorum collected studies series/775), Aldershot: Ashgate, article XIII].
21 Leader (1988), p. 205.
22 CUL, fol. 147v: ‘Nota quod istas tabulas eclipsium et diversitatis aspectus cancellavi quia non calculavi
istas tabulas ita precise sicut tabulas eclipsium quas dedi universitatibus Cantebrigie et Oxonie, insensibilis
tamen est differentia et per istas tabulas satis bene et prime parte eclipsium calculari.’ On fol. 151v, one
finds a similar note: ‘Nota quod tabulas precedentes quia eas non ita precise calculavi sicut tabulas quas
dedi universitatibus Cantabrigie et Oxonie tamen quasi insensibilis est differentia in calculo, experiatur
quicumque velit’.
23 ‘26° die mensis Octobris incathenatus erat liber in libraria continens tabulas astrologicas, secundo folio
vere puncta, quemcollegio donavitmagisterLodowycusCaerlyon, doctor inmedicinis et doctus astronomus,
ad usum et profectum studentium in eadem.Habemus igiturmagnas gracias sibi.’ SeeH. E. SalterRegistrum
annalium collegii Mertonensis 1483–1521 (Oxford: Clarendon Press, 1923), p. 139. This manuscript was
chained for the common use of the students.
24 Cf. CUL, fols. 14v and 107r where we can respectively read: ‘Lewys Caerlyon in medicinis doctoris’
and ‘per calculationem Lodowyci Caerlyon in medicinis doctoris’.
25 A discussion can be found in Miolo (2024). The tables based on the Oxford meridian are only found in
CUL.
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2.2 The ‘go-between’

After 1481, Lewis Caerleon’s life ismore traceable, since he found hisway to the court.
This pathway from university to court was not uncommon and a significant number
of his contemporaries ended up at court where they benefited from the patronage of
magnates or the royal family, if not the king himself.26 It seems that Lewis began
his courtier career in the service of Margaret Beaufort, as a physician but also as an
adviser. Althoughwe do not knowwhen he started to serveHenryVII’smother and her
entourage, he purportedly took part in a conspiracy against Richard III. According to
Polydore Virgil, he probably acted as an intermediary between Elizabeth Woodville,
to whom he also served as a physician, andMargaret Beaufort, whowere both working
to dethrone Richard III. However, the failure of Buckingham’s rebellion in October
1483 led Margaret and Elizabeth to be imprisoned in their respective houses, and it
is probably at the same time that Lewis was imprisoned in the Tower of London.27

Although no other account than his own works testifies to this imprisonment, it seems
that he remained in the tower until after 16March 1485, the date of the solar eclipse he
computed and observed.28 His release certainly occurred after the defeat of Richard
III, on 22 August 1485. His support and loyalty to the Lancastrian faction are clearly
visible in the number of rewards and favours he received when Henry of Richmond
was crowned Henry VII. He was awarded several grants for life between 1486 and
1488, of which the apex was his appointment as one of the knights of the king’s alms
in August 1488.29 He continued to serve the King and the Queen, Elizabeth of York,
as a royal physician until his death after 6 May 1495, a date which appears in a short
autograph note written on a slip of paper that he sent to his attorney, Master Stokes. It
seems that after his release sometime around the end of the summer of 1485, Lewis
started to organise the different astronomical compositions he made for that very same
year. A significant part of his manuscripts is indeed dated 1485. It is in this context
that Lewis composed his works on the equation of time, which we analyze in detail
below.

3 Lewis and his intellectual surroundings

Although Lewis Caerleon was a physician, no medical treatise is known to have been
written by him. His writings are only devoted to astronomy and seem to serve a partic-
ular purpose: eclipse computations. This particular interest in eclipses may be due to
his medical practice which probably implied medical astrology. Universal judgements
on the basis of eclipses were used in annual prognostications and in both medical
astrology and astrometeorology.30 According to the extant sources, his writings were

26 On the porosity of both milieux, see Carey (1992).
27 Polydore Vergil, Historia Anglica. See Kibre (1952), pp. 101–102.
28 Cambridge, St John’s College MS B. 19 and BL, Royal MS 12 G I, fol. 6v: ‘Istam eclipsis Solis anno
Christi imperfecto 1485, post meridiem 16 diei Martii contingentem ego observavi in turre Londoni …’.
29 Cf. Kibre (1952), 102–103.
30 For example, the effect of the solar eclipse of 16 March 1485 had been discussed from a medical
perspective by Diego de Torres (ca. 1480–after 1487), who held the chair of astrology at the University
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concentrated within a short period of time between 1481 and 1485. Several extant
manuscripts copied and commissioned by Lewis allow us to reconstruct the chronol-
ogy of his astronomical compositions. We will highlight three stages.

3.1 Lewis’s astronomical production: the early stage 1481–1482

The first evidence of his scientific activity may be found in his notebook (CUL) where
he gathered several of his sources but also kept a record of some of his compositions.
This corresponds to the early stages of his Opus eclipsium, including drafts and early
versions of his writings. Although Pearl Kibre and other scholars understandably
assumed that this manuscript contained the first version of Lewis’s eclipse and parallax
tables, one of the authors of this article (LaureMiolo) recently showed that those tables,
and probably the canons appended to them, were authored by aMerton College fellow
named John Curteys (d. 1448/1449).31 Those tables based on the Oxford meridian
certainly laid the foundations for Lewis’s work on eclipses, since he expanded them
and based his own tables on them. He employed for the first time his revision of
John Curteys’ tables in the computation of the solar eclipse of 28 May 1481 based
on the Oxford meridian. This eclipse was computed with four different sets of tables:
the Toledan Tables and John of Lignères’s Tables of 1322 in the first instance,32 and
then, from the true conjunction (found with the Alfonsine Tables), John Curteys’s
tables called nove tabule.33 A last set of tables is used by Lewis who named them
nove tabule expanse, corresponding to the revision he made from the nove tabule.34 It
should be noted that John Curteys’s tables based on the Oxford meridian are derived
from the parameters of Richard of Wallingford’s Albion,35 as is the revision by Lewis,
who expanded his tables ‘to the individual minutes, rejecting all fractions up to the
minute, both in time and in motion’.36 Those expanded tables are not found in the
notebook, but may well coincide with the tables ‘expanded to the individual minutes’
dated to 1482 and found in manuscripts that Lewis commissioned and supervised
after his release in 1485.37 In any case, even if the nove tabule expanse used for the
computation of the solar eclipse of 1481 correspond to an earlier state based on the
Oxford meridian, the 1482 tables clearly derive from it.

Footnote 30 continued
of Salamanca: Marcelino V. Amasuno, Un texto médico-astrológico del siglo XV: ‘Eclipse del sol’ del
licenciado Diego de Torres (Cuadernos de historia de la medicina española: Monografias, 21), (Salamanca:
Universidad de Salamanca, 1972).
31 Cf. Miolo (2024). A short entry on John Curteys may be found in Alfred B. Emden, A Biographical
Register of the University of Oxford to A.D. 1500 (Oxford: Clarendon Press, 1959–1974), p. 530. John
Curtey’s tables are contained in CUL, fols. 147v-151v and the canons fols. 152v-153v.
32 CUL, fols. 12v–13v; for the edition of the Toledan Tables, see Pedersen (2002), for John of Lignères’s
tables see Chabás and Saby (2022).
33 CUL, fols. 13v-14va.
34 CUL, fol. 14vb.
35 Cf. Miolo (2024).
36 CUL, fols. 14vb: ‘Calculatio eiusdem per tabulas novas expansas ad singula minuta abiciendo omnes
fractiones usque ad minuta, tam in tempore quam in motu’.
37 The ‘twin’ manuscripts, Cambridge, St John’s College MS B 19 and BL, Royal MS 12 G I, and BLa
contain the set of eclipse tables composed in 1482.
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The same computation retains two other methods to calculate the solar eclipse,
an arithmetical and a geometrical procedure. The latter one is entitled Demonstratio
geometrica and is based on mean values and on the geometrical model explained in
the first part of Richard of Wallingford’s Albion.38 This seems to be a first attempt to
apply amethod that Lewis fully theorised later in a canon entitled,De modo calculandi
eclipses geometrice sine tabulis.39 The computation of the 1481 solar eclipse clearly
displays the genesis of Lewis’s astronomical works, and how he carefully applied the
tables he derived and method he developed for this calculation.

Amongst the earliest astronomical composition of the physician there are two tables,
one devoted to the difference between the mean velocities of the two luminaries in
hours of time at mean syzygy, and the other displaying the difference of velocities at
true syzygies. They are accompaniedby short canons.40 That both tables are the starting
point of a larger and expanded work becomes clear with BLa, which retains a whole
set of tables of syzygies entitled, ‘Tabula revolutionis coniunctionum et oppositionum
solis et lune cum motibus’ (BLa, pp. 72–117) with their canons (BLa, pp. 117–118).
This more extensive set was probably developed in 1482, given the use of an exemplum
operationis (an example of calculation) based on the first conjunction of this very same
year.41

Lewis’s notebook displays some of the early stages of his astronomical composi-
tions that we may date to around 1481 based on the eclipse computation. It should be
underlined that those different attempts, especially the eclipse and parallax tables, are
all based on the Oxford latitude. This may be due to his main source, John Curteys,
whose tables are based on this same latitude, but it is also likely that at that time, Lewis
was himself in Oxford where he had access toMerton College manuscripts as we shall
see shortly. If we summarize the information provided by CUL, except several notes
and computational examples, Lewis surely authored: (1) a set of eclipse tables that are
not extant, called nove tabule expanse, perhaps a first version of the 1482 tables; (2)
an attempt at a ‘geometrical’ method of eclipse computation; (3) a table of mean and
true syzygies; (4) the computation of the solar eclipse of 28 May 1481.

38 North (1976), I., pp. 283–294
39 This canon is displayed in Cambridge, St John’s College MS B 19, fols. 7v–8v; and BL, Royal MS
12 G I, fols. 7v-8v; BLa, pp. 124–125, it begins with: ‘Quicumque voluerit quantitatem et durationem
eclipsis lunaris geometrice perscrutari’, and ends ‘Nota tamen quod linea m.k. est, nota quia est residuum
semidiametri umbre subtracto inde prius semidiametro lune ergo eius quadratum erit notum. Explicit opus
magistri Lodowyci Caerlyon in eclipsibus lune et solis, excepto quod in eclipsi solis accipies semidiametrum
solis in vice semidiametri umbre.’
40 CUL, fols. 155r-156r for the tables, and fols. 154vb and 156r for the short canons.
41 BLa, pp. 117: ‘Volo ergo invenire primammediam coniunctionem Ianuarii anno domini imperfecto 1482,
ideo reducam annos Christi perfectos 1481 ad quarta, tertia, secunda et prima…’. A shortened version of
the table for finding true syzygy is also included in BL, Arundel MS 66, fols. 258r–v. This manuscript
was commissioned in the entourage of Henry VII and completed in 1490. This is further evidence of the
potential association of Lewis with this manuscript. A different shortened version of the table is found in
a late fourteenth- early fifteenth-century English manuscript, Cambridge, UL, Mm.3.11, 60r-61v. We are
indebted to Rich Kremer for pointing out these two manuscript witnesses to us.
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3.2 The development of an astronomical programme 1482–1483

Three othermanuscripts help to provide a better picture of Lewis’s compositions. They
were all commissioned and supervised by him as can be seen from the autograph notes
corrigitur or relegitur written in a pale ink in the lower margins of the volumes. All of
them belong to a publication process carefully planned by Lewis after 1485, since they
all display works dated to that year, including the computation of the solar eclipse of
March 1485, and refer to his imprisonment by Richard III. That they all proceed from
the same publishing endeavour seems clear, since only Lewis’s works are contained
in those manuscripts copied by professional scribes.

Two of them are what might be called twin manuscripts. Cambridge, St John’s
College MS B 19 (hereafter CSJ) and BL, Royal MS 12 G I (BLr) are indeed both
copied on sixteen folios of parchment, have the same dimensions and contain the
same texts and tables ordered in exactly the same way.42 The only difference is that
they were both copied by two different scribes. No other evidence allows us to say
for whom these volumes were intended, although CSJ displays a clear chain mark
on the upper cover indicating that the manuscript entered in an institution. However,
the volume does not correspond to the records related to Clare College or Merton
College, and may well coincide with the donations to the Universities of Oxford and
CambridgementionedbyLewis in his notebook.Despite the lackof evidence regarding
the provenance of both codices, it seems that the physician’s purpose was to provide
two different people or institutions with his eclipse writings. Indeed, the contents of
both manuscripts are only related to eclipses, which contrasts with the third volume
BLa, which contains a larger and more diverse number of works produced by Lewis.
BLa is a large manuscript consisting of 128 pages of parchment, copied by the same
scribe as BLr and may be considered Lewis’s Opera omnia. The large chain mark on
the contemporary blind-tooled upper cover confirms that the manuscript belonged to
an institution, which seems to be Clare College.43 As BLa is Lewis Caerleon’s Opera
omnia, it retains similar works as in CSJ and BLr in addition to other writings which
are not displayed in the twin manuscripts.

Most of the eclipse work was produced by the royal physician in 1482. A mention
predating the elaboration of the eclipse and parallax tables may be found in his note-
book in front of parallax tables said to be excerpted from John Somer’s book. In some
way, this short note describes a part of Lewis Caerleon’s programme:

42 CSJ came from the collection of William Crashaw (d. 1625/1626) and was then purchased in 1615 by
the Thomas, Earl of Southampton, who donated the manuscript with others to the St John’s College in 1635
(cf. plate on the inside upper cover and mention Th. C. S. on the second upper flyleaf); BLr was purchased
from a certain Doctor Laidon or Laidun, priest of St Faith in the Church of St Paul in London, who might be
Richard Laiton or Layton (d. 1544), by Nicolas Frazer on 15 June 1535, fol. 15v: ‘Ego Nicolaus Frazerus
emi hunc librum ab doctore Laidun pastori Sancte Fide in divino (sic) Pauli ecclesia Londinensis anno 1535
die 25 Iunii’. BLr then passed to the private library of John Lumley (d. 1609), which was acquired with the
whole Lumley’s collection by the Prince of Wales around 1603 to finally end up in the Royal Library.
43 The only evidence about the early provenance of the manuscript is provided by Leland’s visitation and
Bale’s Index. BLawas still at ClareCollegewhenBale composed his Index (1548–1552). Some decades later
the manuscript entered under unknown circumstances in Henry Spelman’s collection, BLa, p. 1: ‘Henrici
Spelmanni liber emptus 11 April 1606’. The manuscript passed through the hands of various antiquarians
before entering in the library of the Earls of Macclesfield through Thomas Parker (d. 1733), 1st Earl of
Macclesfield.
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With God’s favour, I propose to build other new parallax tables based on the
meridian of the University of Cambridge and new eclipse tables with all tables
for the same purpose.44

As was the case with John Curteys’s eclipse tables, the revised and expanded tables
made by Lewis in 1482 are based on the parameters of the Albion, more particularly
from Book I, chapters 18, 19 and 21 containing the diameter values needed for com-
puting a part of these tables.45 As stated in the short note, the new parallax tables
elaborated by Lewis are indeed based on the latitude of Cambridge as stated in their
headings.46 This information is also repeated in both eclipse canons found in the twin
manuscripts.47 Although the parallax tables are designed for Cambridge, the heading
of the solar eclipse tables provide valuable evidence about the context of composition.
They were composed in London, when Lewis was physician of Margaret Beaufort.48

Those tables provide entries for lunar/solar eclipses digits, the difference of digits
between the apogee and perigee, the minuta casus and dimidium more. The eclipse
tables of 1482 are accompanied with two sets of canons elaborated at different times.
The twin manuscripts are the only witnesses displaying both canons and a mention at
the end of one of the texts provides a better understanding of the context. It reads: ‘Seek
at the end of the next quire for the other canons that I composed before I was incar-
cerated by King Richard’.49 A first version of the canons was, therefore, composed in
1482, whereas another text was composed after 1485.50

44 CUL, fol. 152r: ‘Alias, tunc favente Deo, novas tabulas diversitatis aspectus ad meridiem Universitatis
Cantebrigie propono construere et novas tabulas eclipsium cum omnibus tabulis easdem continentibus etc.’
45 The eclipse tables with the headings are found in BLa (pp. 65–71); BLr and CSJ , fols 1r–3v. E.g., CSJ ,
fol. 1r: ‘Hic incipit tabula eclipsis Lunaris secundum dyametros Ricardi abbatis de Sancto Albano, libro
suo primo de compositione Albionis conclusione 18, 19 et 21, ad longitudinem longiorem cum differentia
punctorum et minutorum casus et more, ad longitudinem propriorem noviter facta et expansa ad singula
minuta argumenti latitudinis Lune per me Lodowycum, anno Christi 1482 et huic tabule finaliter adhereo
ut in principio huius operis premisi’.
46 These tables are contained inBLa, p. 59,BLr andCSJ, fol. 5r: ‘Tabula diversitatis aspectus in longitudine
et latitudine veri polus elevatur 52 gradus 20 minuta. Supposita maxima solis declinatione 23 gradus, 28
minuta 17 secunda et si declinatio esset 23 gradus 33 secunda, non variaret nisi in paucis secundis. Et scias
quod iste diversitates aspectus hic posite sunt archus et non corde. Lewys’.
47 BLr, CSJ, fol. 6r, BLa, p. 70: ‘Intra in tabulam diversitatis aspectus factam pro latitudine 52 gradus
et 20 minuta quod suppono latitudinem Cantebrigie quam noviter composui’. The other canon is only
found in BLr, fols. 15r-v and CSJ, fols. 14v–15r, the similar passage reads: ‘Intra in tabulam diversitatis
aspectus factam pro latitudine Cantebrigie et dividitur in 2 tabulas, quarum una est de diversitate aspectus
in longitudine, et altera de diversitate aspectus in latitudine’.
48 CSJ and BLr, fol. 3r: ‘Hic incipit tabula eclipsis solis secundum diametros Ricardi Abbatis de Sancto
Albano ad longitudinem longiorem cum differentia punctorum et minutorum casus ad longitudinem pro-
priorem Lune. Sed sol supponitur esse semper in sua longitudine medie in compositione istius tabule per
me Lodowycum anno Christi imperfecto 1482 apud Londonum’.
49 BLr and CSJ, fol. 6r: ‘Require alios canones in fine proximi quaterni quos primo composui priusquam
fueram incarceratus per Regem Ricardum’.
50 It should be noted that the first version of the canons (BLr, fols. 15r-v and CSJ, fols. 14v-15r) is largely
inspired by the canons contained in the notebook which were composed for John Curteys’s tables; only
the Oxford mention allows us to differentiate both versions as the 1482 version substitutes Oxford for
Cambridge. The version of 1482 begins with: ‘Modum operandi pro eclipsi lune per tabulas novas. Intra in
tabulam eclipsis lunaris cum argumento latitudinis […] Canones eclipsium solis secundum easdem tabulas.
Pro quo primitus ista sunt requirenda …’; the second version is found in BLr and CSJ, fols. 5v-6r, BLa,
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Amongst the eclipse works dated to around 1482 and contained in the three
manuscripts there are canons to parallax tables, the method to compute an eclipse
geometrically without tables and the table of concordance between the radii values
excerpted from Richard of Wallingford’s Albion and al-Battānı̄’s De scientia astro-
rum already displayed in the notebook. This work was pursued with new interpolation
tables made by Lewis in 1483.51 Those sets of eclipse and parallax tables were finally
used to compute the eclipse of 16 March 1485. Along with the detailed computation,
the twin manuscripts also include the comparison between the computation and the
observation made by Lewis, although it is absent from BLa.

