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Abstract
The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic 
psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mysti-
cal experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically 
bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical 
experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investi-
gation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or 
(S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential 
of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale 
clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects 
of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the 
importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.
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Introduction

Major depressive disorder (MDD), one of the most com-
mon psychiatric disorders, is characterized by persistent 
low mood (heightened negative emotions) or anhedonia 
(diminished positive emotions). Currently, treatments for 
depression include selective serotonin reuptake inhibitors, 
serotonin and norepinephrine reuptake inhibitors, and other 
antidepressants. However, significant concerns exist regard-
ing these antidepressants. They are effective for approxi-
mately one-third of MDD patients, leaving a substantial 
portion exhibiting treatment-resistant depression (TRD) 
[1, 2]. Additionally, these medications often require several 
weeks to manifest their full effects, which can be particu-
larly problematic for individuals with severe depression or 
suicidal thoughts. Furthermore, antidepressants can cause 
various side effects such as gastrointestinal (GI) issues (e.g., 

nausea, vomiting, or diarrhea), weight gain, sexual dys-
function, sleep disturbances, and emotional blunting [3–5]. 
These side effects frequently lead to poor adherence and 
discontinuation of treatment. Consequently, there is a critical 
unmet medical need to develop new antidepressants that can 
rapidly alleviate depressive symptoms, including in patients 
with TRD [6, 7].

Ketamine (Fig. 1), originally known for its use as an 
anesthetic, has emerged as a significant treatment option 
for depression, particularly for cases with TRD includ-
ing MDD and bipolar disorder (BD) [8–20]. One of the 
most notable features of ketamine in treating depression 
is its rapid onset of action. Unlike current antidepressants 
that can take weeks to show effects, ketamine can produce 
noticeable improvements in mood within hours or days. 
In addition, ketamine has been found to be particularly 
effective in individuals with TRD [21–24]. A recent study 
demonstrated that intravenous ketamine infusion is non-
inferior to electroconvulsive therapy (ECT) as therapy for 
TRD without psychosis [25]. Furthermore, a comprehen-
sive meta-analysis revealed that ECT is not superior to ket-
amine in the treatment of TRD, and that ketamine showed 
a significant rapid antidepressant effect over ECT [26]. 
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Consequently, it is recommended that ketamine should be 
considered on par with ECT for the short-term manage-
ment of depressive symptoms in outpatients with TRD 
[27]. Nonetheless, it is important to note that ketamine can 
cause side effects including dissociation, hallucinations, 
dizziness, elevated blood pressure during administration, 
and the potential for abuse with repeated use [8, 28].

The use of classic psychedelics such as psilocybin 
(4-phosphoryloxy-N,N-dimethyltryptamine) (found in 
magic mushrooms), lysergic acid diethylamide (LSD), 
and N,N-dimethyltryptamine (DMT) (found in ayahuasca) 
(Fig. 2) in treating severe depression represents a growing 
area of interest in psychiatric research [29–34]. Like keta-
mine, psychedelics such as psilocybin can produce rapid 
and sustained antidepressant actions in TRD patients, 
including MDD and BD [35–39]. It is also currently 
unclear whether mystical experiences induced by psych-
edelics are associated with their antidepressant actions in 
patients with MDD [40–42].

In this review, the author explores the relationships 
between the robust antidepressant effects of ketamine and 
psychedelics and the mystical experiences that accompany 
their application in the treatment of depression.

Dissociative and antidepressant effects 
of ketamine and its enantiomers

Preclinical studies

Ketamine is a racemic mixture of (R)-ketamine (arketa-
mine) and (S)-ketamine (esketamine) (Fig. 1). Esketamine 
shows a higher affinity for the N-methyl-D-aspartate recep-
tor (NMDAR) than arketamine. Despite having a lower 
NMDAR affinity, arketamine demonstrates more potent 
and sustained antidepressant-like effects in various animal 
models of depression [43–50]. Additionally, compared to 
ketamine and esketamine, arketamine’s side effects, such 
as hyperlocomotion, prepulse inhibition, and abuse liabil-
ity, are less severe in rodents and monkeys [44, 47, 51–53]. 
Thus, arketamine may emerge as a novel antidepressant 
with fewer side effects than ketamine and esketamine.

