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Abstract
This paper addresses an article by Felix Klein of 1886, in which he generalized his
theory of polynomial equations of degree 5—comprehensively discussed in his Lec-
tures on the Icosahedron two years earlier—to equations of degree 6 and 7. To do
so, Klein used results previously established in line geometry. I review Klein’s 1886
article, its diverse mathematical background, and its place within the broader history
of mathematics. I argue that the program advanced by this article, although historically
overlooked due to its eventual failure, offers a valuable insight into a time of crucial
evolution of the subject.

For geometry not only illustrates and facilitates, it also has the privilege of invention
in these investigations. Felix Klein (1879b, p. 253)

1 Introduction

The early work of Felix Klein is today known for two main achievements: First, his
Erlangen Program, whose credo

Given a manifoldness and a group of transformations of the same; to develop
the theory of invariants relating to that group. (Klein [1872] 1893, p. 219)1

is well known to historians and mathematicians alike. And second, his Lectures on the
Icosaehdron (Klein 2019b) in which half a century of mathematical research on the
general polynomial equation of degree 5—the general quintic—is summarized under

1 Here and below, italics are always Klein’s. Translations into English are mine, except where (as in this
case) a published English translation exists. Years in square brackets refer to the original (usually German)
publication.
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432 H. Heller

the geometrical banner of the Icosahedron. Two years later, Klein published a today
forgotten paper entitled “On the theory of general equations of degree six and seven”
(“Zur Theorie der allgemeinen Gleichungen sechsten und siebenten Grades”, 1886)
in which he extended his geometrical interpretation of the general quintic to equations
of degree 6 and 7:

The theory of the equations of the fifth degree, which I brought into coherent
presentation in my “Lectures on the Icosahedron etc.” (Teubner 1884), allows
not only, as I have indicated at various points, a transmission to equations of
degree four, but also an extension to equations of degree six and seven. It is
the purpose of the following lines to define the main features of this extension.
Its aim subsumes under the general ideas which I have set out in Klein 1879b
for the solution of arbitrary algebraic equations. It differs from them, however,
by the concrete form of the geometric-algebraic process to be used, which uses
individual moments present only at n = 6 and n = 7. (Klein 1886, 499–500)

These “general ideas” can be summarized as the principle to find for any class of poly-
nomial equations some canonical geometrical equations2 to which it can be reduced,
and subsequently to solve all polynomial equations of that class by the solution of the
geometrical one. The interesting cases are those polynomials that cannot be solved
directly by algebraic means. In the language of Galois theory, these are the equations
whose associated Galois group (over some specified domain of rationality) is unsolv-
able. For those equations, also the corresponding canonical geometrical equation
cannot be solved algebraically, but once a solution is found by other means (borrowing
from analysis, differential equations, …), the solution of the original equation easily
follows. This idea extends the theory of algebraic theory beyond the “limits” of Galois
theory; and Paul Gordan, Klein’s closest collaborator in the early stage of research on
this topic, therefore called this enterprise jocularly the Hypergalois Theory.3 Empha-
sizing the extensive social dimension of Klein’s theory—Klein entrusted many of his
students with particular problems arising from his “general idea”, and promoted his
theory on many occasions—the term Hypergalois Program might be appropriate to
describe the broader implications.4 The principles of the Hypergalois Program were
most explicitly stated in the above-mentioned (Klein 1879b), and repeated in Klein
(2019a). However, Klein’s motivation for a geometrical treatment of algebraic equa-

2 The term geometrical equation to describe this historical interest was to my knowledge first used in
Hölder(1899, p. 518). Independently from Hölder, the term was used in Lê (2015) to describe the same
historical phenomenon.
3 The termappeared in printed form inKlein’sCollectedWorks (Klein 1922, p. 261) and inTheDevelopment
of Mathematics in the 19th Century (Klein 1926, p. 90), and was rediscovered in (Gray, [1986] 2008, p.
77). Among the unpublished material, the term appeared in Klein’s manuscript for his algebra lecture in
Summer 1886 in Göttingen: “Error [to believe], as if the whole question were exhausted with the Galois
scheme. The ‘Hypergalois’ Theory must find on least one month’s time.” ([UBG], Cod. Ms. F. Klein 14J).
Digitally available at https://resolver.sub.uni-goettingen.de/purl?DE-611-HS-3206860.
4 The term Program is chosen not only for the analogy with the Erlangen Program (and many other
mathematical programs) that are staged around a common methodological, sometimes even metaphysical,
basis, but also to indicate the possibility of a socio-historical analysis in terms of a scientific research
program (Lakatos 1978), or more specifically, a mathematical research program (Corfield 2012).
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tions was already present at a much earlier stage (Klein 1871), during which even the
core idea of Klein’s 1886 article was already developed.

In this sense, Klein’s 1886 article can be said to have three historical roots: Klein
(1871) sets themost importantmathematical background;Klein’s successful treatment
of the general quintic (which was mathematically completed already in Klein (1877),
but only popularized in the Lectures on the Icosahedron) provides the motivation for
Klein’s renewed interested in the equations of degree 6 and 7; and Klein (1879b) sets
the programmatic framework of this and subsequent works. The 1886 article itself
was not very influential in mathematical terms, mainly because a “better” geometrical
interpretation for equations of degree 6was unexpectedly found soon after. At the same
time, its importance for the Hypergalois Program cannot be overestimated in terms
of the renewal of interest in equations of higher degree. The Hypergalois Program
eventually failed, but the research questions it opened paved the way for a number of
discoveries and conceptual novelties that were indispensable for the transformation
that mathematics (especially group theory) underwent at the turn of the 20th century.

In the present paper, my aim is to take Klein’s article of 1886 as a testimonial and
driving force of these profound transformations. This is achieved in two differentways:
in Sect. 2, I locate the paper within the broader historical landscape of the Hypergalois
Program: I first discuss the three historical roots mentioned above in Sects. 2.1, 2.2,
and 2.3. Then, I outline the position of the paper within the theory of the equation of
degree 6 (Sect. 2.4), and finally present some more general implications (Sect. 2.5).
Section 3 is devoted to a more detailed reconstruction of the mathematical content of
the paper itself, and follows more or less its original setup: From the presentation of
Klein’s general idea (Sect. 3.1), via the construction of the representations of A7 and
S6 (Sects. 3.2, 3.3), to some additional elaborations on accessory irrationalities (Sect.
3.4), covariants (Sect. 3.5), and possible generalizations to higher degrees (Sect. 3.6).A
summary (Sect. 3.7) compares the results to Klein’s earlier achievements with respect
to the quintic equation. As literature especially on the topic of line geometry is scarce,
a special attention is given to it throughout the section. A short conclusion follows in
Sect. 4. Sections 2 and 3 approach the same topic from two different angles, and can
be read more or less independently from each other. However, I believe that our under-
standing of Klein’s mathematical thinking can benefit if both the “macro”/historical
and the “micro”/mathematical content of his publication are understood side by side.

2 The Hypergalois Program

2.1 The beginnings

The 19th century was the century of classical algebraic geometry, with their prac-
titioners interested in certain geometrical configurations, and in the corresponding
equations whose solutions would yield these configurations. Hölder (1899, p. 518),
and more recently, François Lê (2015) calls them the geometrical equations:

For a given geometrical situation, one may say that the corresponding geomet-
rical equation is the algebraic equation ruling the configuration. For instance,

123



434 H. Heller

for the nine inflection points of a cubic curve, we have the nine inflection points
equation, which is the algebraic equation of degree 9 having the abscissas of the
inflection points for its roots. (Lê 2015, pp. 317–318)

It was, however, only in 1871 that Felix Klein first uttered the idea to interpret the
general polynomial equation geometrically:

[Klein] went on and announced his general and fundamental principle: to con-
ceive every algebraic equation as a geometrical equation, embodying the roots
of an equation in geometrical objects and replacing the substitutions of the roots
by transformations of the space. [. . . T]his articulation between algebra and
geometry revealed two main leitmotivs of Klein: to bring geometry to the fore
because of the intuition it allowed and to stress the importance of transformation
groups. (ibid., 336)

Particularly, Klein perceived the solutions of a polynomial equation of degree n as n
points in (n − 2)-dimensional projective space, Pn−2, which allowed him to consider
the permutations of the roots as transformations of space.5 In P

n−2, there exists a
unique linear transformation of space for every permutation of n given points—thus
the choice of dimension. In a modern formulation, the depiction of a finite group as
a group of transformation of space is called a finite group representation, and the
particular representation in P

n−2 is nothing but the projectivization of the so-called
standard representation

Sn → PGLn−1(C).

The group Sn was defined above as the permutation group of the solutions of a poly-
nomial equation, i.e., as the Galois group of the equation. Klein thus achieved an
interpretation of the Galois group of a degree n polynomial as a group of linear trans-
formations of projective space of dimension (n−2). This allowed him to bring together
two notions that are considered typical representatives of nineteenth century mathe-
matics: resolvents in the theory of algebraic equations on the one hand, and covariants
as a central concept of invariant theory and geometry on the other. Klein interpreted
the solutions xi of an algebraic equation of degree n as points in space P

n−2, and
the Galois group of the equation as the corresponding group of space transforma-
tions which permute these points. Applying the transformations Sn to any given point
y0 ∈ P

n−2 yields in general n! points y0, y1, . . . , yn!. Its geometrical equation

5 About this terminology: Given a vector space V , we denote its projectivization by P(V ). If V = C
n+1,

its projectivization P(Cn+1) is abbreviated by P
n , and we talk about n-dimensional projective complex

space. This diction is justified because we can think about Pn as an affine space Cn extended by additional
elements at infinity. We typically write the elements of Pn as homogeneous coordinates z = (z1: z2 : . . . : zn)

which are only defined up to a scalar. For example, the projectivization of V = C
2 is the complex projective

line P1 which can be identified with the usual complex numbers extended by a point at infinity:

P
1 = {(z1: z2) | z1,2 ∈ C, (z1, z2) �= (0, 0)} = {(z1/z2:1) | z1,2 ∈ C, z2 �= 0} ∪ {(1:0)} ∼= C ∪ {∞}

Thus, we can freely switch between homogeneous coordinates (z1: z2) and non-homogeneous z = z1/z2.
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g(y) = (y − y0)(y − y1) · · · (y − yn!) = 0

is invariantwith respect to the configuration of roots xi , meaning that it does not change
its value when the xi are permuted. This makes g(y) a covariant of f (x) = 0, because
any transformation of x (meaning a symmetric transformation in x0, . . . , xn) leads to
a “compatible” transformation of y, and one can easily calculate the effect of the one
to the other. Algebraically speaking, g(y) is a Galois resolvent of f (x) (see Footnote
6). It now might happen that we chose y0 in a way that some of the yi coincide.
Then, the polynomial g(y) becomes the power of a polynomial of lower degree. It
then corresponds to a special resolvent of f (x) = 0, namely one which can be used to
algebraically simplify the initial equation f (x) = 0.6 Therefore, we can just consider
the resolvents of an algebraic equation f (x) = 0 as the covariants of f (x) = 0
when viewed as a geometrical equation. For the cases n = 3, 4, this treatment yields
an intuitive geometrical interpretation of the resolvents that were already known for
centuries. For the case n = 6, a further simplification can be made by representing the
roots xi not as points, but as the so-called linear line complexes. This line-geometrical
account was brought to perfection in Klein (1886), as is discussed in Sect. 3, especially
Sect. 3.3.

The central idea just outlined could be interpreted as the “birth” of the Hypergalois
Program, at least of those parts of it that bring together geometry, algebra, and invariant
theory. However, the 1871 paper only establishes a principal connection between the
two concepts of resolvents and covariants, and does not yet describe how an algebraic
equation can practically be turned into a geometric configuration. It also does not give
any hints as to how to proceed after such a geometric configuration would be achieved.