CSJ and BLr were conceived by Lewis as an opus eclipsium, an instrument for pre-
dicting eclipses. He certainly selected the material to be included in both manuscripts.
The purpose of BLa is slightly different, since its likely aim was to assume the status
of opera omnia. In that context, BLa retains more eclipse material, such as an intro-
duction to the complete eclipse work as well as a unique set of eclipse tables based
on al-Battānı̄’s values composed in 1482 (BLa, pp. 61–64). The introduction explains
why Lewis has chosen to keep only the tables based on the values provided by the
Albion instead of the sets of tables deriving from al-Battānı̄’s De scientia astrorum.
He tested the accuracy of both sets of tables in predicting the solar eclipse of 17 May
1482, and ultimately endorsed the Albion’s values.52 As was the case with the eclipse
of 28 May 1481, Lewis tested his own tables for the 1482 eclipse. Hence, the presence
of this set in the twin manuscripts.53

In this eclipse work, the equation of time was necessary to calculate eclipses. It is
mentioned in the solar eclipse canons written by Lewis in 1482 and 1485 as part of
the requirements for the calculation:

[Canons of 1482] Canones eclipsium solis secundum easdem tabulas. Pro quo
primitus ista sunt requirenda et memorie commendanda, scilicet tempus vere
coniunctionis luminarium, diebus equatis, verus locus luminarium, argumentum
verum lune, superation lune in una hora [...]54

[Canons of 1485] Circa calculationem eclipsis solis ista sunt primitus requirenda
et memorie commendanda, scilicet, tempus vere coniunctionius luminarium,

Footnote 50 continued
pp. 70–71, and was composed after 1485, it begins: ‘Postquam novas tabulas eclipsium composuerim cum
singulis tabulis ad easdem pertinentibus, convenit ut modus operandi per easdem plane declarem […] Circa
calculationem eclipsis solis ista sunt primitus requirenda et memorie comendanda, scilicet, tempus vere
coniunctionis luminarium diebus equatis’.
51 CSJ and BLr, fol. 4r: ‘Tabula minutorum proportionalium seu tabula proportionis vel affinitatis seu
portiones longitudinum ad eclipses per me Lodowycum noviter facta anno Christi 1483’.
52 BLa, p. 39: ‘Ego tunc unam eclipsim solis observavi, anno imperfecto 1482, post meridiem 17 diei Maii
quo ad initium eclipsis 5 horis 54 minuta et finis eiusdem post horam 7am 42 minutis, quod mihi ad sensum
et aspectum visum est concordare cum sententiis Ricardi Abbatis. Et ideo illius magis adherere propono,
nisi in posteris per observationes contrarium probavero ad sensum in aspectu, et sic faciant qui me secuntur
brevis canon componendi tabulas eclipsium Lewys.’ A horoscope chart of the eclipse and some computed
values are found in CUL, fol. 1r.
53 We can read these words in the heading of the lunar eclipse tables: ‘et huic tabule finaliter adhereo ut in
principio huius operis premisi’ (CSJ, BLr, fol. 1r and BLa, p. 61). One cannot exclude the possibility that
the twin manuscripts were commissioned slightly after BLa.
54 BLr, fol. 15r and CSJ, fol. 14v.
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diebus equatis gradus ascendentis pro eodem tempore verus locus luminarium,
argumentum verum lune superatio lune in una hora [...]55

The equation of time is also used in his own eclipse computations. For the solar
eclipse of 28 May 1481, Lewis computed the correction according to the equation
of time on the basis of two different sets of tables, the Toledan Tables and John of
Lignères Tables of 1322:

Tempus vere coniunctionis diebus non equatis post meridiem prescriptis 3 hore,
51 minuta, 45 secunda, 31 tertia
Equatio dierum secundum magistrum Johannem de Lineriis, 19 minuta, 18
secunda, 16 tertia, 30 quarta
Equatio dierum secundum Azarchelem 20 minuta, 21 secunda, 32 tertia.56

Similarly, a correction by the equation of time is given in his calculation of the solar
eclipse of 16 March 1485: 9 min and 36 s.57 To correct the time of true syzygy by
the equation of time was, therefore, an important step in eclipse prediction. This may
explain why in 1485 Lewis decided to construct his own table.

3.3 TheOpera omnia and its contents

If Lewis Caerleon’s main focus was on eclipse prediction, he gathered a large amount
of information and materials in order to derive new eclipse and parallax tables. BLa is
the only surviving example of theseworks, although some early drafts can be identified
in the notebook. The manuscript is divided into different sections covering spherical
astronomy, prediction of eclipses, arithmetic/trigonometry, and the equation of time.

The trigonometric section begins with a table of sines and chords ascribed to Simon
Bredon (d. 1372) and revised by Lewis Caerleon, followed by canons composed by
the royal physician.58 The revision offered by Lewis consists in expanding the table
to every minute of arc, which is said to be more precise than al-Battānı̄’s table. BLa is
the only witness to this table, although Bale saw a manuscript in Clare College which
contained a similar table along with related texts.59 The manuscript is described by
Bale as follows:

Simon Bredon, Wichecombensis, astrorum magister, scripsit:

55 BLr and CSJ, fol. 5v, BLa, p. 70.
56 CUL, fol. 12v:
57 BLa, p. 71 and CJS, BLr, fol. 16v: ‘Equatio dierum 9 minuta 36 secunda’; given the longitude of the true
sun of 5;24,30° at true syzygy, this value for the equation of time exactly corresponds to the value derived
from Giovanni Bianchini’s modern equation of time, contained in his Tabula primi mobilis B, by linear
interpolation.
58 BLa, pp. 1–30; BLa, p. 1: ‘Tabula cordarum mediatarum Magistri Symonis Bredon expansa ad singula
minuta per me Lodowycum et est precisior quam tabula Albategni quia caculatur pro singulis 15 minutis
usque ad octavam. Sed hic non posui nisi quarta verificata pro singulis 15 minutis’. The canons are on
pp. 31–33.
59 Bale (ed. by Poole and Bateson 1902) , p. 410; the information is then repeated by Tanner (1748), p. 122:
‘Scripsisse etiam fertur Tabulas chordarum: Arcus sinus rectus, sinus versus; Calculationes chordarum,
‘Ad allevationem laboris calculantium’.
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[1] Commentum super aliquas demonstrationes Almagesti: Assensiones equal-
ium portionum zodiaci.
[2] Tabulas cordarum: Arcus, sinus rectus, sinus versus.
[3] Calculationes cordarum: Ad alleviationem laboris calculanti.
Claruit A. D. 1386.
Ex aula Clarensi Cantabrigie.60

The first item corresponds to Simon Bredon’s Commentum super Almagesti, Book
I, and the incipit given is from Book I, Chapter 12.61 This was followed by the table
of chords and a short text which may correspond to a canon describing the method
of computing chords. However, none of the other witnesses to Simon’s commentary
agree with this manuscript which may have been lost or dispersed at some point.
However, the presence of this volume in Clare College may point to Lewis Caerleon’s
main source for his adaptation of Simon’s table.

The section devoted to the sines and chords is followed by shadow tables and their
canons. The canons mainly refer to John of Lignères’s spherical astronomy canons
Cuiuslibet arcus,62 and include a short text explaining how to make an instrument
using the back of the astrolabe’s alidade to measure angles.63 This section also shows
a justification of his shadow tables, which were used to calculate the maximum dec-
lination of the Sun and to make astronomical observations. This portion on arcs and
sines ends with a table of square roots showing an example of an altitude calculation
based on Lewis’s shadow table. Interestingly, the explicit gives a precise date for the
preparation of this section. It was indeed completed in London on 30 April 1482.64

60 Bale (ed. by Poole and Bateson 1902), p. 410.
61 Cf. the first two books of Simon Bredon’s Commentum super Almagesti are edited in Henry Zepeda,
The Medieval Latin Transmission of the Menelaus Theorem (unpublished doctoral thesis, University of
Oklahoma at Norman, 2013), pp. 282–230 (for the analysis of the text) and pp. 637–686 (for the edition
of Books I–II). For a discussion on this commentary, see H. Zepeda, The First Latin Treatise on Ptolemy’s
Astronomy: The Almagesti minor (c. 1200) (Turnhout: Brepols, 2018), pp. 95–98; David Juste, ‘Simon
Bredon, Commentum super Almagesti’ (update: 16.06.2022), Ptolemaeus Arabus et Latinus < http://ptol
emaeus.badw.de/work/7 > (consulted 10 July 2023).
62 Marie-Madeleine Saby, Les canons de Jean de Lignères sur les tables astronomiques de 1321, 3 vols
(unpublished thesis, École nationale des chartes 1988), I, pp. 1–71; Lewis owned a copy of those canons in
CUL, fols. 86v-96r; he refers explicitly to John of Lignères in the canons, BLa, p. 36a: ‘Si vero velis eam
artificialis corrigere age secundum canones magistri Johannes de Lineriis’.
63 BLa, p. 36b. ‘Istas tabulas feci propter rectangulum ut accipere maximam solis declinationem et propter
alias observationes faciendas circa principia scire astronomice. Sed nota bene quod si velis operari per
rectum angulum certius est facere quadratum cum regula seu alidada quadratum habetur in dorso astrolabii
[…] Et scias quod non patet ingeniari certius instrumentum ad observationes quam tale quadratum taliter
situatum ut productum est. Si circumscribatur area plana circularis equidistans orizonti cum linea meridiana
et azimuth, fora autem istius rectanguli quadrilateri erit hec ut patet in figura subsequente.’ The instrument
(a quadratum geometricum or gnomo geometricus) made by Lewis is drawn in front of the text. It consists
in two right-angled triangles joined to form a quadrilateral with one leg and the diagonal marked by another
ruler. Two pendicula (small strings) hang opposite each other to measure angles. Peurbach also elaborated a
quadratum geometricum, seeGeorg vonPeurbach,Scripta clarissimi mathematici M. Ioannis Regiomontani,
de Torqueto, astrolabio armillari, regula magna Ptolemaica, baculoque astronomico, & obseruationibus
cometarum, ed. Johann Schöner (Nuremberg, 1544), fols. 61–64. We are grateful to Rich Kremer for this
reference.
64 BLa, p. 38: ‘Explicit opus Lodowyci Caerlyon in medicinis doctoris circa tabulas umbrarum anno
incarnationis imperfecto 1482, 30 die mensis Aprilis apud Londonie’.
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As in the other parts of the manuscript, Lewis includes all the material needed to
calculate other pieces. In particular, the tables attributed to Simon Bredon were used
by Lewis to prepare his shadow tables. This explicit also clearly shows that the author
has thought of the thematic divisions as independent opera, which he put together as
a whole opera omnia.

TheOpus eclipsium follows directly as a separate section, introduced by a one-page
statement which has only survived in BLa. This introductory text provides the year
of elaboration, 1482, and the method used by Lewis to produce the eclipse tables. In
particular, it highlights how he tested his two sets of tables in the context of the eclipse
computation of 17 May 1482.65 Interestingly, Lewis not only provides both sets of
eclipse tables, parallax tables and their canons, but also includes all the material used
in the preparation of this work. Thus, after the introduction, two pages are devoted to
the compilation of eclipse tables based on al-Battānı̄’s values.66 Diameters and radii
and related material taken from the Arabic astronomer’s work are carefully listed,
followed by tabular calculations based on them.67 The tables are said to have been
made in 1482.68 A similar compilation of radii and diameters and calculationmaterials
is found right after, but this time based on Richard of Wallingford’s Albion.69 In
contrast to the al-Battānı̄ section, a short text introduces the method used by Lewis to
calculate the tables and justifies his final decision to retain Richard of Wallingford’s
values rather than those of al-Battānı̄.70 According to this explanation, Lewis did not
have a direct access to the Arabic astronomer’s treatise, but rather to the Albion and
a compilation taken from the book of a fellow of Merton College, Walter Hertt (d.
1484).71 Instead of following the pages dedicated to the table calculations, the two sets
of eclipse tables conclude the Opus eclipsium. Rather, the material that immediately
follows is devoted to other steps of the calculation of eclipses. The table of proportion
for proceeding to the interpolation between two eclipse tables is, therefore, necessary
to compute the time between the beginning and the middle of an eclipse, the number

65 BLa, p. 39: ‘Hic incipit opus eclipsium per me Lodowycum anno Christi imperfecto 1482 qui me dirigat
sua gratia per semitam veritatem.’
66 BLa, pp. 40–41; in addition to the diameters and radii values, four tables summarize the computations
made by Lewis (BLa, pp. 40–41), and four others show the final results (BLa, p. 41).
67 The values are excerpted from chapters 30, 43 and 44 of al-Battānı̄’s De scientia astrorum, see al-
Battānı̄ (Albategni), al-Battānı̄ sive Albatenii opus astronomicum. Ad fidem codicis Escurialensis arabice
editum. Latine versum, adnotationibus instructum, ed. Carlo Alfonso Nallino, 3 vols (Milan: Ulrico Hoepli,
1899–1907), I, pp. 50–63, 96–113.
68 BLa, p. 41: ‘Tabule eclipsium in suo ordine constitute et per me Lodowycum secundum semidiametros
Albategni noviter facte anno Christi 1482 quarum calculatio hic per ordinem preponitur.’.
69 BLa, pp. 41–43, the section is introduced by a table of diameters and radii entitled: ‘Sequitur quantitas
diametrorum solis et lune et umbre secundum Ricardum de Sancto Albano Abbate’.
70 This text is displayed on p. 42; it begins with ‘Sequitur calculatio tabularum eclipsium Solis et Lune
secundum semidiametros Solis, Lune et Umbre a Ricardo Wallinforthe abbate de Sancto Albano positos
libro suo primo de compositione Albionis conclusione 18, 19, et 21 sub hac serie verborum conclusione
18’ and ends with a justification of Lewis’s choice: ‘Iste Ricardus allegat commentatorem Almagesti et
capitulum 84 (sic) [44] Albategni perfecti quos non habemus summam vero libri Albategni in libris quos
vidi in precedente opere allegavi. Ists precedentes conclusiones Ricardi hic induxi, quia suius sentenciis
magis considero et finaliter adherere propono’.
71 This short work entitled De arte componendi tabulas eclipsium lists diameters and radii taken from the
Albion and comparing them with al-Battānı̄’s, CUL, fol. 142r. Cf. Miolo (2024).

123



198 L. Miolo, S. Zieme

of digits of the eclipse and the minutes of immersion. It is this type of table, derived
from Almagest VI, 8, that Lewis developed.72 Following his usual method, a canon
first explains the procedure for calculating the table, giving the details of the geometric
model, including two diagrams.73 Then, the table of proportions extended by Lewis to
the single degree is copied just after a table allowing the calculation of the argument
with which to enter the table, the lunar anomaly.74

Lewis devotes a considerable part of the manuscript to the computation of the
parallax tables.75 The different stages of the elaboration of the tables are thoroughly
recorded by the author, notably some components related to the primum mobile nec-
essary to derive those tables. This subdivision of the manuscript is introduced by a
brief canon explaining the principles and prerequisite values of the parallax table,
which in turn acts as an introduction to the tables of right and oblique ascension that
Lewis composed.76 This also leads Lewis to record and compare a list of different
values for the obliquity of the ecliptic excerpted from the Almagest, al-Battānı̄, Jābir
ibn Aflah. , Simon Bredon and John Hobroke.77 Interestingly the tables are all based
on the Cambridge latitude whereas some values, such as the solar parallax in altitude,
are based on London.78 Similarly, the exemplum calculationis just before the closing
of the parallax section takes the latitude 52;20° of Cambridge.79

The chapter on eclipses contained in BLa ends with a copy of both sets of eclipse
tables made in 1482 (respectively, based on al-Battānı̄ and Richard of Wallingford)
followed by the eclipse canons composed in 1485 and the computation of the solar
eclipse of 16March 1485 called Exemplum calculandi eclipsis Solis per novas tabulas
que contingit anno Domini imperfecto 1485 post meridiem 16 diei Martii.80 This last
piece clearly shows that Lewis was keen to test the tables he had compiled as well as

72 Gerald J. Toomer, ‘A Survey of the Toledan tables’, Osiris 15 (1968), p. 5–174, table no. 80, p. 117; Fritz
S. Pedersen, The Toledan Tables. A review of the manuscripts and the textual versions with an edition, 4
vols, (Copenhague: Kongelige Danske Videnskabernes Selskab, 2002), pp. 1440–1446, see particularly
pp. 1444–1446. On Almagest VI, 8, see Gerald J. Toomer, Ptolemy’s Almagest (London: Duckworth,
1984), p. 308.
73 BLa, pp. 44–45.
74 BLa, p. 45–46. The second table is the table of proportion entitled: ‘Eadem tabula minutorum propor-
tionalium que a plerisque vocatur tabula proportionalis vel affinitatis seu portiones longitudinum ad eclipses
a me Lodowyco noviter facta secundum demonstrationes precedentes hic subscribitur expansa per me ad
singulos gradus argumenti veri Lune’.
75 BLa, pp. 46–60, the canon begins: ‘Tabulam diversitatis aspectus lune in longitudine et latitudine ad opus
eclipsium Solis compositurus in mente notavi quam diligentius potui omnia ea que ad hoc et requiruntur
…’.
76 The tables of right and oblique ascensions are copied on pp. 53–55, the parallax tables are on pp. 56–60.
The canons of the parallax tables are situated on pp. 51–52.
77 BLa, pp. 46–49. Lewis seems to have been quite interested in Simon Bredon’s derivation of the solar
declination, see infra.
78 BLa, p. 46: ‘Diversitas aspectus Solis in circulo altitudinis apud London in capite Cancri secundum
Albategni 1 minuta, 2 secunda, secundum Ptholomeum 1 minuta, 20 secunda’, for the tables, see e.g., BLa,
p. 53, where the right ascension table is based on the altitude 52;20° corresponding to Cambridge.
79 This example is based on al-Battānı̄, Chapter 39 (Nallino, al-Battānı̄, I, p. 76–84),BLa, p. 59: ‘Exemplum
calculationis secundum processumAlbategni capitulo 39, pro latitudine 52.20, pro hora tertia post meridiem
Luna et Sole in principio Libre 6, 0 gradus, 0 minuta, 0 secunda’.
80 BLa, p. 71.
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his method of calculating eclipses. It is probably a way of demonstrating the accuracy
and thus the legitimacy of his own work.

The last part of the manuscript displays a long set of tables devoted to the difference
between the mean velocities of the two luminaries probably made, according to their
canons, in 1482.81 The equation of time material is situated just after this canon
and is followed by a different range of materials, such as a table of multiplication and
division for sexagesimal numbers and canons developing Lewis’s geometrical method
to compute the quantity (the magnitude of the eclipse, that is the part of the disk which
is obscured) and duration of an eclipse.82 The volume ends with canons for calculating
parallax.83

4 Equation of time

There are finally only a handful of works that Lewis produced in 1485 in comparison
with the annus mirabilis of 1482. This could of course be explained by the troubled
context repeatedly mentioned by Lewis. Amongst the writings produced in 1485,
there are other eclipse tables mentioned by the author, but which do not seem to have
survived,84 eclipse canons, the computation of the solar eclipse of March 1485 and
the equation of time. The tables of the equation of time and their canons are only
displayed in BLa. Like other astronomical works preserved in the volume, they serve
the main purpose of the author, the calculation of eclipses.

4.1 The canon

Canons and tables related to the equation of time are contained on pages 118–121. Two
tables are displayed alongside the canon. The final table may be found on page 121and
displays values for the equation of time for each individual degree of the twelve zodiac
signs in degrees and minutes, and, likewise, in minutes and seconds of hours. It is
preceded by a longer table with intermediate results which was used by Lewis to
compute the final table of the equation of time. As he previously did for other of
his works, he retained the preparatory material used for his calculations. The canon
(BLa, p. 118) associated with the table of the equation of time is a short text of around
1,130 words describing the different steps used to calculate the table. It was written

81 The values are displayed in degrees (BLa, pp. 71–76), minutes and seconds (BLa, pp. 77–116). They are
supplemented by a table of the mean motion of the sun and the moon, the mean argument of the moon at
mean conjunction and the mean motion of the head of the dragon (the lunar node) (BLa, p. 71). The canons
are situated on pp. 117–118.
82 For the table of multiplication and division and its canon, see: BLa, pp. 121–123; for the ‘geometric’
canons, see BLa, pp. 123–126.
83 BLa, pp. 126–128, it is followed by a parallax table based on al-Battānı̄, chapter 39, entitled: ‘Diversitas
aspectus tam Solis quam Lune in circulo altitudinis secundum Albategni’.
84 We can find a reference to those missing tables as follows: ‘Nota quod post compositionem istarum
tabularum quas amiseram per exspolationemRegis Ricardi, ego existens incarceratus in turre Londoniarum,
composui alias tabulas eclipsium que discordant ab istis in paucis secundis, cuius causa est quia latitudo
lune vera et visa differt ab ista aliquando per unum secundum et aliquando per 30 tertia tantum’, CSJ , fol.
1r; BLr, fol 1r; BLa, p. 65.
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immediately after the 1482 canon dedicated to the computation of mean syzygies.
This sequence of texts coincides perfectly with the end of this canon which mentions
the equation of time:

[…] et super tempus resultans, adde equationem dierum cum vero loco Solis
inventam in tabula nova equationis dierum.85

Lewis clearly states that his equation of time is a new work and distinguishes it
from the 1482 mean syzygies canon. This appears on the same page, with a note
added by the scribe in the margin of the canon including a signe-de-renvoi � and
reading Novum opus, confirming at the same time, that this was written after 1482.
That Lewis’s equation of time material dates to 1485 is explicitly mentioned in the
respective headings of the tables:

p. 119: Compositio tabule equationis dierum per me Lodowycum anno Christi
1485 supponendo augem Solis in primo gradu Cancri perfecto cuius composi-
tionis canones proponitur in proximo folio ad signum tale � aux verum Solis in
Cancro 1 gradus.86

p. 121: Tabula equationis dierum in motu et in tempore per me Lodowycum
Caerlyon noviter facta anno Domini 1485 in turre Londoniarum.87

According to the latter heading of the final table, Lewis had composed his equation
of time table in the Tower of London. Whether he was still imprisoned in the Tower or
not, the table was composed in London in 1485. Moreover, the title of the table with
intermediate results (p. 119) also informs us of a change in themanuscript presentation
fromwhat Lewis originally wanted. The short canon was supposed to follow this table
rather than precede it. The signe-de-renvoi leaves little doubt about this. This small
error shows that BLa may not have been the final version of the opera omnia, but
rather an intermediate copy.