Non-competitive NMDAR antagonists such as phency-
clidine (PCP) and ketamine are known for inducing dis-
sociative symptoms in humans. These symptoms include 
altered perceptions of time, space, and the environment, 
leading to feelings of disconnection from surroundings and 
distorted spatial awareness. A notable dissociative effect 

Fig. 1  Chemical structures 
and dissociative symptoms of 
ketamine and its enantiom-
ers. The figure illustrates the 
chemical structures of ketamine 
(racemic mixture), along with 
its two enantiomers: esketamine 
and arketamine. Clinical studies 
indicate that both ketamine and 
esketamine can induce dissocia-
tive symptoms in healthy volun-
teers and patients with MDD or 
BD. Conversely, arketamine is 
less likely to provoke dissocia-
tive symptoms at therapeutic 
doses. The potential mechanism 
underlying these dissociative 
symptoms is attributed to the 
inhibition of NMDAR by keta-
mine and esketamine
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is a sense of detachment or estrangement from oneself, 
sometimes culminating in an out-of-body experience [8, 
54, 55] (Fig. 1). However, the precise molecular and cel-
lular mechanisms behind ketamine-induced dissociation 
are not fully understood.

Assessing dissociative symptoms in humans relies 
heavily on self-reporting of mental states, making it chal-
lenging to replicate these conditions for behavioral tests in 
rodents [56]. In 2020, Vesuna and colleagues [57] reported 
a significant discovery: oscillation rhythms in layer 5 neu-
rons of the retrosplenial cortex are crucial for dissociation-
like experiences induced by ketamine, PCP, or dizocilpine. 
In contrast, memantine, a low-affinity non-competitive 
NMDAR antagonist that does not cause dissociation in 
humans, did not induce these oscillation rhythms. They 
also performed behavioral tests on mice to assess dissoci-
ation-like symptoms. Their findings suggest that 1–3 Hz 
oscillation rhythm in the retrosplenial cortex is essential 
for inducing dissociation-like behaviors in mice due to 
ketamine [57], though further detailed research is required.

In 1989, Olney and colleagues [58] demonstrated that 
NMDAR antagonists like PCP, ketamine, and dizocilpine 

induce neuropathological changes (specifically, neu-
ronal vacuolization) in the rat brain’s retrosplenial cor-
tex. The severity of these changes correlated with each 
compound’s potency at the NMDAR. Dizocilpine and 
ketamine, as well as esketamine, significantly induced 
the expression of heat shock protein HSP-70, a marker 
for neuronal injury, in the retrosplenial cortex of the rat 
brain. In contrast, arketamine did not trigger HSP-70 
expression in this region [59]. The neuropathological 
alterations observed in the retrosplenial cortex follow-
ing PCP, ketamine, and esketamine injections might be 
linked to their dissociative side effects. Future studies, 
particularly focusing on the two enantiomers of ketamine, 
would be invaluable in confirming the role of NMDAR 
in the induction of dissociation-like behaviors and oscil-
lation rhythms in the layer 5 neurons of the retrosplenial 
cortex [56].
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Altered perception of time and 
space
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Fig. 2  Chemical structures of classic psychedelics, their hallucino-
genic symptoms, and risk of cardiac fibrosis. This figure displays the 
chemical structures of classic psychedelics, including psilocybin and 
its primary metabolite psilocin, lysergic acid diethylamide (LSD), and 
N,N-dimethyltryptamine (DMT). Psilocybin, found in magic mush-
rooms, is metabolized into the pharmacologically active compound 
psilocin. LSD, a synthetic psychedelic, was developed at Sandoz 
laboratories in Switzerland. DMT, structurally similar to 5-hydroxy-

tryptamine (5-HT: serotonin), occurs naturally in various plants and 
animals, including humans. In South American indigenous cultures, 
it is traditionally ingested in the form of ayahuasca, a ceremonial spir-
itual medicine. These serotonergic classic psychedelics, known for 
inducing mystical experiences, primarily exert their effects through 
the activation of the 5-HT2A receptor. Stimulation of the 5-HT2B 
receptor by psilocin and LSD may potentially increase the risk of car-
diac fibrosis [143]
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Clinical studies