2.2 The icosahedron and the general quintic equation

In the years following the 1871 publication, these questions were taken up for the
general quintic (Klein 1875, 1877), for which the icosahedron played a crucial role.
In fact, if we are to believe the closing paragraph of Klein (1875), it was Klein’s study
of the covariants of the icosahedron that accidentally led him to spot a connection to
the theory of the quintic equation, not the other way around. This approach is also
manifested in the Lectures on the Icosahedron, whose first half considers the invariant
theory of the icosahedronwithout any reference to the quintic equation at all. However,
during the second half of the book, Klein’s attitude seems to shift in the other direction.
In one passage, he remarked that the “proper” approach to study the quintic equation
might have to abandon the primacy of the icosahedron:

6 In general, a resolvent of a polynomial f (x) = 0 is a polynomial g(y) = 0 whose coefficients rationally
depend on the coefficients of f , and whose solutions yield the solutions of f (x) = 0 by some auxiliary
equation. Algebraically, if f (x) = 0 has Galois group G, then the auxiliary equation has Galois group
H � G, and the resolvent itself has Galois group isomorphic to G/H . The above Galois resolvent is thus
an extreme case where H is the trivial group; it therefore does not simplify the problem algebraically. But
as we saw, it is also the most general case, in that it subsumes the “special” resolvents.
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436 H. Heller

I believe thatwe shall be enabled to develop the general theory of form-problems7

algebraically, and in suchwise that our reduction of equation of the fifth degree to
the icosahedron appears as a mere corollary, and does not need to be established
in a special manner. (Klein, [1884] 2019b, pp. 281–282)8

Klein strengthened this idea in the 1886 article:

The fact that the group in question is identical with the otherwise known group
of icosahedral substitutions appears to be coincidental and insignificant. In fact:
if the group of linear transformations of z were not already known elsewhere,
all its properties could be taken from the definitions of the group given in (1),
(2). (Klein 1886, p. 501)

In the following outline ofKlein’s theory of the icosahedron, I follow this approach and
focus on the application of Klein’s icosahedron to the solution of the quintic equation
only. I also restrict myself to those considerations that find analogues in Klein’s 1886
paper, and omit the others.9

We are given a quintic equation in which the coefficients of x4 and of x3 vanish

x5 + αx2 + βx + γ = 0;

Klein called such an equation a principal equation, which has the advantage that its
roots x1, . . . , x5 satisfy two additional identities

x0 + x1 + x2 + x3 + x4 = 0 and x20 + x21 + x22 + x23 + x24 = 0

Let us consider an ordered list of solutions (x1, x2, x3, x4, x5) as a point in homoge-
neous 4-space, (x0 : x1 : x2 : x3 : x4) ∈ P

4. In this sense, solving the equation means to
find the yet “hidden” coordinates of this point.10 The first of the two identities above
says that this point lies on a hypersurface

H =
{

(x0 : x1 : x2 : x3 : x4) ∈ P
4 |

4∑
i=0

xi = 0

}
∼= P

3.

7 The so-called form problem considers the reduction of a polynomial equation to some homogeneous
polynomial equation, where the polynomial is called a form and can be studied be methods of invariant
theory.
8 Page numbers refer to the second English edition of 1913, which are provided in square brackets in the
2019 edition.
9 A short completion of the theory is provided in Sect. 3.7. Among the excellent reconstructions of Klein’s
icosahedron are the classic (Fricke 1926), the modern (Slodowy 1986), the more elementary (Shurman
1997), the lighthearted (Eschenburg and Hefendehl-Hebeker 2000; Eschenburg 2017), and the historically
most complete (Tobies 2021), especially pp. 286–291. Slodowy’s account is repeated in the introduction
of his edition of Klein’s Lectures on the Icosahedron (Klein 1993), and translated into English in Klein
(2019b).
10 This looks analogous to the approach in Klein (1871), but here an ordered solution is represented by
only one point in P3, not five points.
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We introduce a new coordinate system π0, . . . , π4 with πk = 1
5 (1, ε

4k, ε3k, ε2k, εk)

(and ε being a fifth root of unity), with the effect thatH consists of exactly those points
for which its first coordinate π0 vanishes.11 The second identity says that within H,
our point lies on a quadratic surface, which we can directly write in terms of our new
coordinates πi

M (2)
2 = {p1π1 + p2π2 + p3π3 + p4π4 | p1 p4 + p2 p3 = 0} ⊂ H;

Klein called this surface, defined by the condition p1 p4+p2 p3 = 0 (inπ -coordinates),
the principal surface (“Hauptfläche”). Geometrically, such a surface is commonly
known as a (complex) hyperboloid.12 As in the case of the hyperboloid in real space
(see Fig. 1), also a complex hyperboloid contains two families of lines, or reguli (Sg.
regulus); let us call them L1 and L2. Two lines from the same regulus are parallel in
M (2)

2 , while two lines from different reguli meet each other in a point in M (2)
2 .13 If

we parametrize L1 and L2 with one (homogeneous) parameter each, say λ = (λ1:λ2)
and μ = (μ1 :μ2), we get an isomorphism that maps a point p = (p1 : p2 : p3 : p4)
(in π -coordinates) to the parameters of the two lines on M (2)

2 it is incident with (see,
again Fig. 1)

F : M (2)
2

∼−→ P
1
(1) × P

1
(2)

p 	→ (λ, μ).

We can choose a parametrization λ,μ, such that (λ, μ) = ((−p1:p2), (p3:p4)); its
inverse F−1, today called a Segre embedding, accordingly maps (λ, μ) to p = (λ1μ1 :
−λ2μ1 :λ1μ2 :λ2μ2).

We now want to understand what happens under permutation of the roots: If we
interpret, as above, a listing of the roots (x1, x2, x3, x4, x5) as the homogeneous coor-
dinates of P4, then a permutation of the roots amounts to a permutation of coordinates.
Thus, in a representation-theoretic formulation, we obtain the projectivization of the
standard representation of S5 in P

4 (see Sect. 2.1). Since the equations
∑4

i=0 xi = 0

and
∑4

i=0 x
2
i = 0 are invariant under such permutation of coordinates, S5 acts on M (2)

2
as a whole. Linear transformations map lines to lines; therefore, S5 merely permutes
the lines of M (2)

2 . Specifically, one can show that even permutations σ ∈ A5 permute
the lines within their families, and odd permutations σ ∈ S5\A5 interchange the lines
of L1 with those of L2. We consider P1

(1) as a Riemann sphere; this is a sphere whose
points are identified with complex numbers. This can be done by stereographically

11 In the underlying affine space C5, this is but a rotation of the coordinate system.
12 The notation hyperboloid is unambiguous, because in complex (hyper-)space, all non-degenerate
quadratic surfaces of equal dimension are equivalent. We see in Sects. 3.1 and 3.6 that in general, the

root space of a reduced equation of degree n is a quadratic manifold of dimension n − 3, i.e., some M(2)
n−3.

Finally, let me emphasize that the notation M(k)
d to indicate a surface of dimension d and order k is due to

Klein, and still in use today.
13 From a purely incidence-geometric point of view, such a geometry is called a “generalized quadrangle”,
see Beutelspacher and Rosenbaum (2013), p. 156.
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Fig. 1 Families of lines on a
hyperboloid. F maps a point p
(marked orange) to the
coordinates (λ, μ) of the lines
incident with p (marked red).
The code for this graphic was
partly taken from the user
maphy-psd of the website
texwelt.de, see https://texwelt.
de/fragen/18796

Fig. 2 The stereographical
projection between the (usual)
representation of complex
numbers z on a plane, and its
representation z′ on the Riemann
sphere. The code for this graphic
was partly taken from the users
Subhajit Paul and Torbjørn T of
the website stackexchange.com;
see https://tex.stackexchange.
com/questions/538970

projecting the complex numbers (viewed as a plane) onto a sphere, where the “north
pole” of the sphere is identified with ∞ (see Fig. 2).

It can then be shown that the 60 permutations of lines L1, when viewed as complex
numbers, and thus as points of the Riemann sphere, are realized by rotations of the
sphere. As rotations of the Riemann sphere are special kinds of projectivities of P1

(which are generally called Möbius transformations), we could say that we found a
representation14

A5 → PGL2(C).

14 In abstract terms, one can say that the existence of this representation is due to the exceptional isomor-
phism

O3(R) ∼= PSU2(C),

which allows us to view rotations of Euclidean three-space, O3(C), as a special kind of Möbius transfor-
mations, PSU2(C) ⊂ PGL2(C). I come back to this point in Sect. 2.5
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Now, the icosahedron comes in: If we inscribe an icosahedron into the sphere, it can
be shown that this group is exactly the group of rotations which leave the icosahedron
invariant!15 We can therefore call the above group of rotations the icosahedral group.

To summarize: Themap F : M (2)
2 → P

1 which sends points of the quadratic surface

M (2)
2 ⊂ P

4 to points of theRiemann sphere is such that a permutation of the coordinates

of the argument x ∈ M (2)
2 results in the application of an icosahedral rotation of the

image λ = F(x). In a modern formulation, we would say that F is A5-equivariant
with respect to the (projectivized) standard representation in P

4 and the icosahedral
representation in P1; or, that the following diagram commutes:

M (2)
2 M (2)

2

P
1
(1) P

1
(1)

σ

F F

S

We can also note that the permutations of the coordinates xi act diagonally on P
1
(1)

and P
1
(2); thus, we only need to consider the above action on P

1
(1) and the other one

follows by a multiplication by a constant.
We see in Sect. 3.7 how this representation can be used to reduce a principal quintic

equation to some canonical icosahedral equation, but let us for concludewith a remark
on the general quintic equation: It was known already for centuries that a general
equation can be brought into principal form by a linear and quadratic Tschirnhaus
transformation. Today, a Tschirnhaus transformation of a polynomial f (x) is usually
considered as a polynomial transformation of the variable x to some new variable y,
leading to a new polynomial g(y)with “favorable” properties such as the vanishing of
some coefficients. In Klein’s time, a Tschirnhaus transformation was more generally
considered as a parallel transformation of the roots xi of f (x) = 0. These are spanned
by the following basis transformation:16

xi 	→ xi − s1/n, xi 	→ x2i − s2/n, xi 	→ x3i − s3/n, . . . ,

where s j are the elementary symmetric polynomials and thus deducible from the coef-
ficients ai of the given equation. By the way, taken alone, the first basis transformation
makes the coefficient a1 vanish, the second one makes the coefficient a2 vanish, and so
forth. To make both coefficients vanish, a combination of both basis transformations
is necessary, which can be calculated by some quadratic equation. Therefore, every
general quintic equation can easily be reduced to a principal equation. If a quintic
equation is already in reduced form x5 + a2x3 + a3x2 + a4x + a5 = 0, we can inter-
pret its ordered solution as a point inH, and the Tschirnhaus transformation becomes
a map that moves this point onto M (2)

2 . The square root that appears when solving

15 Klein inscribes the icosahedron, such that its 12 vertices lie on the south pole 0, the north pole ∞, and
10 other specified points on two different latitudes. The calculations of the symmetries of the icosahedron
in terms of transformations of the Riemann sphere are an elementary, but little revealing task. Historically,
it was already known to Hamilton (1856) that the symmetry group of the icosahedron is isomorphic to A5.
16 I omit the details here which can be read in Kraft and Procesi (2000); Kraft (2006).
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the quadratic equation above finds a geometrical interpretation in the fact that any
geometrical construction (which happens parallel in all coordinates) performing such
a map cuts the quadratic surface M (2)

2 at two points. We therefore do not arrive at a

uniquely defined map from any point in H to one point on M (2)
2 and after F to one

point in P1
(1), but only a correspondence. The analogy of this idea for the higher degree

equations is discussed in Sect. 3.5.
All these considerations, as will be seen in the next section, were successfully trans-

ferred to the theory of equations of degree 6 and 7 in Klein’s 1886 article. Specifically,
Klein achieved both:

• the construction of some representation of S6 and A7 in three-dimensional space
P
3, analogous to the one-dimensional P1

(1) here (see Sects. 3.1–3.3); and• the calculation of a covariance between a solution (x0 : · · · :xn−1) of a reduced
equation and a point in P3, analogous to the Tschirnhaus transformation followed
by the map F here (see Sect. 3.5).