The canon begins with a justification of the elaboration of the canon. The main
reason for constructing a new table of the equation of time was that the one found
in the Toledan Tables was obsolete for Lewis’s time due to the precession of the
equinoxes.88 This brief passage is then followed by a definition of the equation of time.
Lewis then describes the procedure for calculating the table that is discussed below
(Sect. 5). Several sources are explicitly mentioned in the canon, such as Ptolemy’s
Almagest III.9, Azarchel (al-Zarqālı̄), i.e., the Toledan Tables, al-Battānı̄,89 Jābir ibn

85 BLa, p. 118.
86 BLa, p. 119.
87 BLa, p. 121.
88 In his canon for the equation of time Lewis states: “Quia tabula communis equationis dierum quam
composuit Azarchel nunc propter lapsum temporis transit in errorem propter longinquam remotionem
augis Solis.” See Appendix A. On the different tables of the equation of time found in the Toledan Tables
tradition, see Pedersen (2002), pp. 968–977.
89 See below Sect. 4.
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Aflah. (Gebir) and Simon Bredon.90 However, Lewis states that his table is particularly
based on Ptolemy, al-Battānı̄, and Simon Bredon’s commentary on the Almagest:91

Ista vero tabula a diversitate diversimode componitur, ut patet per Ptholomeum,
Albategni et Bredon libro suo 2° super Almagestum, qui tradit ibidem doctrinam
completam de eam.

In this passage, Jābir ibn Aflah. is not mentioned, although at the end of the treatise,
Lewis refers to him in addition to the three other authors to know more about the
equation of time.92 Despite this claim of intellectual lineage, the last paragraph in
fact highlights Lewis’s main source, which is Simon Bredon’s Commentum super
Almagesti. Indeed, he acknowledges that SimonBredon covers the doctrine of Ptolemy,
Jābir ibn Aflah. and al-Battānı̄:

Si vero cupis habere latiorem tractatum de ista materia, vide Ptholomeum,
Albategni, Gebir et Bredon. Sed Bredon in fine libri sui secundi super Almages-
tum comprehendit sententias omnium illorum et ponit ibi modum meum hic
prescriptum in virtute, quamvis non ita plane, et ibi tradit doctrinam completam
et perfectam de equatione dierum. Sed hoc ad presens sufficit.

This close reliance on Simon Bredon’s commentary is supported by Lewis’s sur-
viving manuscripts. The physician not only relied on Simon but borrowed passages
from his Commentum super Almagesti, Book III, rather than Book II as Lewis claims.

4.2 Lewis of Caerleon and Simon Bredon

In his introduction to the Opus eclipsium, Lewis praised four astronomers on whom
he relied extensively, two ancients, Jābir ibn Aflah. and al-Battānı̄, and two moderns,
Richard of Wallingford and Simon Bredon, both said to be former fellows of Merton
College, although only Simon was there.93 As Lewis mentions, it is probably mainly
thanks to Simon Bredon that he had access to most of his sources.

90 Almagest, III.9; for al-Battānı̄ see Nallino, al-Battānı̄, II, p. 61–64; for the Toledan Tables tradition, see
Pedersen (2002), 968–977; for Jābir ibn Aflah. ’s Is. lāh. al-Majist. ı̄ or Liber super Almagesti in the Latin trans-
lation by Gerard of Cremona, see Jābir ibn Aflah. , Liber super Almagesti, Peter Apian (ed.), Instrumentum
primi mobilis (Nuremberg: Johannes Petreius, 1534); and for Simon Bredon, see the edition below.
91 Aswe show below in Sect. 5, Lewis’s also used the solar equation, a necessary ingredient for the equation
of time, from John of Lignères’s tables, which is identical to the Alfonsine solar equation.
92 It is noteworthy that Lewis Caerleon for his computation of the solar eclipse of 28 May 1481 obtained
the correction by the equation of time from the Toledan Tables and John of Lignères’s Tables of 1322.
93 BLa, p. 39: ‘Hiis visis, inter omnes astronomie professores tresmihi autores elegi inter quorum sentencias
modica et quasi insensibilis restat dissonantia, quorum unum ex antiquis elegi Albategni qui in subtilitate
observationis et precipue in opere eclipsium omnis suos antecessores excessit, cui etiam concordat Geber
ac insuper commentator super Almagesti; duos etiam ex modernis elegi, qui in novissimis nostris diebus
in excellentia et subtilitate demonstrationum omnes suos contemporaneos in toto orbe terraris sparsum flo-
rentes eximie superarunt, ut ex eorum operibus manifeste liquet Magistrum Symonem Bredon et Ricardum
Wallyngforth abbatem Sancti Albani, utrumque anglicum atque quondam socios collegii de Merton Oxonie
verum valde sum gavisus quod nostre nationis viri studiosi in mathematicis floruerint.’
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Simon Bredon (d. 1372) was a fellow of Merton College from 1330 to 1341.94

He was educated in theology and then in medicine (likely between 1341 and 1348)
at the University of Oxford. During his time in Oxford, he was highly committed to
Merton College and the University governance. His role as a mentor to other fellows,
such as William Reed (d. 1385), or John Ashenden (d. c. 1368) is evidenced by his
will, manuscript exchanges, the granting of mutual favours and other mentions.95 He
seems to have been an authority on astronomy to his contemporaries.96 After he left
Oxford, he maintained life-long relationships with a certain number of former fellows,
particularlyWilliamReed andWilliamHeytesbury (d. 1372/1373). After 1348, Simon
held various ecclesiastical benefices but also acted as a physician of the Earl ofArundel
and Joanna, Queen of Scotland. He also benefited from the patronage of the Earl of
Arundel and the archbishop of Canterbury.

His own writings, mainly on the mathematical sciences, were produced while he
was still at Oxford. His most important work is his commentary on the Almagest,
Books I–III, which was written around 1340,97 contemporary with William Reed’s
adaptation of the Alfonsine Tables to the Oxford meridian (1340) and the Almanak
Solis, on which Simon may have collaborated.98 It is not certain that Simon Bredon
commented on the other books of the Almagest. Two manuscripts display a large part
of the commentary.99 The earliest witness is Simon’s autograph copy probably made
inOxford. However, Oxford, Bodleian Library,MSDigby 168, fols. 21r–39r is incom-
plete; it contains books I–III with I.3–12 and the beginning of the second bookmissing.
Another copy may be found in MS Digby 178, which was commissioned by Lewis
Caerleon and annotated by him. Simon Bredon’s commentary is contained on fols.
39r–86v, beginning with Book I.9–11 and displaying a full version of Books II and III.

94 On Simon Bredon, see C. H. Talbot, ‘Simon Bredon (c. 1300–1372): Physician, Mathematician and
Astronomer’, The British Journal for the History of Science 1 (1962), 19–30; R. Lorch, ‘Jābir ibn Aflah. and
the Establishment of Trigonometry in the West’, in R. Lorch, Arabic Mathematical Sciences. Instruments,
Texts, Transmission (Farnham-Burlington, 1995), VIII, 30–31; K. Snedegar, ‘TheWorks andDays of Simon
Bredon, a Fourteenth-Century Astronomer and Physician’, in Between Demonstration and Imagination.
Essays in the History of Science and Philosophy presented to John D. North, eds L. Nauta, A. Vanderjagt
(Leiden, Brill Publishers, 1999), 285–309.
95 For Simon Bredon’s will, see F.M. Powicke, The Medieval Books of Merton College (Oxford: Clarendon
Press, 1931), pp. 82-86; for other evidence see Snedegar (1999).
96 John Ashenden refers to Simon Bredon who is said to have equated the motion of the eighth sphere
c. 1340: Oxford, Bodleian Library, Digby 176, fol. 45r: ‘Ista patent secundum magistrum Simonem de
Bredone qui circa annum Christi 1340 equavi motum octave sphere cum maxima diligentia’.
97 On Simon’s Commentum super Almagesti, see: Zepeda (2013), pp. 282–301, who provides an edition
of the first two books; see also Zepeda (2018), pp. 95–98.
98 On William Reed’s adaptation to the Alfonsine tables, see: R. Harper, ‘The Astronomical Tables of
William Rede’, Isis, 66 (1975), 369–78; John D. North, ‘The Alfonsine Tables in England’, inΠPIΣMATA:
Naturwissenschaftsgeschichtliche Studien. Festschrift für Willy Hartner, ed. by Y. Maeyama and W.G.
Saltzer (Wiesbaden, 1977), 269–301; J. Chabás, Computational Astronomy in the Middle Ages: Sets of
Astronomical Tables in Latin (Madrid, 2019), Chapter 10; on the Almanak Solis, see Jean-Patrice Boudet
and Laure Miolo, ‘Alfonsine Astronomy and Astrology in Fourteenth-Century Oxford: The Case of MS
Bodleian Library Digby 176’, in Richard Kremer, Matthieu Husson and José Chabás (eds), Alfonsine
Astronomy: The Written Record (Alfonsine Astronomy, 1), (Turnhout: Brepols, 2022), 57–106.
99 See the detailed discussion in Zepeda (2018), pp. 95–98; David Juste, ‘Simon Bredon, Commentum
super Almagesti’ (update: 16.06.2022), Ptolemaeus Arabus et Latinus. Works, URL � http://ptolemaeus.
badw.de/work/76 [accessed 20 July 2023].
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In Digby MS 178, Book I.9–11, is copied as an independent and anonymous text fol-
lowing Richard of Wallingford’s Quadripartitum and a long autograph note by Lewis
(fols. 38r–v). Book I.12 opens on fol. 42r with the following running title added by
Lewis’s hand: ‘CommentumMagistri Symonis Bredon super aliquas demonstrationes
Almagesti’. It seems that Lewis had access to another witness which contained Book
I.9–11 and that he did not understand that it was part of Simon’s commentary. The
other portion of the manuscript displaying Book I.12–Book III (MS Digby 178, fols.
42r–86v) was probably copied from MS Digby 168 and clearly displays the identity
of the author. The third and last surviving copy of the Commentum super Almagesti
is preserved in Lewis’s notebook, CUL, fols. 43r–45r, where only an excerpt from
Book I is copied by Lewis himself under the title: ‘Expositio Symonis super quedam
capitula Almagesti Ptholomei’.100

Alongside the Commentum super Almagesti, Lewis possessed a copy of what was
probably the first treatise written by Simon Bredon in the 1330 s, a commentary on
Boethius’sDe institutione arithmetica. This text was copied and annotated by Lewis in
his notebook.101 It is not impossible that Lewis also had in his possession the volume
once kept in Clare College in Cambridge containing Simon’s table of chords and a
part of his commentary on the Almagest.

Lewis’s familiarity with SimonBredon’s works shows that he likely had easy access
to his manuscripts. Indeed, he was probably in Oxford after 1466, and perhaps even
at Merton College, as evidenced by his gift in 1490.102 Additionally, during Lewis’s
time, Richard Fitzjames (d. 1522) was a Fellow of Merton College and then Warden
(1483–1507) and showed some interest in the science of the stars. Both men were
also in the entourage of Henry VII.103 In the late fifteenth century, Simon Bredon’s
volumes on which Lewis relied were still in Merton College having been bequeathed
by the former fellow in 1372. Indeed, Lewis’s exemplar of Simon Bredon’s Commen-
tum super Almagesti was likely directly copied from MS Digby 168 as there is little
variation between both texts. But there is more: his copy of Richard of Wallingford’s
Quadripartitum (MS Digby 178, fols. 15r–38r) is also based on MS Digby 168, fols.
1r–13v, as is the case for the Tractatus rectanguli copied by Lewis in his notebook
(CUL, fols. 8r–12r) and based on MS Digby 168, fols. 61va–64va. Most of Lewis’s
sources are thus displayed in Simon Bredon’s manuscripts. One may also assume
that Lewis had access to the Albion and to Jābir ibn Aflah. ’s Liber super Almagesti
with another volume of Simon Bredon which originally included MS Digby 178, fols.
1r–14r and fols. 88r–115v, BL, Harley MS 625 and Cotton MS Tiberius B IX, fols.
1r–4v.104 Indeed, no manuscripts in Lewis’s possession containing the Albion, one of

100 CUL, fol. 43r.
101 CUL, fols. 95v-105v.
102 Converging evidence is provided by his interest in other Mertonian works, such as those of John
Killingworth or the lesser-known John Curteys andWalter Hertt, who probably belonged to the same group
of scholars. Miolo (2024).
103 Cf. Carey (2012).
104 Cf. Watson (1976), pp. 207–217; see also David Juste, ‘MS London, British Library, Harley 625’
(update: 24.03.2022), Ptolemaeus Arabus et Latinus. Manuscripts, URL � http://ptolemaeus.badw.de/ms
/206 [accessed 10 July 2023].
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his main sources, have survived, and we can assume that he had access to it through
another source, which could very well have been Simon Bredon’s manuscript.

Although Richard of Wallingford was Lewis’s source for his eclipse tables, he
relied on Simon Bredon for spherical astronomy. In addition to the table of sines
and chords, which Lewis expanded from a table ascribed to Simon, it is for his solar
declination table and his derivation of the obliquity of the ecliptic that he is praised.
In the introduction to the tables of right and oblique ascension, Lewis also mentions
several sources, such as Ptolemy, al-Battānı̄,105 Jābir ibn Aflah. (Geber),

106 and John
Holbroke.107 However, it is Simon Bredon who is the most frequently mentioned and
whose values are retained by Lewis. The latter indeed alleged to have found the same
maximum solar declination (obliquity of the ecliptic), 23;28,17°:

[...] noster enim Bredon geometer et astronomus eximius invenit eam [obliq-
uity of the ecliptic] 23 gradus 28 minuta et 17 secunda. Ego novissimus et
omnium minimus inveni eam quodmadmodum Bredon fere hic prescripti pri-
mum ante. Et quia magister Symon Bredon fecit novam tabulam declinationis
solis ac ascensionis signorum in circulo recto et, adhuc in diebus nostris, maxima
solis declinatio a positione sua insensibiliter variatur, ideo non est opus novas
tabulas declinationis nec ascensionum in circulo recto construeri.108

According to Lewis’s note, this value is taken from Simon Bredon’s table of solar
declination. Interestingly, a solar declination table explicitly attributed to Simon is in
BL, Egerton MS 889, fol. 18v a manuscript partly copied by John Holbroke before
1426 and containing his Opus primum and Opus secundum.109 Lewis likely copied
his copy of John Holbroke’s tables from Egerton MS 889 (hereafter E2) and knew
about this table.110 However, the table is given in minutes only and does not allow the
reader to infer the maximum solar declination in seconds.

For the equation of time, there is little doubt that Lewis relied entirely on Simon’s
Commentum super Almagesti, especially Book III. 22–24.111 Passages are taken
directly from it without change, as we demonstrate in Appendix C. Furthermore,
given the sources Lewis cites in his canon of the equation of time, it is remarkable that
he was unaware that Simon Bredon follows the Almagesti minor.112 This is probably

105 BLa, pp. 46–47.
106 BLa, p. 47.
107 BLa, p. 49.
108 BLa, p. 46; in the portion dedicated to the table of right ascension, p. 48, Lewis again stated that he
relied on Simon Bredon: ‘Inventio eiusdem differentie per maximam declinationem Bredon and meam,
sicilitet 23 degrees, 28 minuta, 17 secunda’.
109 On this manuscript, see David Juste, ‘MS London, British Library, Egerton 889’ (update: 23.02.2023),
Ptolemaeus Arabus et Latinus. Manuscripts, URL � http://ptolemaeus.badw.de/ms/50 [accessed 20 July
2023]; on John Holbroke and his set of tables adapted to the meridian of Cambridge: C. P. E. Nothaft, ‘John
Holbroke, the Tables of Cambridge, and the “True Length of the Year”: a Forgotten Episode in Fifteenth-
Century Astronomy’, Archive for History of Exact Sciences 72 (2018), 63–88; the declination table is in
BL, Egerton MS 889, fol. 18v and is entitled ‘Tabula declinationis solis secundum Bredone’.
110 Nothaft (2018), p. 66.
111 Simon Bredon deals with the equation of time in Book III.19-24.
112 Cf. Zepeda (2018), pp. 97–98, for the equation of time, the source is the Almagesti minor Book III
20-25, see pp. 264–275.
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because the only sources cited by Simon in Book III 22–24 are al-Battānı̄’s equation
of time table found in the Toledan Tables and Ptolemy’s Almagest. It is likely that the
absence of an explicit mention of the Almagesti minor in the commentary prevented
it from coming to Lewis’s attention. Indeed, Lewis tends to mention second-hand
the authorities cited in his own sources, as is the case with Richard of Wallingford’s
Albion, his source for his Opus eclipsium, from which he borrowed the values given
in the Almagesti minor, al-Battānı̄ and Jābir ibn Aflah. .

The sections dedicated to the equation of time in Simon’s Commentum super
Almagesti are covered by chapters 22 to 24 of Book III. Chapter 22 focuses on find-
ing the place from which the inequality of days arises and explaining the cause of
this inequality. This mainly derives from the Almagesti minor, III, 21–22.113 In Chap-
ter 23, Simon Bredon deals with the difference between mean days and apparent days
resulting from two causes, the solar anomaly and the variation in the time of meridian-
crossing. This allows us to find the beginning of the addition or subtraction from the
mean day as described in the Almagesti minori III, 24.114 At the end of this section,
Simon Bredon, after mentioning that the table for the equation of time of al-Battānı̄ is
mistaken for not being perpetual, adds a long development on how to make a perpetual
table for the equation of time:115

Et ideo tabula Albategni facta pro equatione dierum non potest esse perpetua,
immo per lapsum temporis erit falsa.
Docebo tamen tabulam unam componere, que una cum tabula ascensionum in
circulo directo, pro diebus equandis deserviet in eternam.

Despite the details provided by the author, the whole section was deleted by the
notes of vacat written in themargins. In his own copy (MSDigby 178), LewisCaerleon
remains faithful toSimon’s instructions anddoes not include this passage. This deletion
is probably because Simon Bredon realized that it was not possible to construct a
perpetual table for the equation of time. Therefore, after deleting this whole passage,
he came back to his text and immediately after Chapter 24 included a revised version
of the rule for computing a table for the equation of time. Indeed, most of the material
borrowed by Lewis is found in the Commentum super Almagesti Book III.24 devoted
to the conversion of apparent days into mean days and vice versa. The beginning of
the chapter is quite similar to what we find in the procedure described in the Almagesti
minor Book III.25.116 However, in Simon Bredon’s commentary it is followed by a
whole method for making a table of the equation of time, quite different to the one
added after Chapter 23 and then deleted:

Iste igitur est modus convertendi dies mediocres in dies differentes, quod si
volueris econtra convertere operaberis econverso. Et est notandum quod per
istum modum precisissime fieri patet tabula equationis dierum que licet non
poterit esse perpetua operando tamen cum ea per 100 annos insensibilis erit error.