Dissociative symptoms and antidepressant effects 
after injection of ketamine or esketamine

In 1997, Vollenweider and colleagues [60] found that 
increases in glucose utilization in the frontal and left tem-
poral cortex, induced by esketamine, were correlated with 
ego disintegration and hallucinations in healthy volunteers. 
In contrast, equivalent doses of arketamine reduced glucose 
utilization in various brain regions. Notably, arketamine did 
not trigger psychotic or dissociative symptoms but rather 
induced relaxation. This study indicates that the esketamine-
induced metabolic hyperactivity in the frontal areas resem-
bles the metabolic alterations observed in acute psychotic 
episodes in patients with schizophrenia. Additionally, it sug-
gests that arketamine is unlikely to cause schizophrenia-like 
symptoms in healthy individuals.

In 2014, Luckenbaugh and colleagues [61] reported a 
significant link between ketamine-induced dissociative 
side effects and its antidepressant efficacy in patients with 
TRD (n = 108). They found a notable association between 
increased scores on the Clinician-Administered Dissocia-
tive States Scale (CADSS) at 40 min and the improvement 
in the Hamilton Depression Rating Scale (HDRS) scores at 
230 min and day 7 following ketamine administration. How-
ever, they observed no correlation between changes in the 
Young Mania Rating Scale (YMRS) or the Brief Psychiatric 
Rating Scale (BPRS) positive symptom scores at 40 min and 
HDRS improvement at any time point with ketamine.

In 2018, Niciu and colleagues [62] reported that shifts in 
depersonalization items on the CADSS, indicative of disso-
ciative side effects, were correlated with changes in depres-
sive symptoms. Additionally, a 2019 study, which analyzed 
YouTube videos of depressed patients receiving ketamine 
infusions, suggested that a self-reported feeling of lightness 
or floating was linked to relief from depressive symptoms 
[63]. Conversely, Wilkinson and colleagues [64] found no 
correlation between CADSS scores and the antidepressant 
effects of ketamine in TRD patients (n = 54). These findings 
highlight the inconsistent nature of the relationship between 
ketamine-induced dissociation and its antidepressant effects.

An analysis using three trials showed that the antidepres-
sant effects of ketamine in TRD patients (38 with MDD and 
44 with BD) are not mediated by the dissociative deperson-
alization subtype symptom of floating [65]. In a subsequent 
study, Ballard and Zarate [66] concluded that dissociation 
is not a necessary component for the antidepressant actions 
of ketamine. Moreover, a systematic review encompassing 
21 studies revealed that total score for ketamine-induced 
CADSS does not consistently correlate with its antide-
pressant outcomes [67]. Overall, it appears that ketamine-
induced dissociation is not essential for its antidepressant 

actions, though additional research is required to fully com-
prehend the relationship between dissociation and the anti-
depressant effects of ketamine.

In 2019, esketamine nasal spray was approved for TRD 
in the United State (US) of America and Europe, despite 
concerns regarding its efficacy and Food Drug Administra-
tion (FDA) approval [68]. A recent study utilizing data from 
the US Food and Drug Adverse Event Reporting System 
(FAERS) highlighted potential adverse effects and risks 
associated with the clinical use of esketamine, particularly 
focusing on its long-term effectiveness, potential for addic-
tion, and suicidal risks [69]. It found the most significant 
indications for dissociation, dissociative disorder, and seda-
tion. Alarmingly, the frequencies of suicidal ideation and 
attempt were relatively high, underscoring the need for cau-
tion when using esketamine in clinical settings [69]. There-
fore, while esketamine nasal spray offers rapid antidepres-
sant benefits, it also introduces various adverse effects and 
potential hazards.