What Klein could not transfer was the second half of the icosahedral theory, in which
the above considerations were used to bring a given quintic equation into a canonical
form, called the icosahedral equation. For this reason, I omit these considerations in
this section. However, they are shortly addressed within the broader historical frame-
work of Klein’s Hypergalois Theory in the following subsection.

2.3 Modular equations

After the theory of the general equation of degree 5 was virtually completed in the
late 1870s, it seemed only natural to ask for analogous theorems for other classes of
polynomials, i.e., polynomials with the same degree and the simple Galois group. Of
course, such analogs appear more interesting when the resulting canonical equation
can actually be solved by one or the other non-algebraic method. For the icosahedral
group A5 ∼= PSL2(F5), this is possible by the local inversion of the icosahedral
equation by modular equations. This approach can be generalized to two other cases,
the linear group PSL2(F7) of order 168, and the linear group PSL2(F11) of order
660. The special status of these three simple groups was already known to Galois who
showed that PSL2(Fp) (p prime) acts non-trivially on a set of p (or less) elements only
for p ≤ 11, and this action can be used in the theory of modular equations.17 Klein
considered the modular equation of degree 7 in Klein (1879a) and shortly after found
a geometrical representation of the group PSL2(F7) in three (complex) dimensions,
namely as the automorphism group of the Klein quartic (Klein 2001). The Klein
quartic is given by the equation

z31z2 + z32z3 + z33z1 = 0.

As with the icosahedron before, one is interested in the graded C-algebra
C(z1: z2 : z3)PSL2(F7) of invariants with respect to this automorphism group. Here,

17 This result was generalized in a study on the subgroup structure of PSL2(Fp) by Gierster (1881), who
expressed his gratitude to Klein for his “multiple stimulation and support” for that article.

123



Felix Klein’s projective representations. . . 441

Klein left the explicit calculations to Gordan who published five papers on the topic in
the following 5 years. Klein tackled the task an equation of degree 7 (or degree 8) with
Galois group isomorphic to PSL2(F7) to the canonical equation thus established in the
aforementioned articles. The theory can be said to have been successfully completed
in 1885, although it never received the prominence of the theory of the icosahedron.18

In the same spirit, also the above-mentioned group PSL2(F11) was considered (Klein
1879c), but the absence of a low-dimensional representation seems to have hindered
further progress (cf. the modern 1995). This completes the list of Galois groups whose
equations are solvable by modular equations. Klein, however, had no intention to stop
at this point, but instead sought for a generalization of his methods to other Galois
groups. This point of viewwas first made explicit in Klein (1879b) (see Sect. 1), which
one can therefore take as the starting point of the Hypergalois Theory as a systematic
research program:

In my presentation, I have given the principles such a form that they not only
solve the problem of equations with 168 substitutions, which is the first problem
to be considered, but also make it possible to see how to treat similar problems
with any higher equations and, what is more important, how to set them up. The
resulting general method for treating higher equations (which will of course still
be open of manifold development) includes both the solution of cyclic equations
by root symbols and the Kroneckerian treatment of equations of the fifth degree.
One can regard my method virtually as a generalization of the latter. (Klein
1879b, p. 252)

As for the first problem—the construction of some canonical Galois resolvent—Klein
remarked:

The general method which I propose for the rational transformation of the alge-
braic equations consists simply in this, that I first search for the smallest number
μ for which an isomorphism of the desired kind between the permutations of the
x and linear substitutions of the y1 . . . yμ is possible, and that I then replace the
equation f (x) = 0 with the “problem of the y”. (ibid., p. 257)

This outline also indicates a shift of attention in Klein’s program: The geometrical
considerations of the groups PSL2(F7) and PSL2(F11) were motivated by successful
treatment of the case PSL2(F5) ∼= A5. What holds these groups together is their
special status with respect to modular equations. Therefore, the solvability of some
canonical equation by analytic means came to the foreground, and the geometrical
interpretations only followed afterward. When the modular equations “did their job”
as much as they could (the next subsection shows that this assessment might not be
quite correct, though), the picture was reversed, with the geometrical interpretation
forming the starting point.

Under this new credo, the overall aim remained the same, but the steps toward
achieving this aim changed their order: First came the geometrical interpretation, then
the calculation of the invariants (which are covariants with respect to the Galois group

18 A number of modern mathematical and historical contributions have been made on various aspects of
the group PSL2(F7); some of them published in Levy (2001), among them Gray (1982) which are used
here.
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of the original equation), and only then the local solutions to them. Klein called the
whole of this problem the formproblem, and already in theLectures on the Icosahedron
explained its central position in his theory of equations:

The formulation of this problem [how to reduce equations with identical Galois
groups to one another] has a certain importance for we obtain thereby at the same
time a general program for the further development of the theory of equations.
Among the form-problems or equation-systems with isomorphic groups, we
have already above described as the simplest that which possesses the smallest
number of variables. If therefore, any equation f (x) = 0 is given, we will first
investigate what is the smallest number of variables with which we can construct
a group of linear substitutions which is isomorphous with the Galois group of
f (x) = 0. Then we shall establish the form problem or the equation-system
which appertains to this group, and then seek to reduce the solution of f (x) = 0
to this form problem or equation-system, as the case may be. (Klein, [1884]
2019b, p. 138)

For a given Galois group, the “simplest” form problem was later called the normal
problem. One condition for being “simple” is the above-mentioned minimization of
its dimension, i.e., we are looking for a faithful representation

G → PGLn(C)

with n as small as possible. A second condition is that the representation and the
resulting invariants and covariants have as easy or intuitive values as possible, which is
usually achieved by choosing a suitable coordinate systemor by relying on geometrical
intuition, or both. I cannot go into the details of the historical achievements here, but
it is clear that working on the normal problem starts with finding the minimal-degree
faithful representation. The importance of this first step could be seen, for example,
at the occasion of the famous Evanston Colloquium of 1894, when Klein repeated the
principles of the program to a more general mathematical audience:

Let us consider the very general problem: a finite group of homogeneous linear
substitutions of n variables being given, to calculate the values of the n variables
from the invariants of the group.
This problem evidently contains the problem of solving an algebraic equation
of any Galois group. [. . . A]mong the problems having isomorphic groups we
consider as the simplest the one that has the least number of variables, and call
this the normal problem. This problem must be considered as solvable by series
of any kind. The question is to reduce the other isomorphic problems to the
normal problem. (Klein 1894, pp. 72–73)

And further:

The reduction of the equation of the fifth degree to the icosahedron problem is
evidently contained in this as a special case, the minimum number of variables
being two. (ibid.)
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In this spirit, it is only natural that the results of Klein’s 1886 paper were considered a
major step in the development of the Hypergalois Program. Additionally, the groups
A6 and S6 were crucial to the general equations of degree 6, and thus provided the first
step toward a real generalization of Klein’s icosahedron. I show in the next subsection
how Klein’s paper fits into this story.

2.4 The general sextic equation

The general equation of degree 5 was one of the dominating forces of development
both in algebra and analysis for the better of part of the 19th century, that is, at least
until the publication of the Lectures on the Icosahedron in 1884. The class of equations
to naturally consider next, the sextic equation, on the other hand, was only of marginal
interest throughout the history. We already witnessed in Sect. 2.1 an early interest of
Klein into the sextic equation, whose Galois group S6 was there geometrically realized
as a group of permutations of six linear complexes (see Sect. 3.3). What is more, if
we assume the sextic equation in principal form like the quintic before

x6 + αx3 + βx2 + γ x + δ = 0,

then the roots xi again fulfill some relations
∑

xi = 0 and
∑

x2i = 0; and the second
relation can be said to define a quadratic line complex, whose focal surface is aKummer
surface, i.e., a surface of degree four with 16 nodal points lying on 16 planes (see Rowe
(2019, p. 8)). The automorphism group of the resulting configuration is a 16-cover of
the group S6. In short, the theory of the sextic can be approached by a closer study
of this configuration, which thus plays a similar role to the icosahedron or the Klein
quartic. However, being more concerned with the latter two geometrical objects, Klein
did not return to the theory for a while.

Instead, it seems to have been due to the early work of the geometer and Klein
student Giuseppe Veronese that the group A6 and the general equation of degree 6
came back into Klein’s agenda, as he remarked in a footnote in the Lectures on the
Icosahedron 13 years later:

If wewished to treat equations of the sixth degree in an analogous sense, it would
be necessary, after adjunction of the square root of the discriminant, to start from
that group of 360 linear transformations of space which I have established in Bd.
iv of theMath.Ann., l.c., [Klein (1871)] and towhich latterlySignorVeronese has
returned from the side of geometry [Veronese (1882b)]. (Klein, [1884] 2019b,
p. 139n)

Veronese, who studied mathematics in Zurich and Rome, visited Klein in 1880–1881
in Leipzig (2003, p. 100; 2021, p. 154), and wrote the aforementioned geometri-
cal approach during the end of his stay there. He had worked on the topic already
in Veronese (1877), when he used Pascal’s Hexagramme Mystique to approach the
group A6 geometrically. In later works (Veronese 1882a, b), Veronese combined the
two available geometrical interpretations of A6—Pascal’s HexagrammeMystique and
Klein’s use of the Kummer surface—but did not link them to the theory of equations.
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Such a link seems to have been discussed first in Klein’s seminars in Leipzig during
the years 1884–1886, as at least two of his students recounted: The first student was
the American mathematician Frank Nelson Cole, who stayed as a student of Klein in
Leipzig between 1883 and 1885 and participated at Klein’s seminars in Summer 1884
and Winter 1884/85. After his return to Harvard University, Cole devoted his Ph.D.
thesis to A Contribution to the Theory of the General Equation of the Sixth Degree.
This thesis was effectively supervised by Felix Klein and shortly after published in
the American Journal of Mathematics. We can read in its introduction:

The subject of the present article was suggested to me by Prof. Klein, when I
was a student in his Seminar at Leipzig, and I wish here to acknowledge my
great indebtedness to him for valuable advice and suggestion, which have been
of the greatest use to me. The fundamental idea of the entire treatment of the
subject is due to him, as I have indicated below, and he might claim many of the
particular methods involved as his own, if he should consider them worthy of
such recognition. (Cole 1886, p. 265)

Cole started with a short review of Klein’s Lectures on the Icosahedron, which he
believed to have completed the theory of the quintic equation:

While the theory of the equation of the fifth degree is thus completed in all
directions, that of the sixth degree is only just begun. (ibid., p. 266)

His method to treat the sextic followed the proposition of the footnote in Klein’s
Lecture on the Icosahedron (see above), in whose spirit Cole proceeded:

The method proposed by Klein for the solution of the general equation of any
degree is perfectly analogous to this. We have to seek a group of linear substi-
tutions which shall be isomorphic with the group of n! permutations belonging
to the equation. Functions of the roots must then be found which undergo these
linear transformations when the roots are permuted; and finally, corresponding
differential equations must be obtained and their solutions studied. (ibid., p. 269)

As for the first task:

What is the smallest number of variables for which a group of linear equations is
isomorphic with the 720 permutations of six elements? There is no such group
for one or two variables. There is, however, such a group for three variables, or,
if we write our linear transformation in homogeneous form, for four variables,
of which the ratio of three of the fourth will then be transformed by a non-
homogeneous transformation. This group of transformations is best knownunder
the geometrical form in which its theory has been treated in connection with the
remarkable surface of the fourth order and class known as Kummer’s surface.
(ibid., pp. 270–271)

Unfortunately, Cole’s dissertation ends in a heap of long-winded calculations, and does
not permit a conclusion. His closing paragraph contains the announcement of further
research on the sextic, together with the promise to calculate some coefficients missing
in the dissertation. We can only imagine the hardship Cole faced on the calculations
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when reading his complaints in his letter exchange with Klein (also see Parshall and
Rowe 1994, pp. 192–197):