113 Zepeda (2018), pp. 266–270.
114 Zepeda (2018), pp. 271–272.
115 Cf. MS Digby 168, fols. 38r-v.
116 Almagesti minor, III.25, see Zepeda (2018), p. 273–275.

123



206 L. Miolo, S. Zieme

Inquiratur igitur in linea numeri tabule equationis solis gradus correspondens 18
gradui Aquarii, eo quod a principio illius gradus incipit.117

It is this very method that Lewis follows for his own table.

5 Tables of the equation of time inmathematical astronomy

From Ptolemy’s Almagest to Copernicus’ De revolutionibus orbium coelestium and
beyond, time in mathematical astronomy is measured in mean solar time, with days
spanning from one mean noon to the next. Civil and daily life, however, was ordained
by apparent solar time that could be read from a sundial, with days spanning from one
meridian crossing of the true Sun to the next. The concept of mean time assumes a
uniform solarmotion throughout the year, and neglects the fact that the diurnal rotation
is in the plane of the celestial equator and not in the plane of the ecliptic. Apparent
solar time is based on the apparent motion of the Sun and, thus, takes into account that
solar motion throughout the year slightly varies and that equal arcs of the ecliptic do
not rise with equal arcs of the equator. This difference between mean solar time and
apparent solar time is captured by the equation of time. It is considerably small on a
daily basis but can amount to about 30min of time over the course of a year. Therefore,
as Lewis knew, the equation of time is an essential component in the computation of
eclipses, for the moon is moving rather fast.

In his Almagest, Ptolemy employed the equation of time to transform celestial
observations recorded in apparent time into mean time, in order to make use of these
observations for the determination of parameters in the geometric models of lunar
motion.118 However, Ptolemy did not include a table for the equation of time in the
Almagest. However, his Handy Tables, compiled later than the Almagest, do contain
such a table intended to correct apparent solar time to mean solar time.119

Later sets of astronomical tables usually do also contain tables for the equation
of time. Most of these tables are constructed in such a way, that apparent time is
derived from mean time by adding the equation of time to the latter. In order to do
so, it is essential to know the position of the true Sun for the day or moment under
consideration.With the position of the true Sun, one enters the table for the equation of
time and adds the corresponding value tomean time to obtain apparent time.Vice versa,
to findmean time from apparent time, the equation of time is subtracted from the latter.
Tables for the equation of time were predominantly used to transform computed times
of true syzygies from mean time into apparent time or, in rare cases, for astrological
purposes related to the determination of a specific moment in time.120 In his eclipse
canons, as we have stated above, Lewis explicitly referred to the use of the equation

117 MS Digby 168, fol. 38v; MS Digby 178, fol. 85v.
118 On the equation of time in the Almagest, see Toomer (1984), 169–72. For a mathematical discussion,
see Neugebauer (1975), 61–65. See also Pedersen 2010, 154–58. Ptolemy, e.g., uses the equation of time
in Almagest IV:6 when he determines the first lunar anomaly from three eclipse observations. See Toomer
(1984), 190–203. For more details see, Neugebauer (1975), 73–78. Pedersen (2010), 167–73.
119 For the table, see Stahlmann (1960), 206–9. For a modern analysis of this table, see van Dalen (1994).
120 For example, in his nativity of Maximilian I, Regiomontanus corrected the time of birth by the equation
of time, see Andriani, Zieme (2024).
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of time when computing times of true syzygy. In addition, in fact, he did apply the
correction by the equation of time, when computing the eclipses of 28 May 1481
and 16 March 1485. For the computation of the eclipse of May 1481, for example,
Lewis compared two different tables for the equation of time, which he attributed to
al-Zarqālı̄ (Toledan Tables) and John of Lignères (Tables of 1322).121 Moreover, in the
canons to his own table of the equation of time, given inAppendixA, Lewis quotes two
different maximum values of two different tables of the equation of time as 7;54° and
7;57°, which he attributes to al-Zarqālı̄ and al-Battānı̄, respectively.122 In fact, the first
value, 7;54°, clearly corresponds to al-Battānı̄’s table of the equation of time and was
part of his S. ābi↩ zı̄j that he compiled around the year 900.123 This table occasionally
circulated in manuscripts with astronomical tables of the Alfonsine corpus. However,
it predominantly circulated with the Toledan Tables that were completed around the
year 1080.124 For the latter reason, Lewis most probably, yet falsely, attributed the
table to al-Zarqālı̄. The second value, 7;57°, clearly corresponds to the table of the
equation of time attributed today to Peter of St. Omer (fl. 1293).125 This table was also
included by John of Lignères in his Tables for 1322.126 In manuscript tradition, the
tables of theAlfonsine corpusmost frequently circulatedwith this table of the equation
of time.127 That Lewis attributed it to al-Battānı̄ might indicate that he assumed that
John of Lignères had borrowed it from al-Battānı̄, or he simplymade amistake. Be that
as it may, Lewis was aware of different tables of the equation of time that, according
to his attribution, were computed some 400 years before his own time. Differences in
these tables, as Lewis states in the canons (see Appendix A), arise from the motion
of the solar apogee. Therefore, as the centuries pass and the solar apogee advances,
the table of the equation of time needs to be recomputed. Especially for reliable
eclipse computations, the main concern of Lewis’s astronomical writings as we have
argued in Sect. 2, a more or less up-to-date table of the equation of time was essential.
Therefore, Lewis computed a novel table for the equation of time, such that, as he
phrased it himself (see Appendix A), when “operating with it for 100 or 200 years,
the error will be insensible.”

Other Alfonsine astronomers who compiled eclipse tables also computed novel
tables for the equation of time. In his examples included in the canons to his Tabulae
eclypsium, for example, Giovanni Bianchini (c. 1410–69) corrected the times of true
syzygy by the equation of time.128 In his planetary tables, compiled around 1442 and

121 Miolo (2024).
122 Both tables are found in E2 (fols 38v, 138r, 118v) to which Lewis might have had access. On this
manuscript, see David Juste, ‘MS London, British Library, Egerton 889’ (update: 23.02.2023), Ptolemaeus
Arabus et Latinus. Manuscripts, < http://ptolemaeus.badw.de/ms/50 > (consulted 25 July 2023).
123 For the table, see Nallino (1903), II, pp. 61–64.
124 Pedersen (2002), III, pp. 968–77.
125 Pedersen (2002), III, pp. 984–85.
126 Chabás, Saby (2022), 72–75.
127 The first printed edition of the Parisian Alfonsine Tables, printed by Erhard Ratdolt in Venice in 1483,
however, included al-Battānı̄’s table for the equation of time included in a table of normed right ascension.
See Tabule astronomice illustrissimi Alfontij regis castelle (Venice: Ratdolt 1483), ff. k1r-k2r.
128 Chabás, Goldstein (2021). In Bianchini’s example for the solar eclipse of July 1460, he corrects the
time of true conjunction by 12 min, with the true Sun at 123;59°. This is in agreement with both Bianchini’s
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first printed in 1495, which are known under the title Tabulae astronomiae, Bianchini
included al-Battānı̄’s old table of the equation of time that he converted from time-
degrees into minutes and seconds of hours. Although this simply corresponds to a
multiplication by four, the table of the equation of time thereby became ready to use
for the determination of times of solar eclipses and other astrological purposes.129

Later, Bianchini computed his own modern table of the equation of time, made for his
period of time, that circulated with his updated version of his Tabula primi mobilis,
denoted version B.130 In most manuscript copies the corresponding table was usually
presented with a title that explicitly stated that the equation of time was computed for
the year 1456 with the solar apogee at 90;46° ecliptic longitude.131

Georg Peurbach (1423–61) also included a novel table of the equation of time
in his Tabulae eclypsium. These eclipse tables were compiled around 1460 and first
appeared in print in 1514 in Vienna.132 In his example computation for the eclipse
of July 1460 included in the canons, Peurbach likewise corrected the time of true
syzygy by the equation of time.133 The table of the equation of time contained in his
eclipse tables, most likely, was computed according to a specific algorithm developed
by Regiomontanus that employed a computational scenario tailored to the use of
Bianchini’s planetary tables.134 In most manuscript witnesses of Peurbach’s eclipse
tables, but also in the printed edition, the table of the equation of time is accompanied by
a title that emphasizes its novel constitution and also indicates some of the underlying
parameters used, like the position of the solar apogee and the obliquity.135

From a historical perspective the equation of time is a valuable object, because it is
one of the few quantities that was newly computed every now and then inmathematical
astronomy. Especially for the period of Alfonsine astronomy, where most models and
parameters were stable and tables were only changed in their layout or their organiza-
tional structure, the table of the equation of time and especially its computation offers
valuable insights into the transmission of parameters and mathematical practices.

Modern analysis, so far, has focused on determining implicit parameters contained
in the table of the equation of time. A modern formula that captures the equation of

Footnote 128 continued
old, adapted from al-Battānı̄, and modern table of the equation of time mentioned below. For the lack of
seconds given in the example, we cannot distinguish between these two tables.
129 Note that the 1495 printed edition does not contain this table. See, Chabás, Goldstein (2009), 100–3.
130 On Bianchini’s Tabula primi mobilis, see van Brummelen (2018). See also, Chabás (2019), 353–58.
On versions A and B, see van Brummelen (2021).
131 There are at least two manuscripts (Paris, BnF, lat. 7268, ff. 139v and Bologna, Biblioteca Comunale,
MS 1601, fol. 72r) that state the year 1460 for the table. Apparently, this is a scribal error because the solar
apogee of 90;46° is identically given for the year 1456 in Bianchini’s planetary tables. See, e.g., Giovanni
Bianchini, Tabulae astronomiae (Venice: 1495), f. b2v.
132 Chabás (2019), 365–75.
133 Georg Peurbach, Tabulae eclypsium (Vienna: Johann Winterburger, 1514), fols bb5v–bb7r. Peurbach
corrects the time of true conjunction of 17 July 18;3 h by 12 min. With the true sun at 123;58,32° this is
in agreement with his own table for the equation of time. For the lack of seconds, however, it would also
agree with both Bianchini’s old and modern table.
134 Andriani, Zieme (2024).
135 Peurbach, Tabulae eclypsium, d5r: “Tabula Equationis dierum novissime constituta presupponens
Augem solis in principio Cancri Et Declinationem Allmeonis.“ See, e.g., also Nuremberg, Stadtbiblio-
thek, Cent V, 57, fol. 143v.
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time E as a function of true solar longitude λ is given by136:

E(λ) � 1

D
(λ + q(λ − λaux, e) − α(λ, ε) + c). (1)

Here, the function q(λ) denotes the solar equation as a function of true anomaly,
which depends on the solar eccentricity e, with λaux the ecliptic longitude of the solar
apogee. The function α(λ) denotes the right ascension that depends on the obliquity ε

of the ecliptic. The constant c is the so-called epoch constant related to the positivity
of the equation of time. The conversion factor D captures if the equation of time
is expressed either in degrees or in hours of time. Since all the involved functions
exhibit different symmetry relations, inherited by E(λ), all parameters e, λaux, ε, and
c may be reliably determined statistically by the method of least-squares.137 Based
on the modern formula (1), it is a straightforward task to determine the underlying
parameters for a given table of an equation of time by solving the non-linear least
squares problem.138

An apparent drawback of modern analysis, however, is that it contains the solar
equation as a function of true anomaly, which is not attested in historical sets of
astronomical tables. The latter exclusively contain the solar equation as a function
of mean anomaly. Therefore, despite obtaining parameter estimates, modern analysis
may not draw any conclusion about underlying mathematical practices.

One of our aims in this article is to analyse the underlying mathematical practices
of Lewis’s table of the equation of time. By investigating the computational scenario
employed by Lewis we will be able to identify sources that he consulted, identify
variants of sub-tables that he used, or even identify specific manuscripts that he may
have consulted. This focus on computational scenarios adds a new historiographical
tool to the history of astronomy that may enrich the mapping and transmission of
astronomical knowledge across space, time, and culture.139

6 Lewis’s calculation of the equation of time

The newly computed table by Lewis for the equation of time is uniquely contained in
BLa on page 121, according to the modern pagination, and is reproduced in Fig. 1. It
bears the title “Tabula equationis dierum in motu et in tempore per me Lodowycum
Caerlyon noviter facta anno domino 1485 in turre Londoniarum.” As is common for
most tables for the equation of time, the values are tabulated individually for each of
the thirty integer degrees of a sign, for all twelve signs of the zodiac.140 The table is

136 Van Dalen (1996).
137 For the equation of time, this method was first introduced by van Dalen (1993), 97–152. For modern
mathematical formulas for the solar equation and right ascension, as well as a detailed discussion of the
parameters, see also van Dalen (1994, 1996).
138 There are several software packages that readily include different algorithms to solve non-linear least
squares problems, like Mathematica, SciPy (Python), or Matlab.
139 For another example of computational scenarios related to the equation of time, see Andriani, Zieme
(2024).
140 For some historical examples of tables of the equation of time, see Chabás, Goldstein (2012), 37–41.
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presented as a standalone, without right ascension that is sometimes displayed jointly
with the equation of time, and starts with the first degree of Aries. A later, different
hand consecutively added one of the twelve numbers 9, 10, 11, 0, 1, 2, …, 8 on top
of the zodiacal signs starting from Aries (9) to Pisces (8).141 In the margin, probably
added by the same later hand, there is a note “signa argumenti � et debes addendum
unum gradum continue ad � argumentum in cum intras cum argumento � pro equa.”
Exceptional for Lewis’s table is that the individual values for the equation of time are
given in both, time-degrees and hours of time. Clearly the latter values in hours of time,
given tominutes and seconds, are derived from the former values in time-degrees, given
to degrees and minutes, simply by multiplication by four.142 Therefore, the seconds of
the values given in hours of time are multiples of four. In the three columns for Virgo,
Capricorn, and Aquarius; however, the values for the equation of time in time-degrees
have an additional sub-column for seconds. In each of these three sub-columns there
is exactly one non-zero value, which indeed is given to seconds of time-degrees with
an absolute value around 30 s. Apparently, in these three cases, Lewis has computed
with an increased precision to seconds to reduce the error from rounding. Therefore,
the three corresponding values for the minutes given in hours of time are not multiples
of four but multiples of two.143 In the remaining 357 cases, all values for hours of
time are multiples of four and are correctly computed from the values given in time
degrees.144 Like for every table of the equation of time there are four maxima that may
serve to classify the particular table. Lewis’s equation of time has a maximum of 5;11°
(20;44 min) at Taurus 23°–30°, a minimum of 2;55° (11;40 min) at Cancer 30°–Leo
3°, a second maximum of 8;12° (32;48 min) at Scorpio 7°–9°, and a second minimum
of 0;0° (0;0 min) at Aquarius 21°–23°. As already indicated by its title, this table is
indeed unprecedented and newly computed by Lewis. From our first visual inspection
of the table, especially with regard to the three cases with increased precision, we
might infer that Lewis was a very accurate and precise calculator.145

This assumption, of Lewis being an accurate calculator, is immediately verified
when we perform a non-linear multiparameter fit of his table for the equation of time
using the modern formula (1). From our preceding discussion of the table, we already
inferred that the conversion factor is given by D � 15◦/h. For the non-linear fit,
we used all 360 values of the equation of time given in hours of time, thus, without
assuming any underlying interpolation grid.146 The result is summarized in Table 1.

141 These numbers indicate that the later annotator of the manuscript most likely compared Lewis’s table
with a different table for the equation of time that was included in a table of normed right ascension that
starts in Capricornus. Such a table for the equation of time is, e.g., contained in London, British Library,
Egerton MS 889, fol. 118v, which is attributed to al-Battānı̄, though with signs numbered from 1 to 12.
142 The conversion factor from time-degrees into hours of time is, as usual, given by 360°/24 h � 15°/h.
In sexagesimal numbers this corresponds to multiplication by four and shifting by one sexagesimal place.
143 See, respectively, Virgo 17°, Capricornus 20°, and Aquarius 27° in the table reproduced in Fig. 1.
144 There is only one obvious scribal error at Taurus 24° where the value in hours of time is wrongly written
as 20;4 min instead of the correct value 20;44 min.
145 His talent for calculation is also highlighted in North (1977), 290.
146 We solved the non-linear least squares problem with Mathematica using the Levenberg–Marquardt
algorithm. Given the fact, that the starting values for the fit are well constrained from historical context, the
convergence is excellent. Therefore, it is rather irrelevant which algorithm is used in the least square fit,
results are identical.
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Table 1 Parameter estimates for
Lewis’s equation of time based
on modern analysis

Parameter Best-fit value 95% confidence interval

Eccentricity e [°] 02;16,04 02;15,59–02;16,08

Apogee λaux [°] 90;58,33 90;56,44–91;00,21

Obliquity ε [°] 23;35,10 23;34,52–23;35,29

Epoch constant c [°] 04;04,47 04;04,44–04;04,50

The confidence intervals for the parameters fit perfectly well with historically
attested values. The interval for the solar eccentricity e leaves no doubt that Lewis
used the table for the equation of the Sun from the Parisian Alfonsine Tables, as we
would expect. The solar apogee with a longitude of around 91° indeed corresponds to
a time around 1485 for which Lewis explicitly states he computed the table.147 From
the interval for the obliquity we further conclude that Lewis appears to have used a
common table of right ascension that is based on an obliquity of ε � 23; 35◦, attributed
to al-Battānı̄, and that circulated widely with the Parisian Alfonsine Tables as well as
with the Toledan Tables.148 This is quite surprising, because Lewis took some pains
to derive a novel table of right ascension that is based on an updated obliquity of
ε′ � 23; 28, 17◦ that he and Simon Bredon attested for their own time. This new
table of right ascension and its derivation is also included in the same manuscript with
Lewis’s new table for the equation of time.149 Why he would not use his novel table
of right ascension for his novel table of the equation of time must remain unanswered.
Perhaps Lewis derived the new table of right ascension only after he recomputed the
equation of time or he simply had no access to his own table of right ascension during
his imprisonment in the Tower of London, where he stated he computed his table of
the equation of time.

When we employ historically attested and plausible values for the parameters, i.e.
the obliquity ε � 23; 35◦, the solar eccentricity e � 2; 16, 4, the longitude of the solar
apogee λaux � 91◦, and keep the best-fit value for the epoch constant c � 4; 4, 47◦,
for which there is no historical equivalent, we find perfect agreement between Lewis’s
table and the modern formula: the curve of the residuals that results from subtracting
Lewis’s values from themodern computation is plotted inFig. 2.The standarddeviation

147 From, e.g., Bianchini’s Tabulae astronomiae we find for the year 1484 a solar apogee of 91;1,58°,
which the Sun will reach on 12 June 22;51 h after mid-day. See, Giovanni Bianchini, Tabulae astronomiae
(Venice: 1495), f. b2v. Bianchini’s tables are based on the Parisian Alfonsine Tables, and we can confirm
this value for the apogee by direct computation with the latter. On Bianchini and his astronomical tables,
see Chabás, Goldstein (2009).
148 On al-Battānı̄’s table of (normed) right ascension within the Toledan Tables, see Pedersen (2002),
3:968–75.
149 For Lewis’s table of (normed) right ascension, see BLa, p. 53 (bottom half). The values are given to
seconds for all integer degrees of the zodiac. Multiples of 5° are given to thirds. To derive this table (ibid.,
p. 53 upper half), Lewis first calculated right ascension for multiples of 5° for one quadrant to thirds using an
obliquity of 23;28,17°. He then interpolated for all integer degrees of the quadrant to seconds. By symmetry
the table is laid out for all signs. For the attribution of this obliquity to Simon Bredon and Lewis, see ibid.,
p. 48: “Inventio eiusdem differentie per maximam declinacionem Bredonis et meam scilicet 23;28,17.” A
non-linear fit of Lewis underlying 5°-grid-construction table for right ascension indeed confirms the use of
this obliquity and results in an 95%-confidence interval of < 23;28,17°–23;28,30° > .
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Fig. 2 Residuals of Lewis’s table for the equation of time, given in hours of time, compared to a modern
recomputation using historically attested values resulting from the confidence-interval of the non-linear
fit. The three red data-points correspond to the values for 167°, 290°, and 327° for which Lewis used an
increased precision

that corresponds to this fit amounts to 1;52,47 s. Given the fact that we used modern
mathematics and a functional derivation compared to Lewis’s possible use of other
sub-tables and sexagesimal arithmetic, the agreement is very good.