Meta-analyses revealed that the antidepressant effective-
ness of esketamine nasal spray is less pronounced compared 
to intravenous ketamine injections [70, 71]. The reasons for 
this difference remain uncertain, but aspects such as the 
lower bioavailability of the nasal spray [9] and the lack 
of the arketamine enantiomer in the esketamine formula-
tion could be contributing factors. A comparative study of 
esketamine and arketamine in MDD patients is crucial to 
determine which enantiomer significantly contributes to 
ketamine’s antidepressant effects. In 2022, Chen and col-
leagues [72] reported that the antidepressant effects of 
esketamine nasal spray in TRD patients were not correlated 
with dissociative symptoms. In the TRANSFORM-2 study, 
the response rate at day 2 and day 28 was similar regardless 
of whether patients experienced significant dissociation fol-
lowing the first dose. Moreover, dissociation scores did not 
influence the reduction in depression score at day 2 or 28 
in TRANSFORM-2, nor did they affect the time to depres-
sion relapse in the SUSTAIN-1 trial. This evidence from 
two phase 3 trials indicates that the antidepressant effects of 
nasal esketamine spray do not dependent on its dissociative 
symptoms [72].

Taken together, these findings suggest that the antide-
pressant effects of both ketamine and esketamine are inde-
pendent of their dissociative symptoms. Considering the role 
of NMDAR inhibition in the side effects (such as dissocia-
tive symptoms) of NMDAR antagonists [73, 74], it seems 
unlikely that NMDAR plays a crucial role in the antidepres-
sant effects of ketamine [9–11, 13–17, 75].

Arketamine

Arketamine is known for its greater and more enduring 
antidepressant-like effects in various animal models of 
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depression. However, there are relatively few studies explor-
ing its antidepressant effects in TRD patients. A pioneering 
open-label pilot study in Brazil revealed that a single intra-
venous injection of arketamine (0.5 mg/kg, 40 min) elicited 
rapid and sustained antidepressant effects in a small group of 
female TRD patients (n = 7) [76]. In contrast, a subsequent 
placebo-controlled pilot study in Brazil indicated that arket-
amine did not significantly outperform a placebo in TRD 
patients (n = 10) [77]. Additionally, the same research team 
in Brazil reported that arketamine at doses at 0.5 and 1.0 mg/
kg had rapid-acting antidepressant effects in a small cohort 
of patients (n = 6) with bipolar depression [78]. Across these 
three studies, the reported side effects (i.e., dissociation) of 
arketamine were very low [76–78].

In 2021, Perception Neuroscience, based in New York, 
US, released data of a phase 1 single ascending dose study 
of PCN-101 (arketamine) involving healthy adult volunteers 
[79]. The study found that intravenous arketamine was safe 
and well tolerated at all tested doses, up to 150 mg, and 
there were no serious adverse events reported. Notably, it 
was observed that significantly higher doses of arketamine 
were required to induce perceptional changes (a type of dis-
sociation side effect) compared to esketamine.

In January 2023, a press release reported that the phase 
2a trial of PCN-101 (arketamine) in TRD patients did not 
achieve statistical significance on the primary endpoint [79]. 
However, in June 2023, further analysis from the phase 2a 
trial data revealed differences between the US and Europe 
cohorts. Specifically, the US subgroup showed clinically 
meaningful improvement in depression scores for up to two 
weeks following a single intravenous infusion of arketamine 
(60 mg, 40 min). Importantly, arketamine was generally well 
tolerated in this trial, with no serious adverse events and 
an acceptable safety profile. There were no significant dif-
ferences in sedation and dissociative symptoms between 
the arketamine and placebo groups. Overall, these findings 
suggest that arketamine does not produce dissociative side 
effects in humans at doses effective for treating depression. 
To further investigate the role of dissociative symptoms 
in ketamine’s antidepressant effects, conducting a double-
blind, randomized controlled trial is necessary. This study 
would compare the effects of arketamine with a placebo (or 
esketamine) in TRD patients with MDD or BD.