I feel quite exhausted from the arduous work of this year. Especially the calcu-
lations were too much for me, as I spent for almost six months ten hours daily
on them. ([UBG] Cod. Ms. F. Klein 8: 476; a letter from Cole to Klein, 26 May
1886)

The second student to work on the sextic equation, Wilibald Reichardt was not much
luckier. He visited Klein’s seminar of the summer term of 1885 in Leipzig (during
which time he was also famulus, a sort of assistant, of Klein) and reported that Klein
proposed to geometrically interpret the group S6 as some symmetry group of aKummer
surface, just as Cole did before (Reichardt 1885, p. 28). Reichardt followed that route
and published an extended article on the topic (Reichardt 1886), but seems to have
given up on the topic thereafter.19

This was the situation in late 1886, when Klein used similar line-geometric ideas
to calculate transformation groups of projective complex space that are isomorphic to
S6 and A7, respectively. In a modern terminology, we would say that Klein was the
first to explicitly calculate the generators of some faithful projective representations

S6, A7 → PGL4(C)

(which are furthermore irreducible). In the historical context just described, it does
not take much creativity to imagine the real intention behind the publication of this
(admittedly, mathematically not very advancing) paper: It is reasonable to assume
that Klein wanted to bring a fresh impetus to the theory of the sextic equations, pro-
vide some solid ground from which his students could more easily depart, and also
demonstrate some personal involvement in the topic, which would certainly boost the
motivation of his students. Klein’s mentioning of both Reichardt’s and Cole’s work in
a footnote of the 1886 article, together with his announcement to come back to their
results at a later stage, support this view (Klein 1886, p. 499n). And finally, it did not
seem to cost Klein too much effort to produce his results: He did not start working
on the paper before September 1886, and had finished it already in October.20 In this
sense, I believe that Klein’s decision to publish a 34 pages strong paper in his Math-
ematische Annalen was guided more by programmatic than by purely mathematical
considerations.

A similar conclusion can be drawn with respect to Klein’s communication with
fellow mathematicians after the publication of his paper, in which he encouraged
his students to further study the general sextic. I could find two examples of such

19 Reichardt finished his Ph.D. in 1887 under the supervision of Felix Klein and Sophus Lie (who took
Klein’s position in Leipzig after Klein’s departure to Göttingen in 1886). He published a second article
on Kant’s synthetical a priori and its importance to philosophy of mathematics in 1888, but was not
academically active thereafter.
20 In a letter to Hurwitz dated 31 August 1886, Klein announced that he would start working on the
“equations of 6th degree” the following day ([UBG] Cod. Ms. Math. Arch. 77: 160; a letter from Klein to
Hurwitz, 31 August 1886). The information on the completion in October 1886 is taken from the published
paper itself (Klein 1886, p. 543).
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engagement: First, Klein naturally sent copies of his article to Cole who in return
expressed his wish to work with Klein on the topic in Summer 1887, at which time he
saw a chance to visit Germany.21 However, severe mental conditions prevented him
from any kind of mental effort for at least a year.22 Only in October 1889, did he find
the strength to return to mathematical productivity, resulting in an paper on subgroups
of GO4(C) (Cole 1890), an area of interest that could be said to vaguely fit into the
scope of finding faithful representations of least degree.23

A secondmathematician to pick up the topic was Klein’s student HeinrichMaschke
who spent the spring and summer of 1888 on the attempt to connect Klein’s paper
with his own research on Borchardt moduli, and thus covered similar terrain as Cole.
In a letter to Klein dated to the 16 February 1888, Maschke outlined this connection,
concluding:

The solution of the equation of the 6th degree thus results in the following:
Calculation of the Borchardt moduli from a form of 6th order, all of whose [five]
invariants having given values. ([UBG] Cod. Ms. F. Klein 10: 936; a letter from
Maschke to Klein, 16 February 1888)

Some months later, Maschke managed to simplify Klein’s representation of A7 fur-
ther. Maschke also recognized that a second, similar, representation can be easily
constructed. This anticipated the modern result that 2.A7 (the result of the lift from
PGL4(C) to GL4(C)) has two irreducible representations of dimension 4.24 With the
representation thus simplified, it was easier to approach the task of finding its covari-
ants:

With this, this problem has also been taken so far that I can approach the imme-
diate setting up of the form system. ([UBG] Cod. Ms. F. Klein 10: 938; a letter
from Maschke to Klein, 4 July 1888)

Maschke furthermore published a small note on a configuration of 140 lines in space
which are permutedbyKlein actionof A7 onP3 (Maschke1889, 1890), but soon turned
to other form-theoretic questions, and a complete treatment of the sextic equation has
not been achieved on this way. Thus, at the Evanston Colloquium of 1894 that we
discussed already in the last subsection, Klein could only point to his old 1886 article
with respect to the achievements on the general equation of degree 6 and 7 (Klein
1894, p. 74).

21 See ([UBG] Cod. Ms. F. Klein 8: 477; a letter from Cole to Klein, 12 March 1887).
22 See ([UBG]Cod.Ms. F. Klein 8: 478; a letter fromCole toKlein, 22October 1887) and ([UBG]Cod.Ms.
F. Klein 8: 479; a letter from Cole to Klein, 22 March 1889). Also, other students of Klein, by name Oskar
Bolza, Otto Hölder, and Max Born, reported mental exhaustion as a direct consequence of the workload
provided by Klein (Thiele 2018, pp. 84–85). Cole is less direct here, but the exhaustion from working on
the coefficients of his covariants is obvious.
23 This work was (among others) followed by a very enlightening review of the first volume of Klein’s
Lectures on the Theory of Elliptic Modular Functions as well as the production of a complete list of simple
(non-Abelian) groups up to order 660. The systematic search for simple groups of small order was mainly
advanced byOttoHölder, and demonstrates an increasing interest in group theory from a completely abstract
point of view (see Gallian 1976).
24 In fact, the representations given in the Atlas of Finite Groups (http://brauer.maths.qmul.ac.uk/Atlas/
v3/) look almost like Maschke’s result.
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Unbeknownst to Klein during that time, progress was on theway, and in fact already
started in 1889 with the publication of the Danish mathematician Herman Valentiner,
who just found a ternary substitution group (a subgroup of PGL3(C)) of order 360
(Valentiner 1889). Valentiner recognized that his group contained the icosahedron
group A5 as a subgroup, but only some 6 years later, the Swedish mathematician
Anders Wiman (1865–1959) showed that this group is isomorphic to the group of
even permutations of six elements, A6! This came as a surprise even more so as Jordan
(1878) had already ruled out any ternary substitution group other than the then-known
ones (although the falsity of his claim was already established when Klein showed the
existence of a ternary PSL2(F7) that Jordan also missed, cf. (Wiman 1899, p. 529)).
Wiman did not doubt that his result would be of interest to Klein, and wrote him on
18 November 1895:

Hereby I amsendingyoua treatise “Ona simple groupof 360plane collineations”
of 33 pages. The group in question is holohedrally isomorphic to the group of
even permutations of 6 things, and it seems to be that a representation of this
group in the plane has not yet been known. As I believe that the subject offers
at least some interest, I am taking the audacity to ask for a place of the treatise
in theMathematische Annalen. ([UBG] Cod. Ms. F. Klein 12: 355; a letter from
Wiman to Klein, 18 November 1895)

Naturally, Klein met Wiman’s (or better: Valentiner’s) discovery with enthusiasm and
not only approved the result for publication, but also immediately asked Wiman to
use it for an advancement of the theory of the sextic equation.25 One explanation why
the representation was so long overlooked lies in the fact that unlike all finite linear
groups considered before, the representation A6 → PSL3(C) does not lift to a double
cover in SL3(C), but to a triple cover

3.A6 → SL3(C)

known today as the Valentiner group. I might also point out here that Valentiner’s
and Wiman’s discoveries conclude the list of ternary substitution groups, and that
Klein’s representation of the group of even permutations of seven letters, A7 →
PSL4(C), was indeed optimal. Naturally, Wiman’s result triggered new hope for a
genuine theory of equations of degree 6 (although not of degree 7), which arose
immediately: Onlymonths afterWiman’s first publication, Robert Fricke, who is today
almost exclusively known as Klein’s closest collaborator, answered positively the
question whether Klein’s invariant theory of PSL2(F7) generalizes to A6.26 Also, the
today unknown Muscovite Leonid Lachtin (today transcribed as Lahtin), unaware of
Fricke’s results, found a canonical equation of degree 6, solvable by linear differential
equations of third order, which he assumed to be the analog of Klein’s icosahedral
resolvent. (Lachtin 1899, 465n). Finally, Klein, “under the impulses of [his] old friend
Mr. Gordan” turned back with new enthusiasm to the theory of the general sextic:

25 See ([UBG] Cod. Ms. F. Klein 12: 356; a letter from Wiman to Klein, 28 November 1895).
26 Wiman (1896) appeared in Mathematische Annalen 47(4), which was distributed in 11 August 1896.
Fricke dates his publication to 5 September of the same year.
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But this is only a beginning; I hope that his continued efforts will succeed in
clarifying the subject in every respect as fully as we have been able to do in the
past with the theory of equations of the fifth degree. (Klein, [1905] 2019a, p. 2)

However, a number of publications on the topic in the following years27 could not
save the theory of the equation of degree 6 from oblivion, and today, the history of the
sextic equation remains forgotten. All in all, the success in treating the general sextic
equation came too late, and was already drowned by a new approach to algebra that
valued general theories over particular results. The latest contribution to the Hyper-
galois theory of the sextic was made by Robert Fricke, whose Lehrbuch der Algebra
(1924/26/28) might be the historically last treatise to solely employ Klein’s approach
to algebra.28

2.5 The legacy of the Hypergalois Program

There was a second major discovery by Wiman, which ironically might have con-
tributed to the demise of the Hypergalois Program: Already during the Evanston
Colloquium, Klein wondered whether the group A8—the Galois group of the gen-
eral equation of degree 8 (after adjoining a square root) and thus the next natural
“candidate” to consider—possessed a low-dimensional representation similar to the
(then-known) cases of n ≤ 7, or whether “the equation of the eight degree was its own
normal problem”, i.e., whether no faithful representation in less than seven homoge-
neous coordinates (i.e., less than six dimensions) existed. Wiman (1897b) soon after
showed that the latter was indeed the case, a result that he soon generalized to arbitrary
dimensions: for n ≥ 8, there exists no faithful representation of An in less than six
dimensions (Wiman 1897a). In other words, the representations

A5 → PGL2(C) A6 → PGL3(C) A7 → PGL4(C),

which stood at the heart of Klein’s theory on the quintic, sextic, and septic, were by no
means the beginning of a general series, but rather a list of exceptions that could not
be extended to n ≥ 8. The disappointment connected with this insight is summarized
in a letter that Wiman sent to Klein on 2 January 1898:

Here as everywhere everything has to proceed lawfully; to those laws the beauti-
fulG60,G360,G2520 [the presentations of A5,6,7]must be allowed to subordinate;
thus they probably only form the first members of a whole chain of interesting
collineation groups, and the corresponding reduction of the general equation of

27 Despite the above, Gordan (1905), Gordan (1909), Coble (1911b), Coble (1911a)
28 In its second volume, Fricke also provided a new representation of A6 as a principal congruence subgroup
of level 3 over some ring of integers:

A6 ∼= PSL2

(
Z

[
1 + √

5

2

])
/ ∼, g ∼ h : ⇔ g ≡ h mod 3

This representation would potentially enable a solution of the sextic equation in terms of modular equations
similar to Klein’s quintic (see Sutherland 2019), but it is beyond my capabilities to verify this claim.
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degree n to normal equations must be achievable by uniform principles, i.e.,
yield a general theory. What could be found out famously destroyed this beau-
tiful construction; a law really existed, but the interesting cases, after which the
draft was sketched, proved themselves as exceptions. ([UBG] Cod. Ms. F. Klein
12: 359; a letter from Wiman to Klein, 2 January 1898)

