
Archive for History of Exact Sciences (2022) 76:425–430
https://doi.org/10.1007/s00407-022-00291-w

Gauss on least-squares andmaximum-likelihood
estimation

Jan R. Magnus1,2

Received: 8 February 2022 / Published online: 2 April 2022
© The Author(s) 2022

Abstract
Gauss’ 1809 discussion of least squares, which can be viewed as the beginning of
mathematical statistics, is reviewed. The general consensus seems to be that Gauss’
arguments are at fault, but we show that his reasoning is in fact correct, given his
self-imposed restrictions, and persuasive without these restrictions.

Mathematics Subject Classification B16 · C10
An old question in probability theory is the following: suppose we throw with two
fair dice, how many times do we need to throw so that the probability of at least one
double-6 is at least 1/2. In the first half of the seventeenth century, the Chevalier de
Méré, a well-known gambler, thought that he needed 24 throws. This problem has
become famous because it intrigued Pascal and Fermat, and the solution is contained
in a letter of Pascal to Fermat dated July 29, 1654.1 With some caution we can take
1654 as the birth year of probability theory. It took awhile to understand the basic rules
of probability and 60 years later, in a letter to the Swiss philosopher andmathematician
Louis Bourguet dated March 22, 1714, Leibniz still maintained that is was equally
likely to throw twelve with two dice as to throw eleven, because “l’un et l’autre ne ce
peut faire que d’une seule manière” (one or the other can be done in only one way).

1 The correct answer is 25 and is obtained by showing that the equation 1 − (35/36)n = 1/2 has the
solution n ≈ 24.6.
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Mathematical statistics is much younger and, with similar caution, we select as its
beginning the publication of Gauss’ famous 1809 monograph.2 Legendre (1805) had
published his method of least squares four years earlier, but he developed his method
as an approximation tool and no randomness is assumed. Gauss (1809), in contrast,
works in the context of random variables and distributions; see, e.g. Pearson (1978),
Stigler (1986), and Gorroochurn (2016) for historical details.

Some satisfaction seems to be derived in finding mistakes in the writings of great
minds, and Leibniz’ error is quoted frequently. Rather than laughing at Leibniz’ mis-
take, we should realize just how difficult the beginnings of probability theory were,
and that things that we now consider easy are not easy because we are so clever but
because they have sunk into common knowledge.

Similarly, most Gauss commentators have found his 1809 treatment of least squares
at fault. For example, Stigler (1986, pp. 141–143) considers it a “logical aberration
… essentially both circular and non sequitur” and Gorroochurn (2016, p. 163) writes
that “his reasoning contains an inherent circularity because the normal distribution
emerges as a consequence of the postulate of the arithmetic mean, which is in fact a
consequence of the normality assumption!” The purpose of this note is to demonstrate
that it is not Gauss who is at fault but his commentators.3

In modern notation, Gauss starts with the linear model

y = Xβ + u, (1)

where he assumes that the errors ui are independent and identically distributed (iid)
with mean zero and common variance σ 2, which we set equal to one without loss of
generality. Since the ui are iid, they have a common density function, say φ(ui ), and
the logarithm of the joint density becomes

∑n
i=1 logφ(ui ). Gauss wishes to estimate

β by maximizing the joint density. In other words, he wants to derive the maximum-
likelihood estimator for β.

Gauss is aware of the fact that if he assumes normality of the errors, then the joint
density will be of the form

n∑

i=1

logφ(ui ) = a − b
n∑

i=1

u2
i , (2)

so that (under normality) maximizing the likelihood is the same as minimizing the
sum of squared deviations. Gauss makes life unnecessarily difficult for himself by
working in a Bayesian framework, assuming a flat bounded prior for each of the β j ,
so that the posterior also has bounded support. But in essence, Gauss showed (for the
first time) that in the standard linear model under normality the maximum-likelihood
estimator is equal to the least-squares formula.

This is an important result in itself and Gauss could have stopped there. But he did
not want to assume at the outset that the errors are normally distributed. Instead he
wants to show that normality of the errors is not only sufficient but also necessary for

2 Others would choose Laplace (1774) as the beginning of statistics, which is equally reasonable.
3 Notable exceptions are Sheynin (1979) and Waterhouse (1990).
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the maximum-likelihood estimator to be equal to the least-squares formula.4 In this
attempt he fails, not because his argument is wrong (as most Gauss scholars seem to
believe), but because his (correct) argument is not general, which he fully realizes.

Let us reexamine his argument. Gauss (1809, book II, section III, §177) proves the
following result (in modern notation).

Proposition (Gauss 1809) Let y1, y2, . . . , yn (n ≥ 3) be a sequence of independent
and identically distributed observations from an absolutely-continuous distribution
with E(yi ) = μ and var(yi ) = 1. Assume that the n realizations of yi take only two
values with frequencies n1 and n2, respectively (n1 ≥ 1, n2 ≥ 1, n1 �= n2). Then, the
average ȳ is the maximum-likelihood estimator of μ if and only if the yi are normally
distributed.

Before we prove the proposition, some comment is in order on Gauss’ assumption
that the n realizations of yi take only two values. This seems to contradict the fact that
the yi follow an absolutely continuous distribution. Of course, there is a difference
between observations (random variables) from an absolutely continuous distribution
and observations (the realized values). Some statistical concepts have two terms (esti-
mator, estimate; predictor, prediction) to emphasize this difference, but most (like
observation) do not. The random variables follow an absolutely continuous distribu-
tion, but the realizations take on specific values, and Gauss assumes that they take one
or the other of two values. This is a rather heroic assumption, but it is not inconsistent
or wrong. Gauss himself simply says supponendo itaque (by supposing, therefore) as
if this were a logical continuation of his argument, and provides no further comment.