Hallucinogenic and antidepressant effects 
of classic psychedelics

Findings from preclinical studies

Psychedelics such as psilocybin primarily act on the 
5-hydroxytryptamine (5-HT) 5-HT2A receptors in the brain, 
leading to alterations in perception, thought, and mood 

[80]. Head-twitch response (HTR) is a rapid, rotational 
head movement observed in rodents after administration 
of 5-HT2A receptor agonists such as psilocybin and LSD. 
The potency of psychedelics determined via mouse HTR is 
highly correlated with potencies to elicit hallucinations in 
humans [81]. Furthermore, HTR induced by psychedelics 
in mice could be blocked by potent 5-HT2A receptor antag-
onists or deletion of the 5-HT2A receptor gene [82–85]. 
Thus, it is likely that 5-HT2A receptor could play a role in 
HTR induced after administration of psychedelics. A recent 
study showed that the 5-HT1A receptor agonist 8-OH DPAT 
attenuated psilocybin-induced HTR in mice [86], suggesting 
inhibitory effects of 5-HT1A receptor for the HTR caused 
by psychedelics. Furthermore, unlike esketamine and the 
selective NMDAR antagonist dizocilpine, psilocybin did 
not induce HSP-70 expression in the rat retrosplenial cortex 
[87], indicating that psilocybin could be a safer option for 
clinical applications in comparison to esketamine.

In terms of potential antidepressant-like effects of psil-
ocybin, the data are mixed regarding the role of 5-HT2A 
receptor activation. This uncertainty arises in part from 
research utilizing rodents that lack depression-like behav-
iors, potentially limiting accurate predictions about the clini-
cal effectiveness of antidepressant candidates [88–90]. One 
study showed that 5-HT2A receptor antagonist ketanserin did 
not block antidepressant-like effects of psilocybin in chroni-
cally stressed male mice with depression-like behaviors [91], 
suggesting that altered perception may not be necessary for 
its antidepressant actions.

It is currently unclear if 5-HT2A receptor can mediate 
antidepressant effects of psychedelics such as psilocybin, 
because several non-hallucinogenic analogs of psychedelics 
with antidepressant-like properties have been developed 
[92–94]. In 2023, Qu and colleagues [95] compared the 
effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hal-
lucinogenic psychedelic drug with potent 5-HT2A receptor 
agonism), lisuride (non-hallucinogenic psychedelic analog 
with 5-HT2A and 5-HT1A receptor agonisms), and arketa-
mine on depression-like behavior and the decreased den-
dritic spine density in the brain of lipopolysaccharide (LPS)-
treated mice. Both lisuride and arketamine ameliorated the 
increased immobility time of forced swimming test (FST), 
and the decreased dendritic spine density in the medial 
prefrontal cortex (PFC) and hippocampus of LPS-treated 
mice. In contrast, DOI did not improve these changes of 
LPS-treated mice. This study suggests that 5-HT2A recep-
tor may not play a major role in rapid-acting antidepressant 
actions of psychedelics although further detailed studies is 
needed. In addition, it is likely that potent 5-HT1A receptor 
agonism of lisuride plays a role in a lack of HTR in rodents 
[86, 95]. Unfortunately, the effects of psilocybin with anti-
depressant effects in depressed patients were not investigated 
in this study [95].
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Subsequently, Liu and colleagues [96] reported that pre-
treatment (6 days before LPS) with arketamine, but not DOI 
and lisuride, ameliorated body weight loss, splenomegaly, 
the increased immobility time of FST, and the decreased 
expression of synaptic protein in the PFC of LPS-treated 
mice. Furthermore, pretreatment with arketamine, but not 
DOI and lisuride, significantly ameliorated the increased 
FST immobility time, the reduced sucrose preference in 
the sucrose preference test, and the decreased expression of 
synaptic protein in the PFC of CRS (chronic restrain stress)-
exposed mice. Unlike to arketamine, both DOI and lisuride 
do not exhibit long-lasting prophylactic effects in mouse 
models of depression.