So how did Lewis compute his table? Luckily, the exact details, including every
step of his computation, are also included in BLa. On pages 119–120, right before the
final table of the equation of time, there is a large table with intermediate results by
which Lewis computed the table of the equation of time. Moreover, he also compiled
a text, copied on page 118, that explains the nature of the problem and the necessary
calculational steps. In the following we will analyze in detail Lewis’s computational
procedure in order to show that it is entirely different from modern understanding and
skillfully shaped towards the use of tables for the solar equation and right ascension.

The intermediate table composed by Lewis in order to compute the equation of time
has the title “Compositio tabule equationis dierum per me Lodowycum anno Christi
1485 supponendo augem solis in primo gradu Cancri perfecto cuius compositionis
canones proponuntur in proximo folio ad signum tale �. Aux vera Solis in Cancri
1 gradu.” The table has 8 columns and 362 rows. There is one row for each integer
degree of the full circle, where two rows appear twice for reasons that will become
clear immediately. The columns and their content are summarized in Table 2.
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Table 2 Columns of the table with intermediate results

No. Title Content Precision

1 Medius motus solis Mean Sun Deg

2 Argumentum solis Mean solar anomaly Deg

3 Verus motus solis in Aquariis True Sun Deg, min, sec

4 Ascensiones circuli directi in
pertransitione veri motus

Right ascension true Sun Deg, min, sec

5 Differentia ascensionum et medii
motus et est equatio dierum

Difference between right
Ascension plus mean motion
(from radix) and right
ascension

Deg, min, sec

6 Gradus perfectus veri motus Integer longitude true Sun Deg

7 Equatio dierum correspondens Equation of time in time-degree Deg, min, sec

8 Idem in minutis et secundis
horarum

Equation of time in hours Min, sec

Although the column for the equation of time in time-degrees has a sub-column for
seconds, only two out of 362 values are given to seconds.150 In total the intermediate
table contains 5786 numbers. We have reproduced a section from the beginning of the
table in Fig. 3.

Lewis’s algorithm for computing the table for the equation of time comprises eight
calculational steps. In addition to these eight steps it is necessary to find the “beginning
of the addition” (Principium additionis) as it serves as the radix value or zero-point for
the composition of the table. In conjunction with the intermediate table, the algorithm
is explained in the canon of which we offer an edition and translation in the appendix.
The algorithm for deriving the table for the equation of time can be summarized as
follows, where the numbers in the numeration below correspond to the columns in the
intermediate table and the symbol • corresponds to finding the point of the beginning
of the addition:

1. Write down the mean longitudes of the Sun in integer degrees, in consecutive steps
of 1°, for a full circle of 360°. Lewis starts with the value of Aquarius 18° with the
aim to quickly find the “beginning of the addition”, which according to al-Battānı̄
is around this mean solar longitude.

2. For each value of mean longitude of the Sun, determine the mean solar anomaly
by subtracting the solar apogee. Lewis explicitly sets the solar apogee to be in
Cancer 1° (91°). By deliberately choosing an integer value for the solar apogee,
and thus rounding the proper value for 1485, Lewis can limit himself to obtain
the solar anomaly in integer degrees. He thereby cleverly liberates himself from
performing linear interpolation in the table of the equation of the Sun that follows
in the next step.

150 These are the values for Capricornus 20° and Aquarius 27°, identical to the final table for the equation
of time. Apparently, the scribe failed to copy the seconds-term for Virgo 17° as can be readily inferred from
the corresponding value in hours of time.
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Fig. 3 Section from Lewis’s table with intermediate results for the computation of the equation of time. The
British Library, Add MS 89442, p. 119

3. With the solar anomaly, enter a table of the equation of the Sun and determine the
true longitude of the Sun by subtracting (anomaly < 180°) or adding (anomaly >
180°) the solar equation fromor to the integermean longitude of theSun. InLewis’s
case the resulting true position of the Sun is now given to seconds, according to
the precision of the solar equation he used.

4. Determine the right ascension of the true solar longitude by linear interpolation in
a table for right ascension. Lewis gives the result of the interpolation to seconds.

• From the values of right ascension of the true Sun in column 4, consider the
difference between consecutive rows in the intermediate table and find the dif-
ference in right ascension that is the closest to the assumed progress in mean
solar motion. Lewis worked with an increase of mean solar motion of 1° and,
therefore, seeks the difference between right ascensions closest to 1°. In Lewis’s
case, this value is found when the mean Sun progresses from Aquarius 20° to
Aquarius 21°. The corresponding difference between right ascensions of the
true Sun then amounts to 0;59,46°. At this point the progress of the mean Sun
is approximately identical to the increase of right ascension of the true Sun.
Therefore, the mean solar day will be equal in length with the apparent solar
day, and therefore, the equation of time is identically zero. If this point is chosen
as the radix for the equation of time, the latter will always be additive. In the
margin of his table with intermediate results, therefore, Lewis marks this point,
when the mean Sun is in Aquarius 20°, as the “beginning of the addition.” He
thereby defines that at this point the difference between the increase in right
ascension of the true Sun and the mean Sun is zero, and writes the value 0;0,0
in the fifth column of his table, as can be seen in Fig. 3. Note that this is a
definition and also the reason why there are no values given in the fifth column

123



216 L. Miolo, S. Zieme

for the first two rows. These two degrees, therefore, will reappear at the end of
the intermediate table.

5. Starting from the radix obtained in the previous step, determine the difference
between the mean longitude under consideration and the mean longitude of the
radix. Add this difference to the right ascension of the true Sun at the radix.
Subtract from this value the right ascension of the true Sun under consideration.
The resulting value is written into the fifth column. Let us give an explicit example:
when the mean Sun is at Aquarius 21° the right ascension of the true Sun is
55; 4, 33◦. For the point under consideration themeanSunhas advanced by1° from
themeanSunat the radix.We, therefore, add1° to the right ascensionof the trueSun
at the radix and obtain 54; 4, 47◦ + 1◦ � 55; 4, 47◦. From this value we subtract
the right ascension of the true Sun under consideration to obtain 55; 4, 47◦ −
55; 4, 33◦ � 0; 0, 14◦. This value is exactly given in Lewis’s intermediate table
(see Fig. 3). Note that this step literally corresponds to the geometrical meaning of
the equation of time. At this stage, after performing the step for the entire circle, we
have already obtained an equation of time, though for unequally spaced, fractional
values of longitude of the true Sun: for the position of the true Sun given in the
third column the equation of time is given in the fifth column.

6. Consecutively write the integer degree of the true Sun that lies in the interval
spanned by the value of the true Sun under consideration and the following row
into the sixth column. Note that, due to the nature of the solar equation, there will
be a few intervals that contain no or two integer degrees. The sixth column will,
therefore, be shifted compared to the previous five columns.

7. For the integer degree of the true Sun in the sixth column, interpolate between the
two corresponding true positions of the Sun in the third column and the correspond-
ing values for the equation of time in the fifth column. Write the corresponding
equation of time in time-degree in the seventh column.

8. Multiply the equation of time given in time-degrees from the seventh column by
four and write the result in minutes and seconds of the hour in the eighth column.

Conceptually, Lewis’s algorithm on how to derive a table for the equation of time is
entirely different from themodern equation in formula (1).While the modern equation
includes the solar equation q(λ) as function of true anomaly, Lewis is working with a
regular table for the equation of the Sun q

(
λ
)
that is given formean anomaly andwhich

is readily found in sets of astronomical tables. Furthermore, Lewis does not add right
ascension, as proposed by the modern formula (1), but determines the right ascensions
of the true Sun. Finally, the epoch constant which assures positivity of the equation of
time, is not an additive constant in Lewis’s case but rather corresponds to a specific
point on the sphere fromwhichhe starts his derivation—strictly speaking it is an artifact
of themodern functional approach.Nevertheless, fromamodernmathematical point of
view, both approaches are identical, and therefore, themodern formula can still reliably
capture the underlying parameters in a non-linear least squares fit. Lewis, yet, did not
work with any parameters but with other tables. He captured the geometrical solution
to the astronomical problem in such a way that he could use already existing tables for
sub-problems. He did not recompute the solar equation, or right ascension, but used the
tables that he had in his toolbox of astronomical tables. If we want to understand the
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mathematical practices of historical actors and groups and the transmission of these
practices, we have to focus on their computational scenarios and the corresponding
tabular practices. A modern mathematical formula might still be useful to identify
parameter-estimates, but may not tell us anything about the details of mathematical
practice and their transmission151.

To further elucidate the latter statement, we have implemented Lewis’s algorithm
in a computer algebra system.152 Our implementation is based on looking up values
in other sub-tables and computation in sexagesimal arithmetic. Note, that Lewis is
basically presenting his entire algorithm in his computational table, but there are a
few subtle facts, related to intermediate rounding and precision that are not readily
inferred from his table and can only be revealed upon proper recomputation and basic
statistics. In turns out that Lewis employed standard rounding for sexagesimal numbers
and computed to seconds, subsequently rounded to minutes for his equation of time
in degrees.153 Furthermore, for the recomputation we need to provide specific tables
for the solar equation and right ascension. Thanks to the modern parameter-estimate,
we know that the table of the solar equation employed by Lewis originates from the
Parisian Alfonsine Tables and the table for right ascensions is based on al-Battānı̄’s
value for the obliquity. Nevertheless, we need to specify certain readings for these
tables, preferably from the intellectual surroundings of Lewis or from manuscripts he
owned or had access to.

From the organization and layout of the computational intermediate table we can
easily reconstruct the solar equation used by Lewis by simply subtracting or adding the
mean motion from the true position of the Sun. Since the computational table covers
the whole circle of 360°, we can reconstruct the entire solar equation used by Lewis
twice, independently of each other. The result of this double-reconstruction is very
stable: between the two tables of the solar equation reconstructed from addition and
subtraction, respectively, there are only three differences for the 180 values in total:

1. In the table that results from addition, the solar equation for 22° longitude wrongly
reads 0;46,56° instead of the correct value 0;46,55°. Most likely this is a copying
error of mistaking 6 for 5.

2. In the table that results from subtraction, the solar equation for 126° longitude
wrongly reads 1;47,45° instead of the more common value 1;47,46°. Most likely
this is a copying error of mistaking 5 for 6.

3. In the table that results fromaddition, the solar equation for 143° longitudewrongly
reads 1;19,20° instead of the correct value 1;20,40°. Most likely this is a scribal
error.

We explicate these details here, to highlight that Lewis most likely did not make
a single computational error in adding or subtracting the solar equation from the
mean Sun.154 The three differences in the table are rather copying and scribal errors.

151 For an example of the consequences of different computational scenarios in relation to Gerard of
Cremona’s translation of the Almagest, see Zieme (2023).
152 We again chose Mathematica, but any other system may serve the same purpose.
153 As noted above, in 3 out of 360 cases, Lewis also determined the value for the equation of time to
seconds.
154 Lewis often complains about scribal errors. For instance, he justifies the elaboration of his table of
proportions (tabula minutorum proportionalium) as the original table of proportions to which he had access
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Nevertheless, we do not intend to use the reconstructed table for our recomputation, but
will only work with variant readings of the Alfonsine solar equation found in other,
extant manuscripts in order to test dependencies on variant readings of tables—a
circumstance to which modern recomputation is entirely blind.

What we will use instead, as a guiding principle, is the layout in which Lewis
presents his solar equation in his intermediate table. From the second column for the
argument, we readily infer that the table for the solar equation that he is using is
organized in signs of 30° consecutively numbered from 0, 1, …, 11 with individual
degrees from 0, 1, 2, …, 29. This layout is the same as employed by John of Lignères
and found in his Tables of 1322 and his Tabule Magne.155 The same layout of the table
is found in the manuscript Cambridge, Gonville and Caius CollegeMS 110/179, p. 16,
containing the Tabule Magne, which was owned by Roger Marchal (d. 1477), who,
like Lewis, was also a fifteenth century Cambridge physician.156 Therefore, we have
included the solar equation table from the manuscript formerly owned by Marchal in
our analysis, because both men might have acquired manuscript copies of the same
sources during their education or professional career.157

Concerning the table of right ascension based on al-Battānı̄’s value for the obliquity,
used by Lewis for his computation, we can only infer that he used a table of normed
right ascension. This is immediately clear from any of the entries from his fourth
column, which are all off by about 90° from the true Sun (cf. Figure 3).

With respect to these boundary conditions, we have compiled a selection of variant
readings for the tables of the Alfonsine solar equation and for al-Battānı̄’s normed
right ascension that circulated in Lewis’s intellectual surroundings and which we used
in our implementation of his algorithm. The result is summarized in Table 3.

A few comments are in order. Across the variant readings of the Alfonsine solar
equation that we used in Lewis’s algorithm the fitting results are almost stable and the
number of values exactly reproduced in comparison to Lewis’s table for the equation
of time is almost constant (rows in Table 3). The six individual variant tables for the
Alfonsine solar equation, though, without reproducing them here, contain between 5
and 16 scribal errors when compared among themselves. Since the solar equation is
used twice to cover the full circle of 360°, on which the equation of time is build,
twice the number of these scribal errors, i.e., between 10 and 32, enter the algorithm.
These scribal variants are not visible in the final result, because they are of the order of
seconds. The equation of time, however, originates from a difference in right ascension

Footnote 154 continued
was corrupted because of scribal errors (BLa, p. 44): ‘Quia repperi tabulam proportionis que dicitur tabula
minutorum proportionalium seu portiones longitudinum vicio scriptorum corrumptam, nec a principio satis
praeter certificatam. In mente decrevi novam tabulam componere’, a similar complaint may be found in
his notebook, where he blames the scribes for having corrupted an eclipse table because of their lack of
understanding: (CUL, fol. 146r): ‘Nota etiam quod istud exemplum sequens de compositione tabularum
eclipsis est corruptus scriptoribus non intelligentibus’.
155 On these two related sets of tables see, Chabás (2019), 175–206. On the Tables of 1322 see, Chabás,
Saby (2022).
156 James (1907/8), 1:114–15. Voigts (1995). The manuscript also contains the ephemerides for 1336–80
by John of Saxony and, therefore, we date it to the middle of the fourteenth century. On John of Saxony’s
ephemerides see, Chabás, Goldstein (2019). For a mathematical analysis of the ephemerides, see Kremer
(2024).
157 In fact, MS BL, Egerton 889 was also annotated by Roger Marchal.
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Table 3 Final results of the implementation of Lewis’s algorithm when using existing variant readings from
different manuscripts for the table of the Alfonsine solar equation (columns) and for al-Battānı̄’s normed
right ascension table (rows)

Solar equations

A, 66r E1, 132r E2, 43v E2, 90v E2, 115r G, p. 16

Right ascensions A, 74v 9 9 9 9 9 8

E1, 142v 32 31 31 33 31 31

E2, 33r 324 321 323 323 324 321

E2, 118v 10 10 9 10 10 8

E2, 148v 9 9 9 9 9 8

H, 163r 334 331 332 333 334 331

The numbers given in the table denote the number of values, out of 360 in total, that are exactly reproduced
when compared to Lewis’s final table for the equation of time given in minutes and seconds of time. The
residuals for the values that do not match are of order + 4s
The best fit value (italics) is obtained for the combination H and E2

of the true Sun that is obtained from a table of right ascension given in degrees and
minutes only. Therefore, scribal variants of the Alfonsine solar equation are almost
invisible in the final result for the equation of time. The final result of the algorithm
predominantly depends on variant readings of al-Battānı̄’s table of right ascension.

The six variant readings of al-Battānı̄’s table of right ascension thatwe used differ up
to 10% in their 360 values in total but the consequences for the table of the equation of
time are drastic (columns in Table 3). Clearly, when using the tables of right ascension
in H (fol. 163r) and E2 (fol. 33r) we can almost reproduce all the values of Lewis’s
table exactly. While the remaining four variant readings of the table of right ascension
reproduce almost none of Lewis’s results. Since all the six tables of right ascension we
used are unmistakably identified as al-Battānı̄’s table this phenomenon needs further
clarification. The explanation is simply that there are two stable variant readings of al-
Battānı̄’s table of right ascension thatwere transmitted anddisseminated independently
of each other. These two variants differ by a line-slip that results in a shift of an entire
block of 12 values from Aquarius 16°–27° and, coherently by symmetry, from Leo
16°–27°.158 Right ascension, however, has a symmetry to the equinoxes and solstices
and, therefore, the block-shift, when comparing both variants, should appear four times
and not only twice. We thus conclude that the variant witnessed in A (fols. 74v–75r),
E1 (fols. 142v–143v),E2 (fol. 118v), andE2 (fols. 148v–149r)mostly likely originates
from an early scribal error that later underwent an attempted fix by symmetry, yet only
half of the symmetry relations, i.e., ignoring the anti-symmetry around the solstices,
were employed. We denote this variant as variant B. The variant witnessed in H (fol.
163r) and E2 (fol. 33r), which we denote as variant A, is the proper one and also found

158 For a similar example of such a block-shift, see Kremer (2021). Kremer calls this error a “column
slippage”. We choose a different nomenclature here, to indicate that the variant has a stable history of
transmission.
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Table 4 Block-shift (italics) in Aquarius that appears in the variant readings of al-Battānı̄’s table of (normed)
right ascension

deg Variant A Variant B

H, 163r E2, 118v

deg min deg min

315 47 30 47 30

316 48 30 48 29

317 49 29 49 28

318 50 28 50 27

319 51 27 51 26

320 52 26 52 25

321 53 25 53 24

322 54 24 54 22

323 55 22 55 20

324 56 20 56 18

325 57 19 57 16

326 58 17 58 14

327 59 14 59 13

328 60 12 60 12

The block-shift also appears in Leo and, therefore, is not a random scribal error but a stable, transmitted
variant

in most manuscript witnesses of the Toledan Tables.159 Nevertheless, both variants
A and B appear to be transmitted stably and are found in several manuscripts across
Europe. We illustrate this block-shift in Aquarius in Table 4, where we transcribe an
excerpt from two representative witnesses for variants A and B.

To conclude our discussion on the dependence of the table of the equation of time
on the two variants A and B of al-Battānı̄’s table for right ascension, we note that the
radix of Lewis’s algorithm, i.e., the beginning of the addition on which the whole
table rests, occurs when the true Sun is between Aquarius 21°–22° (Aquarius 20° of
mean solar longitude in Fig. 3). This radix is right in the middle of the shifted block
of variant B of al-Battānı̄’s table for right ascension and thus off by about 1 min (see
Table 4). Because all subsequent values are compared to this radix, the entire resulting
table for the equation of time is shifted by 1 min in time-degrees, or 4 s in hours of
time, and almost none of the final values are exactly reproduced compared to Lewis.