Wiman, in close collaboration with Maschke, continued research on the topic for
another year, but eventually decided that it was time to move to the more promising
area of discontinuous infinite groups, another branch of mathematics invented by
Klein. Looking back, he laconically comments:

It is strange that I have almost always had a headache when I was busy with my
now terminated work. This may well be due to the fact that I was in spaces of
too high a dimension. In a mere four-dimensional space I hope that I will feel
at home. ([UBG] Cod. Ms. F. Klein 12: 361; a letter from Wiman to Klein, 27
November 1898)

If we could ask Maschke the same question, he might have given us a different answer
though: His involvement in the Hypergalois Program quickly led to a focus of research
on the purely group-theoretic considerations of linear substitution groups, i.e., of (lin-
ear or projective) group representations. Indeed, Maschke soon made a contribution to
the newly emerging representation theorywhich guaranteed remembrance of his name
until today: TheMaschke theorem (1899) states that every given group representation
splits is a direct sum of the so-called irreducible representations. In this sense, there
does exist a “general law” behind the representations of A5, A6, A7 that Wiman was
looking for, as they were all irreducible faithful representations of minimal degree.
This result could hardly be satisfying in terms of the Hypergalois Program, but it
demonstrates that the efforts made throughout the years were not in vain. Also other
representation-theoretic results can be traced directly toKlein’s program.Among them
was the concept of the Schur multiplier (Schur 1904) which was but a pre-mature ver-
sion of the second cohomology group of a group. In two subsequent papers, Schur
also showed—using the result from Cole (1893) that A6 ∼= PSL2(F9)—that the Schur
multiplier of Sn and An is 2 except for A6, A7, where it is 6 (Schur 1907, 1911).
We can understand this result as the deeper reason for the discrepancy between the
Valentiner group and the usual double covers of the groups in question. (Also, A7
has a triple cover like the Valentiner group.) We should also note that Schur’s results
stemmed from his interest in projective representations, which were (and still are)
much less considered than the usual linear representations. It is not hard to draw the
line to Klein’s insistence on projective geometry during the whole of the Hypergalois
Program.

The general impact ofKlein’s Program for the development of representation theory
is described by Hawkins:

Klein himself and the mathematicians directly associated with him in the execu-
tion of his program were concerned with representations by collineation groups
and with the representation of specific groups rather than with the creation of
a general theory of such representations. But it is not difficult to imagine how
suggestive their work might appear, especially to someone aware of the devel-
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opments taking place in Lie’s theory of groups and the theory of hypercomplex
systems. (Hawkins 1972, p. 269)

Hawkins particularly points out the influence of Klein on the work Maschke, but also
on William Burnside and Theodor Molien.

A second influence of the Hypergalois Program on modern mathematics can be
found inKlein’s and his colleagues increasing understanding of exceptionality in group
theory. This includes the plain discovery of exceptional isomorphisms or behavior, but
more importantly the recognition of such objects or properties as exceptional, and the
consequential search for root causes of these exceptions. The following list shall only
provide an overview of what has been achieved (often as mere “side products”) within
the Hypergalois Program:

• The isomorphism between A5 and the symmetry group of the icosahedron was
already known to Hamilton. Many other exceptional isomorphisms, such as A5 ∼=
PSL2(F5), S5 ∼= PGL2(F5), 2.A5 ∼= SL2(F5), were probably first systematically
studied in the context of Klein’s icosahedron.29

• Likewise, the exceptional subgroup structure of the groups PSL2(F5), PSL2(F7)

and PSL2(F11) was already known to Galois, but were consequently employed
within the Hypergalois Program. Klein himself did not recognize the set-theoretic
identities (not as groups!) with “his” symmetry group of the platonic solids:

PSL2(F5) ∼= A4 × C5, PSL2(F7) ∼= S4 × C7, PSL2(F11) ∼= A5 × C11.

Today, these identities appear as part of the so-called McKay correspondences,
and continue to be of mathematical interest (Kostant 1995).

• As we saw in Footnote 14 and 38, Klein was the first to systematically use the
exceptional isomorphisms of linear groups PSU2(C) ∼= O3(R) and PSO6(C) ∼=
PGL4(C).

• In his dissertation, Cole recognized that S6 has two families of subgroups isomor-
phic to S5: one family of six subgroups that fixes one element, and one exceptional
family of “twisted” S5 ⊂ S6:

As a result of the presence of this exceptional group, all equations of the sixth
degree are connected in pairs, the roots of the two equations of each pair belonging
respectively to the ordinary and the extraordinary groups of 120 permutations.
(Cole 1886, pp. 269–270)

• Wiman showed that the representations of A5, A6, A7 which were central to the
Hypergalois Program are in fact exceptional representations.

• Schur showed that the existence of the Valentiner group was the consequence of
the exceptional Schur cover of A6 (together with S6, A7, S7).

Unfortunately, no historical account on the history of exceptional isomorphisms seems
to exist (the otherwise very interesting (Stillwell 1998) do not cover them), but it would
surely be interesting to obtain certainty on Klein’s influence in this respect.

29 It seems that Klein was also aware of Schläfli’s (then little known) result that the diversity of regular
polyhedra in three (and four) dimensions was an exceptional situation, and did not generalize to higher
dimensions. He subsequently did not seek to generalize his Icosahedron to polyhedra of higher dimensions.
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Finally, it should be noted that the Hypergalois Program had a much wider range of
influence than the two topics mentioned in this subsection. Their selection was purely
based on the direct connection to Klein’s 1886 article.

3 Klein’s projective representations

Having outlined the historical background and implication of Klein’s 1886 article, the
current section aims to reconstruct the mathematical content of the article. The article
consists of an introduction and three main parts, which are further subdivided into
11 paragraphs; and in the following subsections, my aim is to reconstruct at least the
main ideas of all paragraphs from a perspective that mimics Klein’s own attempt to
present his theory as a natural continuation of his previous icosahedral mathematics:
In Sect. 3.1, I introduce the general approach that is taken in Klein’s paper (reflecting
Klein’s §1–4); this is followed by a demonstration of Klein’s construction of the
representations of A7 (Sect. 3.2) and S6 (Sect. 3.3) (both §5–6). A short “interlude”
on Klein’s interest in so-called accessory irrationalities (Sect. 3.4, §7) is followed
by an analysis of Klein’s calculation of the covariants (Sect. 3.5, §8–10). Finally,
I briefly consider Klein’s thoughts on the possibility of generalizing his theory to
equations of arbitrary degree (Sect. 3.6, §11). One can see already that Klein’s paper
does not attempt to generalize the whole of his previous icosahedral mathematics: The
deployment of some canonical invariant, the reduction of the general equation to such
invariant, and finally the analytic solutions were not discussed in Klein’s 1886 article.

For easy comparison with the original article, I keep Klein’s enumeration of equa-
tions and most of his variable notation, while at the same time adapting his notation
to ease readability.30

3.1 The general theory

We are given a general reduced equation of degree 6 or 7, respectively

degree 6: f (x) = x6 + a3x
3 + a4x

2 + a5x + a6 = 0

degree 7: f (x) = x7 + a3x
4 + a4x

3 + a5x
2 + a6x + a7 = 0.

Then, its solutions xi fulfill the two additional identities

n−1∑
i=0

xi = 0,
n−1∑
i=0

x2i = 0. (3)

When viewed as a “solution space” Pn−1, the first identity singles out a hyperspace
of dimension (n − 2), while the second identity defines a quadratic manifold M (2)

n−3
of dimension n − 3 within that hyperspace. This is completely analogous to the case

30 Particularly, I added missing indices, introduced round brackets for homogeneous coordinates, and
replaced systems of linear equations with matrix representation.
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n = 5 (Sect. 2.2). As M (2)
2 , also the quadratic surfaces M (2)

3 and M (2)
4 are generated by

some family or families of linear subspaces, and Klein notes (without proof), thatM (2)
3

contains a three-parameter family of lines, while M (2)
4 contains two three-parameter

families of planes.31 We want to denote the families of lines by E and the two families
of planes by E1 and E2. All of them are isomorphic to P3, and thus can be parametrized
by four homogeneous coordinates

(z1:z2:z3:z4). (4)

It is clear that M (2)
3 can be represented as a hyperspace of M (2)

4 , and in fact, the family

E is nothing but the cut of E1 with the hyperplane that cuts out M (2)
3 , and coincides

with the cut of E2 with that said hyperplane. In this sense, we can restrict attention
for now to the case n = 7, and later consider n = 6 as a special case thereof.32 In
analogy to the case n = 5 (Sect. 2.2), once a parametrization of E1 and E2 is defined,
the permutations of the seven coordinates xi permutes the planes in both families,
and thus define linear transformations of some P

3
(1) × P

3
(2). And just as before, the

even permutations of A7 permute planes within one family (say, E1), while the odd
permutations will permute the two families. In a modern notation, this established
the desired representation A7 → PGL4(C). However, it is so far completely unclear
how a suitable parametrization of the subspace E1 should look like, and thus how an
explicit matrix representation (or, in Klein’s time: a system of linear equations) can
be established! (In the case n = 5 the map F was quickly found by invariant-theoretic
considerations, which I do not cover here.)

This problem is overcome by borrowing some theorem of line geometry, a topic that
Klein covered extensively in his Ph.D. thesis and in a couple of subsequent papers, but
did not develop much during the late 1870s and 1880s. Especially in the context of the
theory of equations, Klein thus seemed to feel obliged to provide a short justification:

If this way appears strange to some algebraist, it is worth recalling that every-
thing we know about linear spaces in three- and four-times extended quadratic
manifoldswas originally developed on this exact way. (Klein 1886, pp. 504–505)

To understand exactly how Klein wants to use line-geometric results in this context,
we have to go a little into the most important concepts, especially since historico-
mathematical literature on this niche topic is scarce.33 In projective space P3, points
and planes are famously dual, meaning that planes form a dual space (P3)∗ which can

31 Klein denotes the maximal linear subspaces of some M(2)
d by Rν , where ν represents their dimension.

In this case: “M(2)
3 contains ∞3 many R1; M

(2)
4 contains two families of ∞3 many R2” (Klein 1886, p.

503). Today, we would call ν + 1 the index of the quadratic manifold. A non-singular quadratic manifold
in projective space P

d has index d/2 or (d + 1)/2, depending on whether d is even (in which case the
quadric is called parabolic) or odd (in which case it is called hyperbolic. In real projective space, also
elliptic quadrics of index (d − 1)/2 exist for odd d. (cf. Beutelspacher and Rosenbaum 2013, p. 147)
32 Also in Klein’s generalization to arbitrary degrees (§11, see Sect. 3.6), the geometrical treatment of the
equation of degree 2k is treated as a special case of the one of degree 2k + 1.
33 Hawkins (1989), Rowe (1989) and most recently Rowe (2019) treat different aspects of line geometry
and therefore all contain an exposition of the most important ideas; the special theorems used in Klein’s
1886 paper are however not considered there.
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be described by plane coordinates.34 This leaves us with lines (the dual of a line is
again a line) for which we might ask if a useful coordinatization of them also exists.
Julius Plücker, Klein’s former Ph.D. supervisor, answered this question positively: For
a given line, he took two distinct points z = (z1 : z2 : z3 : z4) and z′ = (z′1 : z′2 : z′3 : z′4)
lying on it, and defined its six today so called Plücker coordinates as follows:

{
p1 = z1z′2 − z2z′1, p2 = z1z′3 − z3z′1, p3 = z1z′4 − z4z′1
p4 = z3z′4 − z4z′3, p5 = z4z′2 − z2z′4, p6 = z2z′3 − z3z′3

(5)

Elementary calculations reveal that the Plücker coordinates of a given line are (up to
a common scalar) independent from the particular choice of the points z and z′; thus,
the term coordinate is justified. The coordinates also fulfill the Plücker equation

P(p1 : p2 : p3 : p4 : p5 : p6) = p1 p4 + p2 p5 + p3 p6 = 0.