To prove the proposition, Gauss argues as follows. Let ui = yi − μ. Since the
ui are iid, they have a common density function, say φ(ui ). First assume that φ is
the standard-normal density. Then the loglikelihood L(μ) can be written as in (2).
This is maximized if and only if the sum of squares is minimized, which occurs when∑

i (yi − μ) = 0, that is when μ̂ = ȳ. Note that the additional assumption on the
realizations of yi is not required.

Now assume that μ̂ = ȳ. Gauss needs to show that this implies that φ is the
standard-normal density. As assumed, the yi can only take two distinct values, say z1
(n1 times) and z2 (n2 times), where n = n1 + n2. Then, letting

d = z1 − z2, r = n1/n, (3)

he obtains

yi − ȳ =
{

d(1 − r) if yi = z1,

−dr if yi = z2.
(4)

4 The idea of demonstrating that in a given context a certain statistical property can only occur for some
(possibly only one) distributions, is quite common. For example, Chamberlain (2010) considers a panel data
model for predicting a binary outcome, and shows that, if the support of the observed predictor variables is
bounded, identification is only possible in the logistic case.
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Setting L ′(μ) = 0 then gives

L ′(μ) =
n∑

i=1

φ′(ui )

φ(ui )
= n1φ

′[d(1 − r)]
φ[d(1 − r)] + n2φ

′(−dr)

φ(−dr)
= 0, (5)

which can be rewritten as

f [d(1 − r)] = f [−dr ], f (x) = φ′(x)

xφ(x)
. (6)

For each given value of r (0 < r < 1, r �= 1/2), this has to hold for every value of
d, and it is easy to see (unde facile colligitur in Gauss’ words) that this implies that
f is a constant. (We have to exclude r = 1/2 because this would only imply that f
is symmetric around zero.) Hence, we must solve the equation φ′(x) = −k xφ(x),
where k is a constant. The solution to this differential equation is

φ(x) = A exp(−kx2/2) (7)

for some constant A.5 Since φ represents a distribution it must integrate to one which
implies that the constant A takes the value A = √

k/(2π), as proved a few decades
earlier by Laplace (1774) in a theorema elegans, a fact gracefully acknowledged
by Gauss.6 In our case, σ = 1 and hence k = 1. Hence φ is the standard-normal
distribution, and the proof is complete.

The presented proof follows Gauss’ argument closely except that he sets n1 = 1
and n2 = n − 1 (and tacitly assumes that n ≥ 3). The proposition tells us how far
Gauss came into proving the necessity of the normality assumption. The answer is:
not very far, because his conditions are rather restrictive. Two centuries later we can
get a little further. In particular, Kagan et al. (1973, Theorem 7.4.1), building on an
earlier result in Kagan et al. (1965), established that, in general, linear estimators of
location parameters are admissible if and only if the random variables are normally
distributed; and they applied the approach through admissibility to the linear model
in Kagan et al. (1973, Section 7.7).

To link the linear model y = Xβ + u to the proposition, Gauss thus makes three
simplifying assumptions:

1. The design matrix X has only one column, namely the vector of ones, so that
we only have a constant term in the model, there is only one β to estimate, and
ui = yi − β.

2. The realizations of yi only take two distinct values, say z1 (n1 times) and z2 (n2
times), where n = n1 + n2 and n1 �= n2.

3. The optimum is attained at β̂ = ȳ.

5 The technique for solving ordinary differential equations was well established since Leibniz’ work in the
early 1690s, which is why Gauss does not provide a reference; see Katz (2009, pp. 585–586) for historical
details.
6 Gauss often uses epithets for his colleagues, typically clarissimus. Laplace is illustrissimus (Gauss abbre-
viates ill.). Only Newton is summus.
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The third assumption is a perfectly reasonable assumption as we are considering iid
randomvariables yi with commonmeanβ and common variance. So, unless we expect
Gauss to discuss shrinkage estimators, what alternative is there to estimate β? Under
these three assumptions, Gauss shows that the yi must be normally distributed.

After establishing the proposition, Gauss argues that it is thus reasonable to assume
normality. This is a qualitative statement which can be challenged, but it is not incor-
rect. Gauss was primarily interested in the justification of least squares, not in pushing
the normal distribution. Not completely happy with his restrictive assumptions, Gauss
(1823, §20) considered the same model again. This time he asked a different question,
namely: which linear unbiased estimator has the smallest variance? This resulted in
what we now call the Gauss–Markov theorem and it does not rely on normality of the
errors.

Gauss liked his 1823 approach much better than his 1809 approach, not only
because of the restrictive mathematical assumptions but also because of the meta-
physics (Gauss’ words). In a letter to Friedrich Bessel dated February 28, 1839 (Gauss
and Bessel 1880, p. 523), Gauss writes that for a reason “den ich selbst öffentlich nicht
erwähnt habe” (which I have not mentioned publicly) he views best linear unbiased
estimation as more fundamental than maximum likelihood, and that he, therefore,
prefers his 1823 justification of least squares over his 1809 analysis.
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