The best fit result is achieved when we use the Alfonsine solar equation found in
E2, fol. 115r, and al-Battānı̄’s table for normed right ascension from H, fol. 163r.
It appears very likely that Lewis had direct access to these two manuscripts. H was
formerly owned by Simon Bredon and contains a table of contents in his hand. As
we argued above, from statistical analysis we may not discriminate between different
readings of the Alfonsine solar equation. Nevertheless, the layout of the table for the

159 Pedersen (2002), 3:968–75.
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Fig. 4 Residuals of Lewis’s table for the equation of time, given in hours of time, compared to our historical
recomputation using Lewis’s algorithm and the Alfonsine solar equation from E2, 115r and al-Battānı̄’s
table for normed right ascension from H, 163r. The three red data-points correspond to the values for 167°,
290°, and 327° for which Lewis used an increased precision but which we did not treat separately

solar equation in E2, fol. 115r is almost identical to the structure found in Lewis’s
intermediate table. The signs are numbered from 0, 1, …, 11 and, thus, contain 30°
each. However, the degrees per sign are consecutively numbered from 1, …, 30 and
not from 0, 1,…, 29 as is the case for the intermediate table. In addition, we argue that
Lewis very likely had direct access to the manuscript E2. We, therefore, conclude that
Lewis likely consulted these twomanuscripts when he derived his table of the equation
of time. However, another hypothesis is that he could have copied and owned a set of
tables that derive from these two manuscripts and, thus, originate from the intellectual
surrounding of SimonBredon. The residuals for the best fit result, where we subtracted
our historical recomputation from Lewis’s final table in minutes and seconds of time
is given in Fig. 4. Out of 360 values in total we reproduced 334 exactly. Three values
are off by − 2 s. These values were computed with higher precision by Lewis and
he performed the final linear interpolation to seconds. We did not treat these three
cases separately, but could simply have increased precision in our algorithm for the
last linear interpolation. Eventually, 23 values are off by ± 4 s, which represents the
minimal possible deviation. Most likely these deviations result from slightly different
linear interpolations by Lewis or from another few random scribal errors in the table of
right ascension used by Lewis. In summary our historical implementation reproduced
about 94% values exactly.
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7 Conclusion

The purpose of this article is to present a comprehensive analysis of the life and
astronomical work of Lewis Caerleon, including the first examination of BLa and the
edition of his work on the equation of time. Lewis Caerleon worked out a whole pro-
gramme for calculating eclipses. This can be reconstructed from various manuscripts
that he copied and commissioned. Regarding the new evidence we have discovered,
we hope that the discussion has clearly demonstrated the sources and methodology
of this meticulous calculator. From the various strands of evidence related to his life
that we discovered, we can conclude that Lewis was at Clare College during his time
in Cambridge before presumably moving to Oxford. While at Merton College, he had
access to various sources, including Richard of Wallingford, Simon Bredon, and John
Killigworth, along with some lesser-known scholars like John Curteys and Walter
Hertt. From his notebook, we can trace the beginning of his astronomical work in
1481 when he elaborated new material on the basis of John Curteys’s tables. During
this time, he also developed a geometrical method for eclipse computation and com-
puted a table for finding the time of true syzygies. As he would do later with other
sets of tables, he applied his nove tabule expanse to the solar eclipse of 28 May 1481,
which he had calculated. The thorough examination of three manuscripts overseen and
commissioned by Lewis after 1485, which feature only his work, reveals he developed
his eclipse computation programme in 1482, coinciding with the creation of eclipse
and parallax tables along with their canons. The two manuscripts provide evidence
of this pursuit by Lewis during his alleged captivity in the Tower of London in 1485.
From the new evidence gleaned in manuscripts commissioned or owned by Lewis, it
can be concluded that his astronomical production was concentrated between 1481
and 1485, with the majority of his work completed in 1482/1483. During that time,
he produced different sets of tables in London but for the latitude of Cambridge.

However, from BLa which may be considered as Lewis’s Opera omnia we aimed
to illustrate the scope of his astronomical practice and methodology. This unique
manuscript encompasses a broader portion of Lewis’s work, comprising spherical
astronomy (primum mobile), trigonometry, predictions of eclipses, and the equation
of time designed for the same goal of calculating eclipses. It is this manuscript that
fills the gap in our knowledge of the scientific output of this astronomer. A significant
amount of this work is only inBLa, including thematerial on the equation of time. This
volume illustrates that Lewis based his work on various auctoritates, primarily Simon
Bredon and Richard of Wallingford, and used their works as sources. The equation of
time supports this connection to Simon Bredon, and indirectly to the Almagest minor.
It is probable that Lewis had access to Simon’s manuscripts, or texts closely related to
them. The equation of time material collected by Lewis was, therefore, based entirely
on Simon Bredon’s instructions in his commentary, Book III, 24. It appears that Lewis
employed a comparable method with his other pieces of work, such as his tables of
right and oblique ascensions and his tables of eclipses. He persistently revised existing
writings and enhanced them.
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Despite mainly referring to other sources, the work of Lewis Caerleon is well in
line with the Alfonsine corpus of mathematical astronomy.160 Although there are
several later variants of astronomical tables derived from the Alfonsine Tables, the
underlying geometrical models and especially their parameters remained unchanged
with regard to the motion of the planets and luminaries. Beyond planetary motion,
however, innovations are rather to be found in spherical astronomy. For example,
some earlymodern astronomers updated theirmaximumvalue of solar declination, i.e.,
obliquity of the ecliptic, andwith it derivednew tables of right andoblique ascension, as
Lewis did as well.161 Especially, in regard to the dissemination of Alfonsine material
to more northern latitudes, the derivation of new tables of oblique ascensions for
such latitudes was necessary, mainly for the application of astronomical tables in
astrological matters or simply to determine the length of daylight. A similar role, as
we have argued above, is played by the equation of time,whichwas essential for eclipse
computations. The table of the equation of time needed to be newly computed, not
because of the dissemination of astronomical tables through space to other latitudes,
but because of the dissemination through time: the equation of time, crucially depends
on the position of the solar apogee, and, therefore, needed to be newly computed as
the centuries passed and the solar apogee progressed.

As opposed to the rich landscape of different parameters in Islamicate astronomy,
reflected by the vast number of different zı̄jes, medieval Latin astronomical tables are
rather stable with regard to their underlying parameters.162 Therefore, it is of major
importance to study closely those tables in Latin astronomy that were newly computed.
The underlying sources and mathematical practices employed in the corresponding
derivations will most likely lead to new insights in the transmission of knowledge.
In this article we have exemplified this approach through Lewis Caerleon’s work on
the equation of time. By closely analyzing the details of his calculational scenario of
how he derived his table for the equation of time step by step, adopting the historical
scheme of sexagesimal arithmetic, we were able to determine the sources that he
used and identify the variants of the sub-tables, if not even the very manuscripts
themselves, consulted by Lewis. We believe that this is a new and promising approach
in the historiography ofmathematical astronomy that reaches far beyond usual modern
mathematical analyses, with a sole focus on parameters, because it allows for a much
more refined analysis of the exchange and transmission of knowledge and historical
practices.163
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Appendix A. Lewis Caerleon’s canons for the equation of time

The following text is based on the only witness, BLa, displaying the Lewis Caerleon’s
canons for the equation of time. We followed the reading of the manuscript, although
the punctuation is ours.

Latin text, BLa, p. 118
Novum opus
Quia tabula communis equationis dierum quam composuit Azarchel nunc propter

lapsum temporis transit in errorem propter longinquam remotionem augis Solis, ideo,
mecum decrevi novam tabulam componere.

Circa quod est notandum quod equatio dierum est differentia inter dies mediocres
seu equales et dies differentes vel inequales. Dies enim mediocris seu medius vel
equalis semper et precise continet .24. horas equales, ut supponunt omnes astronomi
in suis calculis. Et iste dies supponit tam motum Solis quam etiam ascensiones circuli
directi fore semper equales, quod non est verum.

Dies vero differens et inequalis est tempus integre revolutionis cum eo quod Sol
interim vero motu pertransivit. Ille vero dies, scilicet, differens est inequalis duplici
de causa, scilicet propter inequalitatem veri motus Solis, et propter inequalitatem
ascensionem eiusdem veri motus.

Differentia vero proveniens ex utraque causa inequalitatis Solis inter diem
mediocrem et differentem dicitur equatio dierum que licet parva sit in uno die crescit
tunc usque ad 8 gradus et amplius.

Et ut dicit Ptholomeus, differentia maxima ex utraque causa inequalitatis est 8
gradus et tertia pars unius gradus. Nam ut dicit maxima differentia simpliciter ex
inequalitate motus Solis est 3 gradus et due tertie unius gradus, et maxima differentia
ex inequalitate ascensionum proveniens est ut ipse dicit 4 gradus et due tertie.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Lewis Caerleon and the equation of time: tabular astronomical… 225

Nos tamen moderni invenimus maximam differentiam simpliciter, ex inequalitate
veri motus Solis provenientem 4 gradus et unam tertiam fere, quod patet si subtrahatur
verus motus Solis a principio Arietis usque ad principium Libre de medio motu Solis
pro eodem tempore.

Et invenimus maximam differentiam ex inequalitate ascensionum circuli directi
provenientem simpliciter 5 gradus, ut patet si subtrahantur ascensiones circuli directi
que sunt a 16 Aquarii usque ad 16 Tauri, quia tunc remanebunt 85 gradus in illis vero
signis, est principium et finis diminutionis ascensionum circuli directi ex hoc sequitur
quod tota differentia possibilis est164 ex utraque causa inequalitatis simul potest esse
9 gradus et una 3a.

Non tamen oportet, nec est verum, omnes dies differentesminores per tantumexcedi
a tot diebus mediis, scilicet, per aggregatum exmagnis differentis causarum ambarum.
Quia non in eodem loco quo est maxima differentia ex altera causa est maxima dif-
ferentia ex reliqua, nec ab eodem puncto incipiunt additiones vel diminutiones unius
cause et alterius.

Ymo altera causa incipit minuere antequam reliqua ad maximam sue augmenta-
tionis devenerit propter motum augis. Et ideo, non semper invenitur maxima equatio
dierum seu differentia ex ambabus causis simul una et eadem et equaliter propter vari-
ationem augis Solis, ut patet in tabulis. Quia Azarchel invenit maximam differentiam
ex utraque causa simul in tempore suo 7 gradus et 54 minuta, Albategni vero 7 gradus
et 57 minuta, ego vero in diebus meis supponendo augem Solis in primo gradu Cancri
perfecto inveni maximam differentiam ex utraque causa simul 8 gradus, 12 minuta et
30 secunda, precise operando quod est prope positionem Ptholomei.

Ista vero tabula a diversitate diversimode componitur, ut patet per Ptholomeum,
Albategni et Bredon libro suo 2° super Almagestum, qui tradit ibidem doctrinam
completam de ea.

Ego vero ponam unummodum lenem per quem precissime fieri potest tabula equa-
tionis dierum, ut ego feci qualicet165 vero poterit esse perpetua, operando tamen cum
ea per 100 vel 200 annos, insensibilis erit error.

Pro quo, nota quod diesmedius seumediocris presupponunt tammotumSolis quam
ascensiones circuli directi esse semper equales, quod non est verum, dies vero differens
supponit econtra quod est verum.

Ut ergo invenias precise differentiam inter diem mediocrem et differentem ex
utraque causa simul proveniente, suppone Solem secundum medium cursum in 18
gradu Aquarii, eo quod a principio illius gradus secundum verum motum incipit dies
differens esseminor diemediocri ex causa inequalitatis ascensionum, ut patet in tabulis
ascensionum circuli directi.

Et ab illo gradu, scribe singillatim gradu per gradummediummotum Solis usque ad
completam revolutionem. Suppone etiamaugemSolis esse in aliquo gradu determinato
perfecto, quam subtrahe de medio motu et proveniet argumentum Solis, quod etiam
scribe in directo medii motus usque ad completam revolutionem.

164 del.
165 The manuscript reads ‘qualicet’ to which the scribe seems to have given the meaning of ‘qualiter’. We
are grateful to Peter Jones for pointing out this spelling of the manuscript.
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Deinde cum argumento Solis nunc invento, intra tabulam equationis Solis et equa
motum Solis usque ad completam revolutionem, et scribe etiam verum motum Solis
in tertio loco in directo medii motus usque ad completam revolutionem.

Deinde subtrahe verum motum Solis primo inventum de vero motu Solis secundo
invento vel equato, et remanebit arcus veri motus Solis in pertransitione unius gradus
medii motus cuius arcus veri motus. Quere ascensionem in circulo directo signi et
gradus veri motus Solis, que si sit unus gradus precise erit ibidem quantitas diei
differentis equalis quantitati diei mediocris et ideo erit ibidem inceptio additionis et
ideo ponuntur illi cifra in directo illius gradus Aquarii veri motus.

Si vero illa ascensio fuerit maior uno gradu, inquiratur ascensio veri motus Solis
correspondentis pertransitioni gradus subsequentis medii motus, nec cesses conse-
quensque deveneris ad ascensionem arcus veri motus que precise continet unium
gradum, ut ibidem additionis principium habetur.

Illo igitur gradu invento inquiratur verus motus Solis correspondens pertransitioni
duorum graduum coniunctioni illius, scilicet, et gradus subsequentis et illius veri
motus ascensione a duobus gradibus, subtracta ponatur differentia in directo gradus
subsequentis.

Deinde invento vero motu Solis correspondente pertransitioni 3 graduum simul
iunctorum scilicet duorum predictorum et tertii subsequentis subtrahatur eius ascensio
a tribus gradibus medii motus et ponatur differentia contra gradum tertium subse-
quentem, et per istummodumprocedas ulterius usque ad totius circuli complementum.

Hoc completo, ut scias equationem dierum correspondentem precise cuiuslibet
gradui perfecto veri motus, accipe partem proportionalem, secundum communem
modum quam addes vel minues secundum exigentiam loci, et productum scribe in
tabula in directo gradus perfecti veri motus Solis. Quia cum gradu veri motus Solis
semper est intrandum in tabula equationis dierum et sic patet complete compositio
antedicte tabule.

Si igitur radices motuum posite fuerint super principium additionis in tabula, scil-
icet, veri dies medii incipiunt esse maiores diebus differentibus, scilicet, in predicto
gradu Aquarii tunc differentia quelibet ibi inventa addenda est continue, ut dies dif-
ferentes ex diebus mediis habentur.

Si tamen ponerentur radices super principium diminutionis tunc esset differentia
quelibet inventa in tabula numeranda de diebus mediis.

Et nota quod hec tabula deservit omni regioni et omni orizonti, si dies incipiatur
a meridie vel a media nocte. Sed si dies inciperetur ab ortu Solis vel occasu vel a
quacumque alia hora, tunc pro omni orizonte oportet habere propriam tabulam equa-
tionis dierum, et hoc accidit propter variationem inequalitatis ascensionum in circulo
obliquo in omnium orizonte differentium. Et propter hoc, omnes astronomi incipiunt
diem a meridie quia ascensiones circuli directi sunt eed et equales in omni latitudine
et orizonte.

Si vero cupis habere latiorem tractatum de ista materia, vide Ptholomeum,
Albategni, Gebir et Bredon. Sed Bredon in fine libri sui secundi super Almagestum
comprehendit sententias omnium illorum et ponit ibi modum meum hic prescriptum
in virtute, quamvis non ita plane, et ibi tradit doctrinam completam et perfectam de
equatione dierum. Sed hoc ad presens sufficiat.
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Translation

New work
For the common table of the equation of time that Azarchel composed, is now in

error due to the time elapsed and the long displacement of the solar apogee. Therefore,
I decided to compose a new table.

About that it must be noted that the equation of time is the difference between the
mean days or equal days and the apparent days or unequal days. Indeed, the average, or
mean or equal day always and precisely contains 24 equal hours, as all the astronomers
assume in their computations. And that [mean] day supposes that both the solar motion
and the right ascension are always equal, but that is not true.

The apparent or unequal day is truly the time of complete revolution which the
Sun in motion travelled through. This day, of course, is different and unequal for two
reasons, because of the inequality of the solar motion [solar equation], and because of
the inequality of the ascension of the true motion [right ascension].

In truth, the difference originating from both causes of the inequality of the Sun,
between the mean day and the apparent day is called the equation of time, although it
may be small in one day and then increases up to eight degrees and more.

And as Ptolemy says, the maximum difference from both causes of inequality is
eight degrees and a third of degree.166 For as he says, the greatest difference from
the inequality of the solar motion [solar anomaly] is simply three degrees and two
thirds of one degree, and the greatest difference from the inequality of the ascension
[variation at the time of meridian-crossing] is said of four degrees and two thirds.

However, we, themoderns, find themaximumdifference simply from the inequality
of the solar motion resulting in four degrees and one third, which is clear if the true
solar motion from the beginning of Aries until the beginning of Libra is subtracted
from the mean motion of the Sun for the same time.

And we find the maximum difference from the inequality of the right ascension
simply resulting in five degrees, as it appears if the right ascensions, that are from 16
Aquarius to 16 Taurus, are subtracted. For 85 degrees will then certainly remain in
these signs, it is the beginning and the end of the subtraction of the right ascensions.
From this follows that the entire possible difference from the two causes of inequality
can also be nine degrees and one third.

However, it is not necessary, nor is it true, that all the smallest apparent days are so
much exceeded by so many mean days, that is to say, by the addition of the maximum
differences of both causes. For the maximum difference from the other cause is not in
the same place as the maximum difference from the other one [other cause], nor do
the subtractions or additions of one cause and the other begin from the same point.

On the contrary, the other cause starts to decrease before the other reaches its
maximum augmentation due to the motion of the apogee. In addition, therefore, it
is not always found that the maximum equation of time or the difference from both
causes is simultaneously one and the same and equal because of the variation of the
solar apogee, as it appears in the tables. For Azarchel, in his time, found the maximum
difference fromboth causes at the same time 7 degrees and 54min,Albategni, however,
7 degrees and 57 min and myself, in my time, assuming that the solar apogee was in

166 Cf. Ptolemy’s Almagest, III.9; Toomer (1984),171.

123



228 L. Miolo, S. Zieme

the first degree of Cancer, I found the maximum difference from both causes at the
same time: 8 degrees, 12 min and 30 s, operating as close as possible to Ptolemy’s
position.

This table of a different kind was composed as it appears in Ptolemy, Albategni
and Bredon, in his 2nd book on the Almagest, who transmits there the same complete
doctrine.

I truly present a gentle method with which one can very precisely make a table of
the equation of time, as I have made myself in such manner as it could be perpetual,
yet operating with it for 100 or 200 years, the error will be insensible.

For this, note that the average or mean days implies that both the solar motion and
the right ascensions are always equals, which is not true, but the apparent day supposes
on the contrary that it is true.

Thus, you will find precisely the difference between the mean day and the apparent
day arising from both causes at the same time. Assume the Sun to be in itsmeanmotion
at 18 degrees Aquarius, because from the beginning of that degree point according to
its true motion, the apparent day begins to be smaller than the mean day due to the
inequality of ascension, as it appears in the table of right ascensions.

And from this degree, write one after the other, degree per degree the mean motion
of the Sun until a complete revolution. Assume also that the solar apogee is in some
determined complete degree, then subtract it from the mean motion and the result will
be the argument of the Sun, [solar anomaly] that you also write in front of the mean
motion until the complete revolution.

Then, with the argument of the Sun [solar anomaly] now found, enter in the table of
the equation of the Sun and compute the solar motion up to the complete revolution,
and also write the true solar motion in the third position in front of the mean motion
up to the complete revolution.

Then, subtract the true solar motion first found from the true solar motion secondly
found and equated, there will remain the arc of the true solar motion passing through
one degree of the mean motion of this arc of true motion. Seek the right ascension of
the sign and degree of the true solar motion, that if there is one precise degree there
will be an equal amount of apparent and mean days, and therefore, the beginning of
the addition will be there, and therefore, the numbers will be placed in front of that
degree of Aquarius of the true motion.

If this ascension was greater than a degree, the ascension of the true solar motion
corresponding to the crossing of the subsequent degree of the mean motion must be
sought. Do not cease and you will arrive to the ascension of the arc of the true motion
that contains precisely one degree, thus in the same time, as the beginning of the
addition will start there.

Therefore, having found that degree, the true solar motion corresponding to the
crossing of those two degrees in conjunction of this degree, that is, the subsequent
degree and that truemotion in ascension from the two degrees is sought. The subtracted
difference is placed in front of the subsequent degree.

Then, from the true solar motion corresponding to the crossing of three degrees
altogether, that means, with the two preceding degrees, and the third subsequent one,
its ascension is subtracted from the three degrees of the mean motion. The difference
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is placed against the third subsequent degree, and with this method, proceed further
until the completion of the whole circle.

Once completed, as you know the exact equation of time corresponding to each
complete degrees of the true motion, take the table of proportion (table of interpo-
lation), that means, the general manner which you add or subtract according to the
necessity of the position, and write the product in the table in front of the perfect [inte-
ger] degree of the true solar motion. For one always enters in the table of the equation
of time with the degree of the true solar motion, and thus the complete composition
of the aforementioned table is clear.

Therefore, if the radix of the motions were at the beginning of the addition in the
table, that is, the true mean days begin to be greater than the apparent days, that is, in
the aforesaid degree of Aquarius, so the difference found must be added continuously,
so that the apparent days are given from the mean days.

Nevertheless, if the radices are placed at the beginning of the subtraction, then any
difference found is in the table of mean days.

And note that this table covers every region and every horizon, if the day begins
at midday or at midnight. But, if the day were to begin at sunrise or sunset, or from
whatever hour, then a proper table of the equation of time is needed for each horizon,
and this happens because of the variation of the inequality of the oblique ascension in
all the different horizons. In addition, for this reason, all astronomers begin the day at
midday for the right ascension is equal in every latitude and horizon.