Conversely, any sixtuple p = (p1:p2:p3:p4:p5:p6) satisfying the Plücker equation
form the Plücker coordinates of a line. In other words, there is a one-to-one corre-
spondence between the lines of P3 and the points of the quadratic surface

Q = {(p1 : p2 : p3 : p4 : p5 : p6) | p1 p4 + p2 p5 + p3 p6 = 0} ⊂ P
5.

The quadric Q later became known as the Klein quadric,35 and the bijection

κ : lines in P
3 ←→ points in Q ⊂ P

5

is today called the Klein correspondence. In his inaugural dissertation (Klein 1868),
Klein made a number of interesting observations about the behavior of Plücker coor-
dinates. One of them concerns linear transformations (i.e., projectivities) of Plücker
coordinates, concluding that any sixtuple of homogeneous coordinates satisfying some
non-degenerate quadratic form can be used as a coordinatization of lines: a projectivity
of Plücker coordinates (p1, . . . , p6) 	→ (x0, . . . , x5) transforms the Plücker equation
P(p1, . . . , p6) = 0 to some non-degenerate quadratic equation �(x0, . . . , x5) = 0.
Conversely, any non-degenerate quadratic form in six homogeneous variables can be
obtained from the Plücker equation by a suitable transformation of Plücker coordi-
nates, and therefore defines a coordinatization of lines.

Back to our reduced equation of degree 7, we can also treat its solutions x0, . . . , x6
as such coordinates, with the quadratic equation �(x0, . . . , x6) = ∑6

i=0 x
2
i = 0

holdingbetween them.Thatwehave seven coordinates instead of six poses noproblem,
because we can eliminate one variable with the equation

∑6
i=0 xi = 0. But as this

34 A plane A in P3 can be described as the set points x = (x1 : x2 : x3 : x4) satisfying a linear equation

A1x1 + A2x3 + A3x3 + A4x4 = 0

It is then only natural to refer to the coefficients (A1 : A2 : A3 : A4) as the plane coordinates of A.
35 Not to be confused with the Klein quartic of Sect. 2.3! The Klein quadricQ is indeed theGrassmannian
Gr(2,C4) of 2-dimensional subspaces of C4.
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would disturb the symmetry of the exposition, Klein decided to keep all x0, . . . , x6
as superfluous line coordinates between which the additional relation

∑6
i=0 xi = 0

is assumed. In effect, we can interpret the solution space of the reduced equation of
degree 7 as the space of lines in P

3.36 In this interpretation, the quadratic manifold
M (2)

4 is nothing but the above Klein quadricQ in x-coordinates! Most remarkably, this
construction already provides a parametrization of our family E1 above, as one can
show that there is an isomorphism between the latter and the original point space P3.
Unfortunately, Klein commented on this astonishing situation rather too concisely:

Indeed, the points of space, as it is not necessary to explain here, understood as
bundles of lines, correspond exactly to the triple infinite R2 [= planes] of the first
kind, which are contained in the M (2)

4 defined through (8) (while the planes of
spaces, understood as planes of lines, correspond to the triple infinite R2 of the
second kind). (Klein 1886, p. 505)

I therefore want to use the remainder of this section to elaborate a little more on this
topic. TheKlein correspondence κ between lines inP3 and points onQ can be extended
to points and planes of P3 as well: a point z ∈ P

3 is incident with a two-parameter
family of lines,Lz . Under κ , this familymaps to a two-dimensional manifold inQ, and
it can be verified that this manifold forms in fact a plane. Slightly abusing our notation,
we call this plane κ(z). Similarly, a plane A ⊂ P

3 is incident with a two-parameter
family of lines LA, which also maps to a plane inQ, and which we call κ(A). In fact,
we can show that any plane contained in Q is the image of either a point or a plane
in P

3 under κ . This establishes two families of planes in Q, which are just the above
E1 and E2 (in new coordinates). Naturally, both families are isomorphic to P3. We can
also convince ourselves that all incidence relations between points, lines, and planes
in P

3 can be formulated in terms of lines, and in fact translate to incidence relations
in Q.37 In this sense, the Klein correspondence κ extends to an incidence-preserving
isomorphism between the geometry of P3 and the geometry of Q as follows:

κ :
⎧⎨
⎩

points in P
3 → planes in E1

lines in P
3 → points in Q

planes in P3 → planes in E2
In particular, the planes in E1 can be parametrized by the coordinates of their corre-
sponding point in P3.

36 Thus, an ordered list of solutions of any particular equation of degree 7 can be interpreted as one particular
line in P

3. Klein’s approach here is more general, in that the coefficients of his equations are completely
undetermined.
37 For example, two points are distinct in P3, z1 �= z2, if and only if they only have one line in common, i.e.
if and only if the planes κ(z1) and κ(z2) meet in a single point. (This is possible, becauseQ is a quadratic
manifold in P

5, not the whole P5.) The same holds for planes A, B. Similarly, a point z not incident with
a plane A, z /∈ A, have no line in common; thus, the planes κ(z) and κ(A) do not meet at all. On the other
hand, if z is incident with A, z ∈ A, they share a one-parameter family of lines (those lines in A that go
through z); thus, κ(z) and κ(A) will meet in a line. In other words, two planes from the same family Ei will
either coincide or have a single point in common, while two planes from distinct families have either an
empty intersection or meet in a line. Similar observations can be made about incidence relations between
points and lines, lines and lines, and planes and lines.
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3.2 The representation of A7

Analogous to the case n = 5 discussed in Sect. 2.2, we now want to investigate the
effect of a permutation of the line coordinates xi on the planes E1. With the above
isomorphism between E1 and P

3 in mind, this is the same as asking the effect of a
permutation of line coordinates to the underlying space P3. Here, a second theorem
from Klein’s inaugural dissertation, reformulated in Klein’s 1886 article, is helpful:

[... E]very linear substitution of line coordinates ξ1 . . . ξ6, which transforms the
quadratic form � [...] into itself, means a collineation or a dualistic transforma-
tion of space; namely the first or the second, depending onwhether the associated
substitution determinant, whose square necessarily equals 1, is equal to +1 or
−1. (ibid., p. 507)

This result can be translated as follows: The group of projectivities of line coordinates
leaving a quadratic form invariant (a special case being: projectivities of Plücker
coordinates leaving the Plücker equation invariant) is called the projective (general)
orthogonal group, because it is the projecitivization of the (general) orthogonal group,
PO6(C) ∼= O6(C)/{±I6}. The latter O6(C) splits into (six-dimensional) rotations
SO6(C)with determinant+1 and reflectionswith determinant−1. In even dimensions,
this distinction is upheld under projectivization of the linear group, i.e., also PO6(C)

splits into projective “rotations” PSO6(C) and “reflections” PO6(C)\PSO6(C). The
above theorem then states that a “rotation” corresponds to a projectivity of P3 and
vice versa, and we can convince ourselves that this correspondence preserves group
multiplication and thus forms an isomorphism:38

PSO6(C) ∼= PGL4(C)

Specifically, the permutations of line coordinates x0, . . . , x6 correspond to pro-
jectivities and dualities of the underlying space P

3, namely the former for the even
permutations A7, and the latter for the odd permutations. We thus achieve a projective
representation

A7 → PGL4(C)

Compared to the projectivization of the standard representations, A7, S7 → PGL6(C),
this is a reduction of dimensionality by 2; the improvement is in this sense as “good”
as the one achieved by the icosahedral representation of A5.

In the remainder of this section, let us reconstruct Klein’s explicit calculation of this
representation. Thefirst calculation concerns the transformation of our line coordinates
xi to the usual Plücker coordinates p jk (§5). This is necessary, because the relations
between P3 (and thus: E1) and line coordinates are given in Plücker coordinates, while
our intended permutations of line coordinates cannot simply be taken to be transfor-
mations of Plücker coordinates, because they would not leave the Plücker equation

38 Likewise, the “reflections” correspond to dualities in P3. Today, this isomorphism is considered excep-
tional (see Footnote 14), because it does not generalize to arbitrary dimensions. I will come back to this
point in Sect. 2.5.
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invariant. Practically, we are looking for a transformation that maps the quadratic form
of line coordinates,

∑6
i=0 x

2
i = 0, to the Plücker equation p1 p4 + p2 p5 + p3 p6 = 0.

As for the case n = 5 (Sect. 2.2), we start with a rotation of our coordinate system
by introducing new coordinates (Eq. 15) πi = (1, γ i , γ 2i , γ 3i , γ 4i , γ 5i , γ 6i ), where
γ is a 7th (primitive) root of unity. Again, this makes the first coordinate π0 van-
ish for all points on the quadric. We solve this system of equations for xi , (Eq. 23),
xi = (

γ −iπ1 + γ −2iπ2 + · · · + γ −6iπ6
)
/7, and plug the values into the quadratic

equation
∑6

i=0 xi = 0. This gives us

7

2

6∑
i=0

x2i = π1π6 + π2π5 + π3π4, (24)

which looks almost like our Plücker equation! (A great example of Klein’s careful
preparation that makes almost all actual calculation superfluous.) All we have to do is
a small redefinition (Eq. 25) π6 = p1, π1 = p2, . . . , which gives us39

xi = γ i p1 + γ 4i p2 + γ 2i p3 + γ 6i p4 + γ 3i p5 + γ 5i p6. (26)

The second step is to use these equations to calculate how the permutations of the
xi effect the Plücker coordinates. To do so, it is enough to calculate the same for
some generating elements, Klein took here S = (0123456) and T = (34). For S, the
resulting transformation is

(p1 : p2 : p3 : p4 : p5 : p6) 	→ (γ p1 :γ 4 p2 :γ 2 p3 :γ 6 p4 :γ 3 p5 :γ 5 p6)

(We cover T below.) The third step consists in finding the corresponding projectivity
or duality. As S is even, it will be of the former kind, and “one can easily see” that this
is achieved by the representation40

39 As Klein remarked in a footnote, he already considered a similar situation in Klein (1879b), p. 273 where
he considered an analogous geometrical theory for equations with Galois group PSL2(F7); I come back to
this point in Sect. 3.1.
40 All Plücker coordinates are mapped to multiples of themselves, so it makes sense to try to achieve
such transformation by also mapping projective coordinates zi to multiples of themselves. As the whole
projectivity is only defined up to a scalar, we can take one multiplication at liberty, and choose z1 	→ z1.
As p1 = z1z

′
2 − z2z

′
1 maps to γ p1, we better map z2 	→ γ z′2. From p2 = z1z

′
3 − z3z

′
1 and p2 	→ γ 4 p2

we likewise infer z3 	→ γ 4z3, and from p3 = z1z
′
4 − z4z

′
1 and p3 	→ γ 2 p3 we deduce z4 	→ γ 2z4. We

then check that these transformations also yield the desired transformations p4 	→ γ 6 p4, p5 	→ γ 3 p5,
and p6 	→ γ 5 p6.
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S : ±

⎛
⎜⎜⎝
1 0 0 0
0 γ 0 0
0 0 γ 4 0
0 0 0 γ 2

⎞
⎟⎟⎠ . (27)

Finally, the fourth step is to normalize the matrix up to a multiple ±1, the significance
of which becomes transparent in Sect. 3.4. In the case above, the matrix already has
determinant±1, so we are done. The permutation T = (34), is odd and corresponds to
a duality. As the formulas for T turn out to be more complicated than the ones for S (so
I guess), Klein simplified the case by referring to the “geometrical meaning” (ibid., p.
514) of the permutation: T leaves invariant those lines for which x3−x4 = 0. A family
of lines determined by one linear equation such as this one is called a linear (line)
complex.41 It has some interesting properties: all lines of a linear complex that pass
through a fixed point lie in one plane and vice versa. Thus, a complex defines a duality
between points and planes which is furthermore self-inverse and therefore called a
polarity. What is more, this polarity leaves all the lines of the complex invariant! As T
is a self-inverse (T 2 = I d) duality leaving the linear complex x3 − x4 = 0 invariant,
it must be the polarity with respect to that complex. The equation of this polarity is
established if we take the defining linear equation, in this case x3 − x4 = 0, bring it
into Plücker coordinates, substitute p1 = z1z′2 − z2z′1, . . . , and order everything by z′
and z:

z′ ·

⎛
⎜⎜⎝

0 γ 4 − γ 3 γ 2 − γ 5 γ − γ 6

γ 3 − γ 4 0 γ 6 − γ 2 γ 5 − γ 2

γ 5 − γ 2 γ − γ 6 0 γ 3 − γ 4

γ 6 − γ γ 5 − γ 2 γ 4 − γ 3 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
A

·z = 0. (39*)

For any given z, the points z′ form a plane with plane coordinates A (by definition of
the concept of plane coordinates). In this sense, A is the matrix (defined up to a scalar)
representing the duality which corresponds to T . All that is left to do is to normalize
the matrix. To do so, Klein did not calculate the determinant manually, but plugged
in some specific values for z, z′ to ease the calculation. It turned out that the scalar
±1/

√
7will do.With the projectivity corresponding to S and the duality corresponding

to T established, we have a proper representation (i.e., a group of projectivities) for
exactly those products of S’s and T ’s in which T occurs an even number of times.
This establishes our A7 → PGL4(C).