A recent study demonstrated that LSD and psilocin, the 
primary metabolite of psilocybin, bind directly to TrkB (a 
receptor for brain-derived neurotrophic factor [BDNF]), 
exhibiting affinities that are 1,000-fold higher than those of 
other antidepressants [97]. Furthermore, the study revealed 
that psychedelics and antidepressants bind to distinct, 
yet partially overlapping, sites within the transmembrane 
domain of TrkB dimers [97]. Given the established impor-
tance of BDNF–TrkB signaling in the rapid and sustained 
antidepressant-like effects observed with ketamine and 
arketamine [44, 46, 49, 98–101], these findings are particu-
larly intriguing. They suggest that high-affinity TrkB posi-
tive allosteric modulators, which do not activate the 5-HT2A 
receptor, may maintain the antidepressant potential of psych-
edelics without inducing hallucinogenic effects [102]. Con-
sequently, there is an ongoing debate over the role of 5-HT2A 
receptor in the antidepressant actions of psychedelics such 
as psilocybin.

Findings from clinical studies

The unique subjective experiences induced by psychedelics 
like psilocybin are characterized by phenomena such as ego 
dissolution (loss of self-awareness), indescribable insights, 
and a profound sense of unity and connection with others 
(Fig. 2) [36, 103–105]. Psilocybin, upon ingestion, is con-
verted by the body into psilocin (4-hydroxy-N,N-dimethyl-
tryptamine: 4-hydroxy DMT), the pharmacologically active 
compound, which predominantly binds to the 5-HT2A recep-
tor (Fig. 2).

The hallucinogenic effects of psychedelics like psilocy-
bin and LSD in health volunteers are known to be mediated 
by the 5-HT2A receptor, as evidenced by the fact that these 
effects can be inhibited by the 5-HT2A receptor antagonist 
ketanserin [106–108]. A study employing positron emission 
tomography (PET) revealed a strong correlation between the 
intensity of psychedelic experiences, 5-HT2A receptor occu-
pancy, and plasma psilocin levels [109]. Thus, activation 
of the 5-HT2A receptor is likely a contributing factor to the 
hallucinogenic effects of psychedelics in humans. Research 

showed that a strong of oceanic boundlessness, akin to mys-
tical-type experiences, under psilocybin was predictive of an 
antidepressant response in TRD patients (n = 20) [110]. This 
suggests that the nature of the acute mystical experiences 
plays a crucial role in mediating the long-term antidepres-
sant effects. However, it remains uncertain whether 5-HT2A 
receptor activation also plays a role in the potential antide-
pressant actions of psychedelics.

In 2022, Gukasyan and colleagues [111] conducted 
a 12-month prospective follow-up study examining the 
effectiveness and safety of psilocybin-assisted therapy for 
patients with severe MDD (n = 24). Significant reductions 
from baseline in HAMD scores were noted at 1, 3, 6, and 
12 months. At the 12-month mark, the treatment response 
(defined as a greater than 50% reduction in HAMD score 
from baseline) was 75%, and remission rate was 58%. Nota-
bly, participants’ reports of personal meaning, spiritual expe-
riences, and mystical experiences following sessions were 
linked to enhanced well-being at 12 months, yet these did 
not correlate with improvement in depression. In a compre-
hensive naturalistic study, involving individuals (n = 302) 
who planned to undergo a psychedelic experience, sev-
eral factors were found to significantly influence changes 
in depressive symptoms [112]. These factors included the 
individuals’ medicinal motivations, their history of previous 
psychedelic use, the dosage of the drug, and the nature of 
the acute psychedelic experience, particularly the occurrence 
of an emotional breakthrough [112]. Moreover, a placebo-
controlled, double-blind, randomized trial revealed that the 
subjective effects experienced from a single dose of psilo-
cybin in MDD patients (n = 52) were not associated with a 
reduction in depressive symptoms two weeks after treatment 
[113].