However, if you want to have amore substantial treatise on this matter, see Ptolemy,
Albategni, Gebir and Bredon. But, Bredon at the end of his second book on the
Almagest covers the opinions of all of them, and there he placed my method, here
presented in virtue, although not so clearly, and here, he transmits a complete and
perfect doctrine of the equation of time. But this is enough for now.

Appendix B. Simon Bredon, Commentum super Almagesti, Book III.
22–24

Manuscripts used for the edition (sigla):
D1 Oxford, Bodleian Library, Digby 168, fols. 37v-39r

D2 Oxford, Bodleian Library, Digby 178, fols. 83v-86r7

Edition principles

The edition of Simon Bredon’s commentary of Book III. 22–24 of the Almagest is
based on the two only extant manuscripts, Oxford, Bodleian Library, Digby 168 (D1)
and Oxford, Bodleian Library, Digby 178 (D2). The following text is mainly based
on D2 (Lewis Caerleon’s copy) which contains a few variants compared to Simon
Bredon’s autograph copy, D1. D2 is indeed likely to belong to the same tradition as
D1, from which it was most likely copied directly, or from a direct copy of D1.

For the edition, we generally follow D2, except in a few cases where the latter omits
a word or preposition otherwise included in D1. Therefore, we include variants found
in D1 in the critical apparatus, and in some cases, D2 variants are also listed in notes.
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We have incorporated in only one case, at the end of III.23, an entire passage
from D1, originally written by Simon Bredon and then deleted by him, which Lewis
Caerleon did not include in his copy, D2. We have included it in the main text as it
presents an interesting attempt by Simon Bredon to compose a perpetual table for the
equation of time, an idea which he eventually abandoned in order to finally provide
the rule for making a ‘non-perpetual’ table for the equation of time in III.24.

Folio numbers in the main text correspond to D2. We specify the change in folio
numbers in D1 within the apparatus.

We report marginalia, interlinear glosses, deletions, and corrections systematically.
Additionally, D2 includes a couple of marginal glosses written by Lewis Caerleon
to comment on Simon Bredon’s text. Some words are also superscripted by Lewis
to correct an omission in D2, as specified in the apparatus. D1 was Simon Bredon’s
working copy, with many passages added and then crossed out for deletion, while
entire paragraphs were included in the margin with the help of signes-de-renvoi. The
passages copied in the margins by Simon Bredon in D1 are systematically included in
D2. Therefore, we specify in the apparatus whenever those passages are situated in the
margin in D1. Similarly, we have decided to mention in the apparatus every passage
crossed out by Simon Bredon.

A certain number of spelling variants may be found in the two copies. We have
decided to mention most of them in the apparatus. Punctuation is ours. However, the
reader should be aware that we normalised some spellings and standardised some
others.

The spelling variants we normalised are the following:

• in D1 Ptolemy is spelled Tholomeus, we retained Ptholomeus as in D2.
• ‘-ci’ in ‘-ti’ for tercium/tertium and distancia/distantia
• We include a ‘y’ when more common in modern spelling for Egyptorum instead of

Egiptorum.
• We retained the absence of diphthong in both manuscripts, e.g. equatio and not

aequatio.
• We kept the spelling found in both manuscripts of coniunctio instead of conjunctio.
• The numerical readings in themanuscript were closely followed, andArabic numer-
als were used when provided. Discrepancies occurred when a witness included an
Arabic numeral while the other provided a complete word, e.g.,: ‘duorum’ and
‘2orum’. In that case, the reading in D1 was chosen, and the D2 variants were added
to the apparatus.

Abbreviations in the apparatus

add additur Added

add. et del additur et deletur Words added and then deleted

marg margine Text or annotations written in the margin

supra lineam Word(s) written above the line

iter. et del iteratur et deletur Word(s) given twice, one of them is
then deleted
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†…† Uncertain words

< … > Addition by the editor

[fol. 83v]167

22. Locum quo incipit inequalitas dierum ex inequalitate ascensionum in circulo
obliquo resultans, nec non et maximam differentiam inter dies differentes et medios in
orizonte dato collectam scrutari. Unde in transitu medietatis orbis signorum per Ari-
etem erunt dies medii diebus differentibus longiores per aliquid et in transitu alterius
medietatis per Libram erunt ergo dies medii breviores differentibus per tantundem.

Accidit autem variatio loci qui queretur secundum quod climata variantur.168 Est
tamen in omni climate inter punctum inceptionis in circulo directo in prima quarta
zodiaci et tropicum estivalem vel in puncto sibi opposito post tropicum yemalem,
habentis ergo tabulis ascensionum pro orizonte dato inquiratur, ante tropicum esti-
valem, ubi invenitur in tabulis dies medius equalis diei differenti et erit ibidem, vel in
puncto sibi opposito,169 indifferenter inceptio,170 inequalitatis171 dierum ex proposita
causa in orizonte dato resultans. Et in puncto inceptioni opposito erit finis Capitis ergo
in dictis tabulis ascensionibus medietatis zodiaci inter puncta sicut172 habita inter-
cepta,173 quantum ille ascensiones different174 a medietate circuli 0 a 180 gradibus,175

tantum different dies medii illius medietatis a differentibus diebus eiusdem, quod si
indirecta medietate fuerit176 signum Arietis, erunt per dictam differentiam dies medii
diebus differentibus longiores et in medietate alia econverso177 eo quod [fol. 84r] in
medietate zodiaci in qua est signum Arietis subtrahuntur differentie ascensionum in
circulo obliquo178 ab ascensionibus in circulo directo,179 et in alia medietate adduntur,
ut patet in 20a coniunctione180 secundi huius. Et ex hoc sequitur quod dies differentes
medietatis zodiaci in qua est signum Libre exceduntur coniunctim dies differentes
alterius medietatis per duplum differentie antedicte eo quod quantum dies differentes
addunt super diesmediocres ex parteLibre tamexparteArietisminuuntur ab iisdem.Et

167 D1 fol. 37v.
168 Nota quod istam inequalitatem dierum in circulo obliquo ponit propter illos qui incipiunt diem vernalem
a Solis ortu vel occasu, et tunc nullus est respectus habendus ad circulum remanet, et apud eos qui incipiunt
diem a meridie nullus erit rectus ad orizontem obliquitatem] marg. per Ludowicum Caerleon, D2.
169 incepte add. et del. D1.
170 die add. et del. D1.
171 de add. et del. D1.
172 sic D2.
173 intercepte D2.
174 differunt D2.
175 saltem a 180 gradibus D1.
176 Arietis add. et del. D1.
177 econverso] iter. et del. D2 | non patet per 20am coniunctionem add. et del. D1.
178 obliquo] supra add. et del. D1.
179 non patet in 20a coniunctione add. et del. D1.
180 in] om. D2.
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est notandum quod hec181 differentia sic inventa in orizonte dato excedit differentiam
maximi diei illius orizontis supra diem182 equinoctialem que quidem differentiam,
scilicet183 maximi diei ad equinoctialem est excessus quo ascensio medietatis zodiaci
a Cancro in Capricornum excedit .180. gradus.184

23. Cuiuscumque diei differentis ad diem medium185 differentiam ex alterutra dic-
tarum causarum vel ex ambabus simul causatam inquirere, necnon et locum quo
inceptio additionis seu diminutionis ex ambabus simul causis contigerit assignare.

Ut si differentiam inter quemcumque diem differentem et medium ex inequalitate
motus Solis causatam habere volueris invenias per 18am huius veros motus Solis tam
pro primo oppositi illius diei quam pro ultimo186 de quo queris. Deinde subtracto
minore de maiore capiatur differentia que a die medio187 subtrahenda est si sit minor
vel subtrahendus est arcus diei medii ab ea si sit maior et reliquetur differentiam quam
inquiris. Quod si differentiam ex inequalitate ascensionis causatam habere volueris,
invento per 18amhuiusmediomotu Solis et vero188 pro principio et pro fine diei de quo
queris et minori de maiore subtracto. Arcus residui inveniatur ascensio in spera recta
per ultimam primi huius189 si in linea meridionali dies inceperis190 vel inquiritur illius
arcus ascensio in spera obliqua per 19am secundi huius. Si ab oriente inceperis dies
tuos, qua subtracta ab arcu diei mediocris si sit minor vel arcu diei medii subtracto
ab ea si sit maior, resultabit differentiam de qua queris. Et est notandum quod in
equationibus dierum, melius est operari cum diebus incipientibus a linea meridionali
quam ab orizonte, cuius causam ponit Ptholomeus, eo quod diversitates que accidunt
in diebus incipientibus ab orizonte, scilicet orizonta diversa, diversimode variantur.
Sed diversitates que accidunt in diebus incoatis a linea meridionali in orizontibus
singulis manent eedem. Si autem differentiam ex causis ambabus simul pervenientem
habere volueris utriusque cause differentiam respectu diei de qua queris per doctrinam
protractam inquire, et per tres coniunctiones premissas considera an utraque causam
differentiam suam addat supra diemmediocrem vel utraque differentiam suamminuat
aut addat [fol. 84v] altera reliqua minuente. Si autem ambe cause addant simul vel
minuant. Differentie ambe diei de quo queris simul addantur et si una causa addat,
et alia minuat, subtrahatur minor differentia de maiori, et resultabit differentia ex

181 hec] om. D2.
182 equalem add. et del. D2.
183 scilicet] om. D2.
184 Est et notandum quod volueris etiam operari in equationibus dierum melius est operari cum diebus
incipientibus a media nocte vel a meridie quam ab ortu Solis vel occasu, cuius causam ponit Tholomeus eo
quod diversitates que accidunt in diebus incipientibus ab ortu vel occasu scilicet orizonta diversa diversimode
variantur. Sed diversitates que in diebus incipientibus a medie nocte vel a meridie accidere in orizontibus
singulis manent eedem add. et del. D1.
185 medium] seu quorumque dierum differentium ab tot medios add. et del. D1.
186 vel illorum differentium add. et del. D1.
187 vel a diebus mediis add. et del. D1.
188 et vero] s.l. D2| om. D1.
189 per ultimam primi huius] marg. D1.
190 vel inque add. add. et del. D1.
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ambabus causis causata. Si vero quantum una differentia addit tam precise alia minuit,
tunc ibi equalis erit dies differens diei mediocri.191

Si igitur in die sequenti addat utraque causa, vel altera plus addat quam reliqua
minuat. Tunc ibi erit initium additionis. Si vero in die sequenti utraque causa minuat
seu altera plus minuat quam reliqua addat. Tunc erit ibi principium diminutionis. Est
tamen notandum quod licet iste sit unus modus inveniendi differentiam ex ambabus
causis resultantem et modus etiam inveniendi principium additionis vel diminutionis.
Non tamen est modus in toto precisus tum propter hoc quod ex isto modo operandi
sequitur quod cuicumque differentie resultanti ex inequali motu Solis in ecentrico, cor-
respondeat ascensio sibi equalis quod non est verum. Tum etiam propter hoc quod192

arcus zodiaci193 correspondens medio motui Solis pro principio diei194 cuiuslibet in
qua Sol nec195 est in auge nec in eius opposito alibi incipit196 quam incipiat arcus
zodiaci qui motui Solis vere pro eiusdem diei principio correspondet. Et per coniunc-
tionis primo arcui correspondet alia ascensio quam secundo cum iste modus operandi
precedit, ac si ascensiones illorum arcuum essent eedem.197 Ut igitur precise inve-
niatur differentiam ex ambabus causis simul resultans capiatur verus locus Solis per
18am huius tam pro principio diei de quo queris, quam pro fine eiusdem. Et arcus
inter illa duo loca intercepti inveniatur ascensio que quidem ascensio est quantitas
diei differentis, illa igitur si sit minor die medio subtrahatur ab eo, et si sit maior,
subtrahatur ab ea dies medius et habebitur differentia quam inquiris. Si vero198 fuerit
equalis diei medio, tunc si dies differens qui proximo sequitur fuerit maior die medio
ibi erit principium additionis et si fuerit minor ibi erit principium diminutionis, patet
igitur tota coniunctio.

Et est notandum quod non oportet nec est verum omnes dies differentes maiores
excedere tot dies medios per aggregatum ex maximis differentis causarum ambarum,
vel omnes dies differentes minores per tantum excedi a tot diebus mediis, quia non
in eodem loco quo est maxima differentia ex altera causa, est maxima differentia
ex reliqua nec ab eodem puncto incipiunt additiones vel diminutiones unius cause
et alterius. Immo altera causa incipit minuere antequam reliqua ad maximam sue aug-
mentationis devenerit199 et ideo ponit Ptholomeus200 quod ubi est maxima additio201

[fol. 85r] similiter vel maxima diminutio in diebus a meridie incoatis ibi differentia ex
inequalitate motus Solis causata est 3 gradus et due tertie unius gradus et differentia
ex inequalitate ascensionum proveniens que ibidem est maxima. Est ut ipse dicit 4

191 Si autem differentiam … dies differens diei mediocris] paraphrase of Almagesti minor, III.24.
192 alibi incipit add. et del. D1.
193 zodiaci] s.l. D1.
194 cuiuslibet … incipiat] marg. D1.
195 nec] iter. et del. D2.
196 incipit] s. l. D2| om. D1.
197 Nota modum prime operandi] marg. per Ludowicum de Caerleon’ D2.
198 fol. 38r, D1.
199 immo … devenerit] marg. D1.
200 Tholomeus D1.
201 fol. 85r D2.
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gradus et due tertie fere quia est 4 gradus et 44 minuta secundum tabulas suas. Aggre-
gatum igitur ex illis duobus differentiis est 8 gradus et tertia pars unius gradus, per
quod omnes202 maximi dies differentes secundum enim superant tot dies mediocres
cui quidem aggregato, dimidium hore et pars eius 18a correspondet, propter hoc quod
in una hora gradus 15 oriuntur hec autem quantitas temporis203 cum dimissa fuerit in
Sole et in stellis aliis non eveniet, ut dicit Ptholomeus204 propter eius dimissionem
quantitas sensibilis in inquisitione eorum in aliquo eorum que videntur. In Luna autem,
propter velocitatem sui cursus, erit diversitas manifesta sensibilis eo quod quandoque
in tanto tempore pretransit fere tertiam partem gradus. Est autem205 unum aliud dili-
genter notandum206 quod omnes dies differentes maiores simul sumpti non semper
per equalem excessum207 excedent tot dies medios nec semper in eodem puncto erit
initium additionis sive initium diminutionis, neque semper eidem loco Solis sive in
eccentrico sumatur208 sive in zodiaco correspondet in diversis annis dies differentes
equales. Sed per diuturnum processum temporis accidet variatio in singulis predicto-
rum, cum eum per motum octave spere varietur distantia inter punctum equinoctii et
longitudinem quamcumque eccentrici at differentiam diei differentis ad medium ex
inequalitate motus Solis causata respectum habet ad distantiam Solis a longitudine
media et in variatione eam consequitur, differentia vero ex inequalitate ascensionum
proveniens habet respectum ad Solis distantiam a puncto equinoctii. Ideo oportet ut ex
variatione distantie inter longitudinem mediam et punctum equinoctii, contingat vari-
atio in predictis. Et ideo tabula Albategni209 facta pro equatione dierum non potest
esse perpetua, immo per lapsum temporis erit falsa.210

< [D1, fols. 38r–v] Docebo tamen tabulamunamcomponere, que una cum tabula ascen-
sionum in circulo directo, pro diebus equandis deserviet in eternam.211 Extendatur
enim linea numeri usque ad 360 gradus per singulas unitates et erit primus gradus
linee numeri gradus in mediate subsequens gradum illum in quo est longitudo media
illa scilicet a qua recedit Sol ab opposito augis et accedit ad augem. Et ideo ut prompte
sciatur quantum distinctum ille primus gradus linee numeri ab augis opposito, ponan-
tur < numerus > illius212 in capite tabule supra unitatem in linea numeri, vel in directo
unitatis ex parte sinistra, ut verbi gratia. Arcus maxime equationis Solis secundum

202 omnes] supra lineam D1.
203 ut dicit Tholomeus add. et del. D1.
204 ut dicit Tholomeus] marg. D1.
205 autem] etiam D1.
206 non semper per equalem excessum suum add. et del. D1.
207 excessum] s. l. D1.
208 summatur] supra lineam D1.
209 See al-Battānı̄’s De scientia stellarum, chapter 29; the table is included in the Toledan tables.
210 per lapsum temporis erit falsa] inD2, here ends chapter 23. The section beginning with ‘Docebo tamen
tabulam unam componere’ and ending ‘dies diffeerentes pertransitionis predicte’ is only displayed in D1,
despite Simon Bredon having deleted it with the note ‘vacat’. See note below.
211 Docebo… pertransitionis predicte] add. et del. D1. Awhole section was erased by Simon Bredon (D1,
fols. 38r-v) by the mention ‘vacat’ in margin. It was not included by Lewis Caerleon, who follows the text
carefully and begins with Book III, 25 as Simon wished. The section removed by Simon Bredon begins
with ‘Docebo tamen tabulam unam componere …’.
212 numerus illius …] marg. D1.
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Tholomeum est 2 gradus 23 minuta ut patent in 12 huius ideo illo subtracto a 90
gradibus, remanent 87 gradus 37minuta, que est distantia longitudinismedie ab oppos-
ito augis Solis. Et quia in illa distantia Solis non variatur in subsequentis equatio Solis
ab sinus equatione in distantia gradus in linea numeri ex parte sinistra vel supra capud
eius subtrantur 88 gradus denotantes quod primus gradus linee numeri est 89 gradus
ab opposito augis Solis.

Deinde in tabula equationis Solis inquiratur equatio Solis in eius distantia ab oppos-
ito augis per 89 gradus. Et si illa equatio sit equalis equationi maxime sed contiget
propter permutationem distantie a longitudine media. Ponatur unus gradus in directo
unitatis in proxima linea ex parte dextra, quia tantus est motus Solis veris in pertransi-
tione 89 gradus ab opposito augis sumpti, et in eius directo, in linea tertia, ponatur cifra
denotans quia nulla est differentia ter medium motum Solis et verum in pertransitione
illius gradus.213

Postea consimiliter inquiratur equatio Solis in distantia 90 graduum ab opposito
augis, et illa subtracta ab equatione maxima, si sit minor ea. Ponatur residuum in
tertia linea in directo binarii, illo quia residuo a duobus gradibus subtracto, quod
inde remanserit ponatur in subsequente linea in directo binarii, quia ille est motus
Solis verus in pertransitione eius a principio 89 gradus usque ad finem gradus 90, ab
opposito augis sumptorum.

Consimiliter procedendumest ulterius conversique devitatum fuerit ad augem, quod
continget in directo 92 in linea numeri, ibi igitur quia nulla est equatio. Ponatur max-
ima equatio in tertia linea in directo 92, in linea numeri ibi igitur quia nulla est equatio
ponatur maxima equatio in tertia linea in directo 92, illa que subtracta a 92 gradibus,
ponatur residuum in subsequente linea in directo eorumdem 92 graduum qui est quan-
titas veri motus Solis a principio 89 gradus ab opposito augis usque ad augem, et illa
maxima equatio posita in tertia linea est differentia per quam medius Solis motus in
pertransitione predicta superat motum verum.

Deinde sumptis equationibus ab auge Solis usque ad eius oppositum, singule ad
equationemmaximam sunt addende. Et ponendum est aggregatum in directo graduum
prout continget, qui illud erit differentia intermotumSolis verumetmedium in pertran-
sitione eius a predicta longitudine media ad locum illum. Subtracta que illa differentia
a tot gradibus in quot graduum directo ponetur. Ponatur residuum in subsequente linea
in directo graduum predictorum.