3.3 The special case of S6

The case n = 6 was carried out in principle analogously to the above calculation, but
with one additional improvement: the linear equation

∑n−1
i=0 xi = 0 (which was used

for n = 7 to interpret the seven variables x0, . . . , x7 as line coordinates) was not yet
“used” in the case n = 6. Geometrically, this equation singles out a linear complex

41 On the history of the theory of linear complexes, see again (Rowe 2019).
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(just as the one defined by T above), which Klein called the unit complex. The polarity
with respect to this complex can be shown to be given by the equation

(−w2 :w1 :w4 :w3) ↔ (w1 :w2 :w3 :w4), (34*)

where w = (w1:w2:w3:w4) can be understood either as a plane which is mapped to a
point, or as a point mapped to a plane. Any duality, as we saw, corresponds to a linear
transformation of lines, which is in this case given by the self-inverse

u : xi ↔ xi −
n−1∑
i=0

xi . (13)

The latter leaves the lines of the linear complex element-wise invariant. The solutions of
the principal equation of degree 6 fulfill the equation

∑5
i=0 xi = 0, thus are represented

by lines on the unit complex, and thus left invariant by the polarity above. As any
solution of a reduced sextic is represented by a line at the unit complex, we can at
liberty apply the transformation u without changing the solution. In particular, we can
concatenate u to any linear transformationwhich corresponds to a duality, resulting in a
product of twodualities, that is, a projectivity. In short, concatenatingu is a tool tomake
permutations S6\A6 correspond to projectivities! This establishes a representation of
the whole of S6 as a group of projectivities in P

3

S6 → PGL4(C).

In a modern formulation, we would speak of a “twist in the sign” of S6.42 Klein used
this trick for both S = (012345) and T = (12) (which are both odd and therefore
correspond to dualities). The corresponding normalizes projectivities are

S 	→ ±

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 γ 0
0 0 0 γ 2

⎞
⎟⎟⎠ ,

T 	→ ± 1√
6

⎛
⎜⎜⎝

i
√
2 0 γ 4 γ 4 − 1

0 −i
√
2 (γ 2 − 1) γ 5

γ γ 5 + 1 −i
√
2 0

γ + 1 γ 2 0 i
√
2

⎞
⎟⎟⎠ (31 and 35)

with γ being a primitive sixth root of unity.

42 As this technique had virtually no impact on the subsequent development of the Hypergalois Program,
I decided not to go into the details any further.
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3.4 Accessory irrationalities

At the end of the second part, Klein devoted an extra paragraph “About the necessity
of the double signs, which arise in the substitution formulas of the z” (§7). Klein’s
aim in this paragraph was to show that there cannot exist a representation

G → GL4(C), (G = S6, A7)

whose projectivization is the above calculated projective representation G →
PGL4(C). Put differently, the projective representation of G necessarily lifts to a non-
trivial cover in the space of linear transformations. This is shown by reference to the
subgroup V4 ⊂ S6, A7, fromwhichwe know from theLectures on the Icosahedron that
its representation V4 → PGL2(C) necessarily lifts to a double cover Q8 → GL2(C).
Therefore, also for S6, A7 ⊂ PSL4(C), we must pass to some (non-trivial) cover in
SL4(C). This is probably also the reason why Klein normalized his representations
A ∈ PGL4(C) (where A are the above matrices corresponding to S, T ∈ S6, A7); as in
this way, we directly obtain the representations of the generators of the double covers
in GL4(C) (where +A and −A are now distinct elements). What he seemed to have
missed was the fact that the matrices i A and −i A are distinct elements in GL4(C)

which also project to the same transformation, we have therefore also the possibility
of a 4-cover.43

Klein’s discussion on these particularities stemmed from his interest in accessory
irrationalities, of which the above situation is just a geometrical interpretation. These
irrationalities occur in the process of solving equations, when the radical extension
created in the process of solving an equation is strictly larger than the splitting field in
which the roots lie. A notorious example is the case of an (irreducible) cubic equation
with real coefficients. Its roots are always real, but the process of finding them still
requires the use of complex numbers. Also the solution of the general quintic equation
in terms of the icosahedral equation involves one additional square root. It was to
Klein’s great pleasure that he could prove what Kronecker only guessed, namely that
this irrationality is in fact unavoidable.44 In this example, the accessory irrationalities
find a geometric interpretation in terms of the double cover, because the subsequent
problem of solving an equation that is geometrically given necessitates a switch from
homogeneous to affine coordinates.45

The general problem of accessory irrationalities was more easily treatable with the
development of themodern, field-theoretic approach to Galois theory during the 1880s
and 1890s by works of Heinrich Weber, Richard Dedekind, and Otto Hölder.

43 However, this extension of G = S6, A7 by {I d4, i · I d4, −I d4,−i · I d4} ∼= Z4 partially splits, for it is
already induced by Klein’s double cover. I am grateful to Alain Genestier for pointing out and clarifying
this detail.
44 For the more personal story behind Kronecker’s and Klein’s rivalry, see Tobies (2021, p. 289).
45 For the quintic, this is shortly explained in Slodowy (1993, p. xvii).
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In fact, Hölder was motivated to work in this modern setting precisely because of
the better way in which it could treat accessory irrationality, a work that was suggested
to him by Felix Klein.46

3.5 Tschirnhaus transformations and covariants

We are now turning to the third part of Klein’s 1886 paper, which he devoted to the
search for covariants between the “solution space” of an equation of degree n = 6, 7
and the spaceP3, onwhich S6, A7 act as calculated above.We remember this procedure
from the case n = 5, where first a Tschirnhaus transformation maps a general solution
to one that is interpreted as a point on the principal surface M (2)

2 , from where it is
mapped to some λ ∈ P

1
(1) via F .

For n = 6, 7, the idea is a bit different because instead of points on M (2)
2 and

parameters of their generators (i.e., the planes in E1), we consider lines and points in
projective 3-space. As in the case of n = 5, Klein here considered not only solutions of
a principal equation, but slightly more generally solutions of a reduced equation, i.e.,
an equation were merely the second coefficient a1 vanishes, and for whose solutions
we thus have

n−1∑
i=0

xi = 0. (46)

A tuple (x0 : . . . : xn−1) can then not anymore be understood as the coordinates of
a line, but—what is good enough—as the coefficients of a linear equation between
line coordinates, i.e., as a three-parameter family of lines, we called a linear complex
(Sect. 3.2). If, accidentally,

∑n−1
i=0 x2i = 0 does hold, the linear complex is called a

special linear complex and singles out exactly those lines which meet the line with
coordinates (x0 : . . . : xn−1), and our original intuition is restored.47

Thus, for a reduced equation of degree n = 6, 7, the task is to find a point z ∈ P
3

that is covariant with the linear complex (x0 : . . . : xn−1) in the way that a permutation
of coordinates of xi corresponds to the application of the above representation on z.
The principal idea to find such covariant point is to take a small detour, and first to
obtain two linear complexes x ′ and x ′′ via two Tschirnhaus transformations from x ,
such that x ′ and x ′′ respect the additional identities

n−1∑
i=0

(x ′
i )
2 = 0,

n−1∑
i=0

x ′
i x

′′
i = 0,

n−1∑
i=0

(x ′′
i )2 = 0. (47)

The left and the right identity say that both complexes are special linear complexes,
and can therefore be interpreted as coordinates of two lines; the middle identity then

46 For further discussion, see the fourth chapter of Nicholson (1992), “A Transitional Period for Galois
Theory” (p. 37–59), which treats the subject with great care.
47 We could therefore think about special linear complexes as the dual of lines, and general linear complexes
as the dual of some (imaginary) general lines. However, I never found such a line of thought in either Klein’s
or other contemporaries’ work.
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states that the two lines are coplanar, i.e., that they intersect in a point which we call z.
As both x ′ and x ′′ stem from x by Tschirnhaus transformations, they are covariant to
x and thus also the point z is. This is not only a beautiful construction of a covariant
point z, but also produces, as Klein remarked, “the most general point z covariant to
the complex x” (ibid., p. 529).

Unfortunately, the beauty faded when Klein proceeded with the construction of
explicit formulas for the complexes x ′, x ′′ and the point z (§9, I omit most of the cal-
culations): For the first Tschirnhaus transformation xi 	→ x ′

i , Klein chose a quadratic
map

x ′
i = (x2i − s2/n) + λxi (52)

(he doesn’t have to write “xi −s1/n”, because already s1 = ∑
xi = 0) for which he set

the task to find a λ, such that
∑

x ′2
i = 0 will hold. Plugging Eq. (52) into

∑
x ′2
i = 0

gives a quadratic equation inλ, which one can solve forλ. Klein denoted the square root
that appears in this quadratic equation byW ′, it represents a first accessory irrationality
(see Sect. 3.4). Similarly, by a quite long calculation, a Tschirnhaus transformation
xi → x ′′

i can be found, such that
∑

x ′′2
i = 0 and simultaneously

∑
x ′
i x

′′
i = 0 hold.