Deinde in processu ab opposito augis ad illam longitudinem mediam a qua fuit
inceptio. Operandum est per subtractionem equationum ab equatione maximam scil-
icet operabatur in processu ab illa longitudine media ad augem. Et sic compositio dicte
tabule †contineatur† ut igitur per dictam tabulam operemus, sic Sol gratia exempli in
fine alicuius graduum linee numeri predictorum, et214 numerus in subsequente linea
in directo illius gradus inventus. Additur ad numerum per quem 89us gradus215 ab
opposito augis distat a puncto equinoctii proximo precedentis illum 89um gradum,216

213 A whole passage was crossed out by Simon Bredon and is now barely legible, it begins with: ‘Si vero
differentia equatio…’.
214 capi add. et del. D1.
215 a longitudine propriori add. et del. D1.
216 illum … gradum] marg. D1.
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scilicet a primo puncto Arietis vel Libre, et tam totius aggregati quam predicte dis-
tantie queratur ascensio in circulo directo subtracta igitur minori ascensione de maior
remanebit quantitas temporis217 direumdifferentium in pertransitione Solis a principio
89 gradus ab oppositione augis usque ad locum pro quo operati fuerimus transactorum,
per cuius relationem ad tempus dierum mediocrum218 in pertransitione219 habebitur
differentia inter dies mediocres et dies differentes pertransitionis predicte. >

24. Dies mediocres in dies differentes convertire et econtra.

Tam propter principium220 propositi temporis quam propter finem eiusdem221 inve-
niatur uterque motus Solis scilicet verus et medius, et subtracto medio motu Solis pro
principio illius temporis a motu eius medio pro fine eiusdem, servetur residuum. Item
subtracto vero motu Solis pro principio predicti temporis a vero motu eius pro fine
ipsius residui queratur ascensio in circulo directo.

Si a meridiano dies inceperis222 vel in [fol. 85v] circulo obliquo si dies ab orizonte
incoaveris223 et si dicta ascensio minor fuerit motu medio preservato, subtrahatur ab
eo deinde resoluta differentia in partes horarum sumendo semper pro uno gradu 4
minuta hore que sunt 15a pars illius patet quod per partes horarum224 correspondentes
dicte differentie terminabuntur autemfinempropositi temporis tot dies differentes quot
fuerant in proposito tempore mediocres, et ideo ubi dies differentes sunt225 per certam
differentiam diebus mediis breviores. Addenda est illa differentia ad numerum dierum
mediorum denotans quod illi numero dierum mediocrum correspondent tot dies dif-
ferentes et differentia tanta ulterius. Si vero ascensio predicta maior fuerit motu medio
preservato, subtrahatur medius motus ab ea et tempus remanenti differentie corre-
spondens subtrahendum est a numero dierum mediorum propositi temporis, denotans
quod diebus mediocribus temporis propositi non correspondent tot dies differentes.
Sed numerus per differentiam antedictam.

Iste igitur est modus convertendi dies mediocres in dies differentes, quod si volueris
econtra convertere, operaberis econverso.

Et est notandum quod per istum modum precisissime fieri patet tabula equationis
dierum que licet non poterit esse perpetua, operando tamen cum ea per 100 annos
insensibilis erit error.

Inquiratur igitur in linea numeri tabule equationis Solis, gradus correspondens 18
gradui Aquarii, eo quod a principio illius gradus incipit: dies differens esse minor die
mediocri ex causa inequalitatis226 ascensionis, ut probari potest per eam227 que dixi

217 s.l. D1.
218 qui fuerit add. et del. D1.
219 several deleted words D1.
220 principium] principio D1.
221 eiusdem] s.l. D1.
222 Two illegible words erased after dies and inceperis D1.
223 inquoaveris D1.
224 dicte differentie add. et del. D1.
225 s. l. D1.
226 inequalitatis] marg. D1.
227 per ea D1, D2.
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in 21 huius, quo gradu228 invento per equationes principium et finis illius inveniatur
arcus veri motus Solis in pertransitione illius gradus, deinde illius arcus veri motus
queratur ascensio in circulo directo que si sit unus gradus precise erit, ibidem229 quan-
titas diei differentis equalis quantitati diei mediocris, et ideo230 erit ibidem inceptio
additionis, et ideo ponatur ibi cifra in directo 18 gradus Aquarii denotans quod nulla
differentia erit ibi.231 Si vero illa ascensio fuerit maior uno gradu, inquiratur ascen-
sio veri motus Solis correspondentis pertransitioni gradus subsequentis, nec cesses
quousque deveneris ad ascensionem que precise continet unum gradum, ut ibidem
additionis principium habeatur. Illo igitur gradu invento, inquiratur verus motus Solis
correspondens pertransitioni duorum232 graduum coniunctioni illius scilicet et gradus
subsequentis, et illius veri motus ascensione a duobus233 gradibus subtracta. Ponatur
differentia in directo gradus subsequentis.

Deinde invento vero motu Solis correspondente pretransitioni trium graduum simul
iunctorum234 scilicet secundorum235 predictorum et tertii subsequentis. Subtrahatur
eius ascensio a tribus gradibus et ponatur differentia econtra gradum tertium sub-
sequentem et per istum modum procedas ulterius [fol. 86r] usque ad totius circuli
complementum, et sicut patet compositio tabule antedicte. Si igitur radices236 motuum
posite fuerit super principium additionis in tabula scilicet ubi dies medii inceperunt
esse mariores diebus differentibus237 tunc differentiam quelibet ibi inventa. Addenda
est continue, ut dies differentes ex diebus mediis habeantur.

Si tamen ponerentur radices super principium diminutionis, tunc esset differentia
quelibet238 inventa in tabula minuenda.239 Et est hic unum diligenter, notandum quod
si radices alique, que nec sunt super principium additionis,240 nec super principium
diminutionis in tabula posite fuerint sine equationem dierum, ut puta per solam addi-
tionem ad loca instrumentaliter ad inventa vel per subtractionem ab eisdem secundum
correspondentiam temporis mediocris inter instans considerationis instrumentalis et
radicis principium intercepti, prout docet Ptholomeus241 in 18a huius et prout etiam
patet per radices positas in directo annorum quorumlibet collectorum. Tunc cum
indiguerimus equatione dierum nec poterimus eos equare per hanc tabulam neque
per regulam prius tactam, tabula enim non sufficet eo quod illa docet semper addere

228 inveniatur add. et del. D1.
229 tempus motus solis add. et del. D1.
230 ideo] add. D2.
231 ibi] ibidem D1.
232 2orum D2.
233 2bus D2.
234 iunctorum] simul D1.
235 2orum D2.
236 tempore add. et del. D1.
237 ubi dies … differentibus] marg. D1.
238 in add. et del. D2.
239 si tunc … tabula minuenda] marg. D1.
240 Nota] marg. per Ludowicum de Caerleon D2.
241 Tholomeus D1.
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cum tamen dies differentes aliquando addunt super dies medios et aliquando min-
uunt ab eisdem. Nec operari poterimus per regulam supradictam, illa enim requirit,
ut habeatur noticia initii diei super quem ponuntur radices, ita videlicet ut ponantur
radices super verum initium illius diei sive ab orizonte sive a meridie incoetur242 vel
ut ponantur super instans cuius distantia a vero initio illius diei nullatenus ignoretur.
Si igitur per dictam regulam equanti sunt dies pro motibus inquirendis, oportet quod
secundummodumpredictum radices illorummotuum sunt equate. Et si per dictam tab-
ulam voluerimus operari tunc radices motuum243 de quibus agemus, non erunt super
verammeridiem diei super quem ponentur. Sed videndum est in dicta tabula equationis
dierum quanta equatio temporis correspondeat illi diei super quem ponentur radices,
et ulterius videndum est quantus est motus illius planete cuius habenda est radix illi
tempori correspondens. Deinde addito tanto motu loco illius planete in meridie dicti
diei, resultabit radix motus eiusdem planete cum qua quidem radice operabimus, si
pro motu habendo illius planete dies predictam tabulam fuit equandi.

Non igitur in isto opere erunt radices super veram meridiem illius diei super quem
ponentur, sed super meridiemmediam. Meridiem scilicet per tantum sequentemmeri-
diem veram per quantum omnes dies medii intercepti inter diem illum et diem a
quo sit initium additionis in tabula simul sumpti excedunt omnes dies differentes
eiusdem temporis simul sumptos. Unde inventa radice aliqua per hunc modum que
scilicet intitulata est super meridiem dicto modo mediam alicuius diei, et non super
meridiem eius, veram per solam additionem ad illam radicem vel per solam subtrac-
tionem ab ea secundum correspondentiam temporis iuxta doctrinam 18e huius haberi
possunt radices ad quoscumque annos collectos, menses et dies, nec non et ad sec-
tas cognitas qualescumque [fol. 86v] ita quod per quamlibet huius radicum inveniri
potest locus planete cuius sunt radices ad quodcumque tempus quod equandi fuerit
per tabulam antedictam.244 Consimiliter coniunctiones et oppositiones radicales com-
putande sunt secundum notam distantiam ameridie media diei super quem ponentur et
non secundum distantiam a vera eius meridie. Si pro coniunctionibus vel opposition-
ibus habendis equandi sunt dies per tabulam hanc pretactam.245 Sic igitur sufficient
patet modus equandi dies tam per tabulam quam per regulam supradictam. Hic inferit
Ptholomeus246 ea que sequuntur dicens fuit autem locus in quo fuit Solis secundum
computationem nostram in principio annorum Nabugodonosor in primo die mensis
tantum qui est ex mensibus Egyptorum247 in media die per motum eius medium, sicut
iam ostendimus ante, scilicet, capitulo 2° et 8° huius248 in 45to minuto prime partis
Piscis et per motum suum diversum in tertia parte et octavo minuto Piscis fere.

242 inquoetur D1.
243 Fol. 39r D1.
244 unde … tabulam antedictam] marg. D1.
245 pre [add et del.] tactam D2.
246 Tholomeus D1.
247 Egiptorum D1; D2.
248 huius] huius parum D1.
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Cum addideris super annos Gerdagird et menses et dies eius 955 annos et tres
menses erunt qui provenerint anni Alexandri per quos intrabis in canone Zeum249

Alexandrini. Et cum addideris annis Gerdagird et mensibus eius et diebus 1379 annos
et tres menses erunt qui provenerunt anni Nabugodonosor qui sicut per quos intrabis
in hunc librum.250

Appendix C. Comparison between Lewis Caerleon’s canons
and Simon Bredon’s Commentum super Almagesti, III.22–24

Lewis Caerleon, Canones equationis dierum Simon Bredon, Commentum super Almagesti

Non tamen oportet, nec est verum, omnes dies
differentes minores per tantum excedi a tot
diebus mediis, scilicet, per aggregatum ex
magnis differentis causarum ambarum. Quia
non in eodem loco quo est maxima differentia
ex altera causa est maxima differentia ex
reliqua, nec ab eodem puncto incipiunt
additiones vel diminutiones unius cause
et alterius…

Et est notandum quod non oportet, nec
est verum, omnes dies differentes maiores
excedere tot dies medios per aggregatum ex
maximis differentis causarum ambarum vel
omnes dies differentes minores per tantum
excedi a tot diebus mediis. Quia non in eodem
loco quo est maxima differentia ex altera
causa, est maxima differentia ex reliqua nec ab
eodempuncto incipiunt additiones vel diminu-
tiones unius cause et alterius…

[Simon Bredon, III,23]

Ymo altera causa incipit minuere antequam
reliqua ad maximam sue augmentationis
devenerit propter motum augis. Et ideo, non
semper invenitur maxima equatio dierum seu
differentia ex ambabus causis simul una et
eadem et equaliter propter variationem augis
Solis, ut patet in tabulis. Quia Azarchel invenit
maximam differentiam ex utraque causa simul
in tempore suo 7 gradus et 54 minuta,
Albategni vero 7 gradus et 57 minuta, ego vero
in diebus meis supponendo augem Solis in
primo gradu Cancri perfecto inveni maximam
differentiam ex utraque causa simul 8 gradus,
12 minuta et 30 secunda, precise operando
quod est prope positionem Ptholomei…

Immo altera causa incipit minuere antequam
reliqua ad maximam sue augmentationis
devenerit et ideo ponit Ptholomeus…

[Simon Bredon, III,23]

249 Zeid Alexandrini D2. The same misspelling of Theo is found in both witnesses, i.e.: Theon of Alexan-
dria.
250 Both manuscripts display a table of epochs.
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Lewis Caerleon, Canones equationis dierum Simon Bredon, Commentum super Almagesti

Ego vero ponam unum modum lenem per quem
precissime fieri potest tabula equationis dierum,
ut ego feci qualicet vero potit esse perpetua,
operando tamen cum ea per 100 vel 200 annos,
insensibilis erit error

Suppone Solem secundum medium cursum in
18 gradu Aquarii, eo quod a principio illius
gradus secundum verum motum incipit dies
differens esse minor die mediocri ex causa
inequalitatis ascensionum, ut patet in tabulis
ascensionum circuli directi…

Et est notandum quod per istum modum preci-
sissimefieri patet tabula equationis dierumque
licet non poterit esse perpetua operando tum
cum ea per 100 annos insensibilis erit error
inquiratur igitur in linea numeri tabule equa-
tionis Solis gradus correspondens 18 gradui
Aquarii, eo quod a principio illius gradus
incipit dies differens esse minor die mediocri
ex causa inequalitatis ascensionis…

[Simon Bredon, III,25]

Et ideo erit ibidem inceptio additionis et ideo
ponuntur illi cifra in directo illius gradus
Aquarii veri motus

Si vero illa ascensio fuerit maior uno gradu,
inquiratur ascensio veri motus Solis correspon-
dentis pertransitioni gradus subsequentis medii
motus, nec cesses consequensque deveneris
ad ascensionem arcus veri motus que precise
continet unium gradum, ut ibidem additionis
principium habetur

Illo igitur gradu invento inquiratur verus motus
Solis correspondens pertransitioni duorum
graduum coniunctioni illius, scilicet, et gradus
subsequentis et illius veri motus ascensione a
duobus gradibus, subtracta ponatur differentia
in directo gradus subsequentis

Deinde invento vero motu Solis correspondente
pertransitioni 3 graduum simul iunctorum
scilicet duorum predictorum et tertii
subsequentis subtrahatur eius ascensio a tribus
gradibus medii motus et ponatur differentia
contra gradum tertium subsequentem, et per
istum modum procedas ulterius usque ad totius
circuli complementum

Et ideo erit ibidem inceptio additionis, et ideo
ponatur ibi cifra in directo 18 gradus Aquarii
denotans quod nulla differentia erit ibi

Si vero illa ascensio fuerit maior, uno gradu
inquiratur ascensio veri motus Solis corre-
spondentis pertransitioni gradus subsequen-
tis, nec cesses quousque deveneris ad ascen-
sionem que precise continet unium gradum, ut
ibidem additionis principium habeatur

Illo igitur gradu invento inquiratur verus motus
Solis correspondens pertransitioni duorum
graduum coniunctioni illius scilicet et gradus
subsequentis et illius veri motus ascensione a
duobus gradibus subtracta. Ponatur differentia
in directo gradus subsequentis

Deinde invento vero motu Soli correspondente
pretransitioni trium graduum simul iunctorum
scilicet secundorum predictorum et tertii sub-
sequentis subtrahatur eius ascensio a tribus
gradibus et ponatur differentia econtra gradum
terctium subsequentem et per istum modum
procedas ulterius usque ad totius circuli com-
plementum, et sicut patet compositio tabule
antedicte…

[Simon Bredon, III,25]

Si igitur radices motuum posite fuerint super
principium additionis in tabula, scilicet, veri
dies medii incipiunt esse maiores diebus dif-
ferentibus, scilicet, in predicto gradu Aquarii
tunc differentia quelibet ibi inventa addenda est
continue, ut dies differentes ex diebus mediis
habentur

Si tamen ponerentur radices super principium
diminutionis tunc esset differentia quelibet
inventa in tabula numeranda de diebus mediis

Si igitur radices motuum posite fuerit super
principium additionis in tabula scilicet ubi
dies medii inceperunt esse mariores diebus
differentibus tunc differentiam quemlibet ibi
inventa. Addenda est continue ut dies differ-
entes ex diebus mediis habeantur

Si tamen ponerentur radices super principium
diminutionis, tunc esset differentia quelibet
inventa in tabula minuenda

[Simon Bredon, III,25]
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Lorch, Richard. 1995. Jābir ibn Aflah. and the Establishment of Trigonometry in the West. In Arabic Math-
ematical Sciences. Instruments, Texts, Transmission, ed. R. Lorch, article VIII. Farnham-Burlington.

Miolo, Laure. 2024. A bibliophile performing eclipse computations. Lewis Caerleon and his notebook. In
Manuscripts and performances in religions, arts and sciences, ed. A. Brita, et al., 117–186. Berlin:
De Gruyter.

Nallino, Carlo Alphonso, ed. 1903. al-Battānı̄ sive Albatenii Opus astronomicum. Vol. 1, Versio capitum
cum animadversionibus. Milan: Hoepli.

Neugebauer, Otto. 1975. A history of ancient mathematical astronomy. Berlin: Springer.
North, John David. 1976. Richard of wallingford: an edition of his writings, 3 vols. Oxford: Clarendon

Press.
North, John David. 1986. Horoscopes and history. London: The Warburg Institute.
North, John David. 1977. The Alfonsine tables in England. In ΠPIΣMATA: Naturwissenschafts-

geschichtliche Studien. Festschrift für Willy Hartner, ed. Y. Maeyama and W.G. Saltzer, 269–301.
Wiesbaden.

Nothaft, C. Philipp E.. 2018. John Holbroke, the tables of Cambridge, and the “True Length of the Year”:
a forgotten episode of fifteenth-cntury astronomy. Archive for History of Exact Sciences. https://doi.
org/10.1007/s00407-017-0200-0.

Pedersen, Fritz Saaby. 2002. The Toledan tables. A review of the manuscripts and the textual versions with
an edition, 4 vols. Copenhague: Kongelige Danske Videnskabernes Selskab.

Pedersen, Olaf. 2011. A Survey of the Almagest. With annotation and new commentary by Alexander Jones.
New York: Springer (1st ed. 1974).

Poole, L. Reginald and Mary Bateson, ed. 1902. John Bale, Index Britanniae scriptorum: quos ex variis
bibliothecis non parvo labore collegit Ioannes Baleus, cum aliis � John Bale’s Index of British and
other writers. Oxford.

Poulle, Emmanuel. 1988. The Alfonsine tables and Alfonso X of Castille. Journal for the History of
Astronomy 19: 97–113.

Powicke, Frederick Maurice. 1931. The medieval books of merton college. Oxford: Clarendon Press.
Ratdolt, Erhard. 1483. Tabule astronomice illustrissimi Alfontij regis castelle. Venice.
Saby, Marie-Madeleine. 1988. Les canons de Jean de Lignères sur les tables astronomiques de 1321, 3

vols. Unpublished thesis, École nationale des chartes.
Snedegar, K. 1999. The works and days of simon bredon, a fourteenth-century astronomer and physician.

In Between demonstration and imagination essays in the history of science and philosophy presented
to John D. North, ed. L. Nauta and A. Vanderjagt, 285–309. Brill Publishers: Leiden.

Stahlmann, William D. 1960. The Astronomical Tables of Codex Vaticanus Graecus 1291. Unpublished
doctoral dissertation. Brown University, Providence, RI.

Talbot, C.H. 1962. Simon Bredon (c. 1300–1372): physician, mathematician and astronomer. The British
Journal for the History of Science 1: 19–30.

Tanner, Thomas. 1748. Bibliotheca Britannico-Hibernica sive, De scriptoribus, qui in Anglia, Scotia, et
Hibernia ad sæculi 17 initium floruerunt, literarum ordine juxta familiarum nomina dispositis com-
mentarius. London.

Toomer, G.J. 1968. A survey of the Toledan tables. Osiris 15: 5–174.
Trout, Thomas. 1887. Charlton or Cherleton, Lewis. Dictionary of National Biography. Keith Snedegar.

Caerleon, Lewis (d. in or after 1495), physician and astronomer. In Oxford Dictionary of National
Biography, 10:118.

Van Brummelen, Glen. 2018. The end of an error: Bianchini, Regiomontanus, and the tabulation of stellar
coordinates. Archive for History of Exact Sciences 72: 547–563.

123

https://doi.org/10.1007/s00407-017-0200-0


Lewis Caerleon and the equation of time: tabular astronomical… 243

Van Brummelen, Glen. 2021. Before the end of an error: Giovanni Bianchini’s original flawed treatise on
the conversion of stellar coordinates. Archive for History of Exact Sciences 75: 109–124.

van Dalen, Benno. 1994. On Ptolemy’s table for the equation of time. Centaurus 37: 97–153.
van Dalen, Benno. 1993. Ancient and Mediaeval Astronomical Tables: Mathematical Structure and Param-

eter Values. Utrecht University. (Dissertation).
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