Also here, a coefficient λ has to be calculated from a quadratic equation, and, “oddly
enough” (p. 527) the obtained second square root W ′′ does not involve the previously
calculated W ′. To summarize:

It is clear that we cannot avoid the occurrence of two accessory square roots
even if we determine λ′, λ′′ in a different way, provided we stick to the use of
ordinary methods. Whether it is at all impossible to satisfy the equations (50)
without any involvement of accessory irrationalities remains to be seen. The fact
that the accessory irrationalities cannot be completely avoided has already been
emphasized in §7. (ibid., p. 527)

Having calculated the two special linear complexes x ′ and x ′′, which can be interpreted
as coplanar lines, Klein proceeded with the calculation of their intersection. For some
reason or another, Klein did not use the elementary formula to calculate the intersection
of two lines given in Plücker coordinates Lindemann and Clebsch (1891, p. 49).
Instead, he took a third line x (not to be confused with our initial x), set a system of
equations which forces x to cut both x ′ and x ′′, then replaced the Plücker coordinates
of x by the coordinates of two points lying on x (p12 = z1z′2 − z2z′1, . . . ), ordered
the resulting system according to the coordinates of z, and finally asked for a solution
z of the system that would hold independently of the choice of the other point, z′.
Then, this point z is the intersection of X ′ and X ′′. Klein did not finish the calculations
(which, according to him would require to give up the symmetry of the calculations),
and instead concluded the paragraph on covariants with the observation that the values
of z linearly depend on the “three-termed determinants of the Lagrange expression
�,�′” (ibid., p. 530) (� and�′ are the Plücker coordinates of X ′ and X ′′), compared
to the direct linear dependence of the similar analogous expressions in his Lectures
on the Icosahedron.
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3.6 Generalizations

In the last paragraph of his article (§11), Klein discontinued his considerations of
equations of degree six and seven, and provided a short outlook on equations of
arbitrary degree n. Klein was not very explicit here, but the general idea seems to
be the following: We interpret the space Pn−1 as the projectivized root space of the
general equation of degree n. The roots of the reduced equations, i.e., those equations
for which the coefficient of xn−1 already vanished, lie on a hypersurface isomorphic
to Pn−2. The permutations of the roots are realized as permutations of the coordinates
of Pn−1 and thus also act (faithfully) on the hypersurface Pn−2. If in the equation not
only the coefficient of xn−1, but also of xn−2, vanishes, the solution lies on a quadratic
(hyper-)surface of dimension n − 3

M (2)
n−3 =

{
x ∈ P

n−1 |
n−1∑
i=0

xi =
n−1∑
i=0

x2i = 0

}
⊂ P

n−2. (53)

Take ν = �n/2�, then M (2)
n−3 contains a family of linear subspaces of dimension ν −2,

which Klein called Rν−2. If n is even, these are already the maximal linear subspaces;
if n is odd, there are two additional families of subspaces of dimension ν − 1, R(1)

ν−1

and R(2)
ν−1, which meet in Rν−2.48 The idea is to single out one such space for any

given solution (x1, · · · , xn) of the equation. To do so, we again take a number of
related Tschirnhaus transformations, namely ν − 1 many. For n = 4, 5, we had one
single transformation; for n = 6, 7, we had two transformations in terms of linear
complexes. These relations are, as before,

∑
x ′
i x

′′
j = 0 for any two (not necessarily

distinct) transformations X ′ and X ′′. As Tschirnhaus transformations are covariant
with respect to the action of Sn , so is the linear subspace thus singled out.

However, asKlein added, this generalization cannot be fruitfully carried any further,
because the actual calculations of the covariants depended on function-theoretic (for
n = 4, 5, i.e., ν = 2) or line-geometric (n = 6, 7, i.e., ν = 3) grounds which do not
generalize:

But for ν > 3 such special tools fail and we will have to answer the question
about themost appropriate definition of the resulting linear spaces by parameters,
as well as about the behavior of these parameters at the possible permutations
of x , in a direct, algebraic way. I would like to reserve the right to come back
to this on occasion, and for the time being I will limit myself to referring to Mr.
Lipschitz’s investigations on orthogonal substitutions (Lipschitz 1880, 1886),
which I will have to use in the process. (ibid., pp. 531–532)

48 We could also say more efficiently: M(2)
n−3 has one (for n even) or two (for n odd) families of linear

subspaces of maximal dimension �(n − 3)/2�; also see Footnote 31. Klein also remarked (albeit not using
this fact any further) that the dimensionality of such family itself is ν(ν−1)/2. This gives us for n = 4 a one-
dimensional space of points; for n = 5 two one-dimensional spaces of lines; for n = 6 a three-dimensional
space of lines; for n = 7 two three-dimensional spaces of planes.
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3.7 Summary

To summarize the above reconstruction of Klein’s 1886 article, we can say that Klein
succeeded to construct some “optimal” representations S6, A7 	→ PGL4(C) by use of
the exceptional isomorphism between special orthogonal transformations of P5 and
linear transformations of P3. Klein also outlined the construction of some correspon-
dence between the “hidden” roots of an equation of degree 6 or 7 and a point in z ∈ P

3,
and although the general idea is quite simple, the calculations appear long-winded and
could not be finished. What has not been achieved at all was the employment of this
geometrical construction for the purpose of actually solving an equation of degree 6
and 7. To understand what such a treatment would look like, let me quickly come back
to the icosahedron: We define a polynomial on P1 that is invariant under the A5-action
by the icosahedral symmetries, i.e., that maps all 60 points that are identified by the
A5-action to one and the same point. This 60-cover of P1

q : P1 → P
1/A5 ∼= P

1

can be explicitly calculated by considering the image of the special points: Under A5,
the 12 vertices, the 20 midpoints of the faces, and the 30 midpoints of the edges of the
icosahedron, are permuted among themselves. With the points of the vertices given
(Sect. 2.2), it is easy to construct a polynomial f of order 12 whose solutions are thus
just these points. Also a polynomial H of order 20 and a polynomial T of order 30
could be calculated elementarily, but Klein more elegantly used results from invariant
theory to see that H is in fact just the Hessian of f , while T is the Jacobian of f and
H . (These are just the “special covariants” of Sect. 2.2.) Then, the map

q(z1 : z2) = H(z1 : z2)3
1728 f (z1 : z2)5

sends the vertices to∞, the face midpoints to 0, and the edge midpoints to 1, the latter
can be seen by the relation T 2 = −H3 +1728 f 5 (Klein 2019b, p. 62). Geometrically
speaking, the special points above divide the icosahedron into 120 fundamental trian-
gles, and it can be observed that q sends 60 of them to the “northern hemisphere” of the
Riemann sphere and the other 60 fundamental triangles to the “southern hemisphere”
(see Fig. 3), while the edges and among them the special points are sent to the equator.

In a modern formulation, one can say that Klein calculated the graded C-algebra
C(z1 : z2)A5 which is generated by the invariants f , T , H between which the above
syzygy (a term that goes back to Cayley and was popularized by Hilbert) holds.

If we are now given any particular reduced quintic equation x5+αx2+βx+γ = 0
with an ordered list of “hidden” solutions (x0 : x1 : x2 : x3 : x4) and map it via F to some
λ ∈ P

1, then u = q(λ) will be invariant under the permutations A5 of the xi . Thus, u
will be symmetric in the solutions xi , and can thus be calculated from the coefficients
α, β, γ and the square root of the discriminant � alone!49 We can then pass to affine

49 The explicit formulas (which are too long to repeat here) can be found in Eschenburg and Hefendehl-
Hebeker (2000), 17f..
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Fig. 3 q maps the 60 colored triangles to the “northern hemisphere” of the Riemann sphere (left), which is
the “upper halfplane” H = {x + iy ∈ C | y > 0 when complex numbers are viewed as a plane (right)

coordinates z = z1, z2 = 1 and write the above q as the icosahedral equation

((z20 + 1) − 228(z15 − z5) + 494z10)3 + 1728uz5(z10 + 11z5 − 1)5) = 0,

which can be solved by the analytic methods. It is sufficient to note here that these
analytic methods use the fact that A5 is isomorphic to PSL2(F5) and thus acts on the
projective line with six points (0, 1, 2, 3, 4,∞) (also see Sect. 2.3). The big achieve-
ment of this whole complicated construction is that every reduced quintic equation
can be transformed to a single equation, with only one variable parameter.50

None of this had been achieved for the case n = 6, 7, at least not in Klein’s 1886
paper. The analogue of the above map q would result in the construction of some
G = S6, A7-invariant

Q : P3 → P
3/G ∼= P

3

for which a calculation of the field of invariantsC(z0 : z1 : z2 : z3)G would be necessary.
Later work in the theory of quarternary forms shows that attempts in such directions
were made; it is however not possible to give closer attention to them within the scope
of the present work.

4 Conclusion

This article covered a number of mathematical topics and a comparatively wide range
of time, from Klein’s inaugural dissertation of 1868 until the turn of the 20th century.
Nevertheless, I attempted to restrict attention to those works that are in direct con-

50 Klein later described this achievement as analogous to the solution of pure equations xn = A by
logarithms (Klein 2019a, p. 3).
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nection to the main historical event of this article, namely Felix Klein’s publication
“On the theory of general equations of degree six and seven” of 1886. Its roots lie in
two branches of mathematics that are today almost forgotten, namely line geometry
and Klein’s geometrical theory of equations. Likewise, the paper only influenced a
relatively small branch of research, and only for a short period of time.

At the same time, the transience of Klein’s research ideas was not clear at all during
that time (“[The theory] of the sixth degree only just begun.” (Cole 1886, p. 266)),
and hope in a late success only vanished slowly (“But this is only a beginning.” (Klein
2019a, p. 1)). The examination of Klein’s article within the context of its time offers
the modern reader an authentic insight into algebraic thinking at a time of rapid change
in the subject matter. Also, the importance of Klein’s program for the development
and (maybe more important) for the popularization of Galois theory itself—similarly
underestimated in the classical accounts—isworth being discussed (remember Klein’s
influence on Hölder’s modern formulation of Galois theory, Sect. 3.4. In this sense,
I can only support Gray’s (2019) recent attempt of a “rehabilitation” of Klein as a
Galois theorist:

Klein not only presented a detailed account of the ‘Galois theory’ of polynomial
equations, he argued polemically for his view as the ‘right’ one. He pushed
for an autonomous theory of equations grounded in an analysis of their ‘Galois
groups’ and independent of the theory of elliptic and modular functions (a field
he certainly saw as important). This vision contributed to the Göttingen vision
of contemporary mathematics, in which Gauss, Riemann, and Galois took pride
of place, with its hierarchy of values that emphasized the role of concepts in
determining what to calculate. In the 1870s and 1880s, when many regarded
abstract group theory as too abstract, Klein’s promotion of the subject was louder
than anyone else’s, and helped create the 20th century definition ofGalois theory.
(Gray 2019, p. 22).

But not only did Klein’s efforts promote his own vision of Galois theory, they addi-
tionally (and somewhat ironically) helped in the development of the field-theoretic
Galois theory we know today. Also in theory of groups itself, the impact of Klein’s
Hypergalois Program cannot be underestimated. The particularist approach of the
Hypergalois Program, which relies on mathematical “accidents” and low-dimensional
geometrical intuition instead of general principles, is often considered either irrelevant
or even counter-progressive for the development of “abstract”, “axiomatic” or “struc-
tural” understanding of group theory.51 Klein’s distaste against a solely axiomatic
teaching of group theory and his tireless advocacy for intuition in mathematics and
unification of unconnected mathematical branches can easily lead to the impression
that Klein was, after all, a hindrance or at least a force of delay in the development
of modern algebra.52 This view is for example taken, at least with respect to the
Hypergalois Program, by Wussing (2007), who was interested in the success of group

51 For a practice-based account on these notions, see Marquis (2014).
52 The following referencemight be one of themost-quoted statements of Klein: “This abstract formulation
[of the group axioms] is excellent for the working out of proofs but it does not help one find one new ideas
and methods …In general, the disadvantage of that method is that it fails to encourage thought.” (Klein
1926, pp. 335–336), as in (Wussing 2007).
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theoretical publications only with respect to their contributions toward an abstrac-
tion, or axiomatization of the concept. In this broad-scale narrative, the Hypergalois
Program thus played an only marginal role:

[A]ll these extremely impressive papers [of the Hypergalois Program] had done
little to extend and deepen the new conceptual content of a group. This was
becauseKlein andhis fellowworkers in this area relied on isomorphismsbetween
groups of isometries and permutation groups, and thus stayed within the con-
ceptual environment of (finite) permutation groups. (Wussing, [1969] 2007, pp.
208–209)

In fact, the opposite is the case: Klein’s involvement with particular problems, specific
interesting groups, and unexpected connections between mathematical theories might
not reflect the “spirit” of modern mathematics as we have it today, but were essen-
tial ingredients to sharpen the mathematical community’s understanding on which
algebraic concepts and properties were worth following and which were not. In other
words, Klein was an important source (if not, at least for some time, the most impor-
tant one) to direct his fellow mathematicians’ interest in the right direction, which in
turn led them to formulate the right concepts.53 Wiman’s discovery about the excep-
tionality of the representations of A5, A6, A7, which led to the invention of the Schur
multiplier and ultimately (although indirectly) to the concept of cohomology, is only
one example of such unintended influence.

Such motivation-based reading of mathematical innovation might be unusual
(although it does exist, for example in Schlimm (2008)). However, especially in the
case of Klein’s Hypergalois Program (see Footnote 4), it offers an enriching narrative,
and contributes to a better understanding of the becoming of modern mathematics.
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