In a 2023 exploratory placebo-controlled study involving 
moderate to severe patients (N = 19) with MDD, improve-
ments in depression and anxiety were observed following 
both placebo and psilocybin treatments, with no significant 
differences between the two groups [114]. The psilocybin 
treatment showed high response (66.7%) and remission 
rates (46.7%). However, the intensity of mystical experi-
ences during psilocybin administration did not correlate 
with subsequent antidepressant effects [114]. Therefore, 
it appears unlikely that psilocybin-induced mystical expe-
riences contribute to its antidepressant effects in MDD 
patients, although it is important to note the sample sizes 
of these studies.

In 2023, Rosenblat and colleagues [115] reported a 
groundbreaking case: an adult with TRD who received 
psilocybin therapy following premedication with trazodone, 
a potent 5-HT2A receptor antagonist. This case raises the 
possibility that the antidepressant effects of psilocybin may 
not solely depend on 5-HT2A receptor activation or its psy-
chedelic properties. However, further research is necessary 
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to fully understand the role of 5-HT2A receptor activation 
and its psychedelic impact in antidepressant mechanism of 
psychedelics like psilocybin.

To delve deeper into the role of the 5-HT2A receptor in 
psilocybin’s antidepressant effects, a comprehensive study 
design is proposed: a double-blind, randomized controlled 
trial comparing the effects of psilocybin with and without 
the 5-HT2A receptor antagonists such as ketanserin and voli-
nanserin (MDL 100,907). Additionally, a similar ongoing 
study (NCT05710327) is examining the effects of psilocybin 
(25 mg) combined with risperidone (1 mg), which blocks 
dopamine  D2 and 5-HT2A receptors, in TRD patients [116].

There are currently a limited number of studies indicat-
ing the antidepressant effects of LSD and DMT in patients 
with MDD. A randomized, placebo-controlled crossover 
study found that LSD treatment (200 μg across two ses-
sions) significantly alleviated anxiety and depressive symp-
toms in patients (n = 42), some of whom had a life-threat-
ening illness [117]. Notably, positive acute subjective drug 
effects and mystical-type experiences in the first session 
correlated with long-term reductions in anxiety symptoms 
[117]. Another randomized, placebo-controlled crossover 
study revealed that a low dose of LSD (26 μg) decreased 
depressive scores in depressed patients, albeit with various 
subjective effects [118]. Additionally, an open-label study 
reported that a single dose of ayahuasca produced rapid anti-
depressant effects in six inpatients with depression [119]. 
More recently, an open-label study demonstrated that DMT 
treatment (initially 0.1 mg/kg, followed by 0.3 mg/kg) low-
ered depressive scores in seven MDD patients, though it 
increased blood pressure, heart rate, anxiety, psychedelic, 
and psychotomimetic effects [120]. Given the scarcity of 
research, the extent to which mystical experiences induced 
by LSD or DMT contribute to their antidepressant effects in 
depressed patients remains uncertain.

Furthermore, recent studies have highlighted non-halluci-
nogenic compound lisuride, which shows antidepressant-like 
effects in preclinical models [95, 121]. A notable study from 
Japan demonstrated that lisuride maleate (0.075 mg/day over 
12 weeks) improved depressive symptoms in patients suf-
fering from post-stroke depression [122]. This study dem-
onstrated that the antidepressant effects of lisuride in these 
patients do not have a rapid onset. Given lisuride’s estab-
lished use in treating Parkinson’s disease, it is intriguing to 
consider its potential in treating MDD patients.

Conclusion remarks and future directions

A wealth of clinical evidence suggests that the dissociative 
symptoms triggered by ketamine or esketamine might not be 
crucial for their antidepressant effects in patients with TRD, 
including MDD or BD. If large-scale clinical trials confirm 

the antidepressant efficacy of arketamine in TRD patients, 
this could indicate that ketamine-induced dissociation is not 
essential for its robust antidepressant effects. Currently, clin-
ical trials investigating arketamine for depression are being 
conducted by several pharmaceutical companies, including 
Perception Neuroscience (USA), Otsuka (Japan), HengRui 
(China), and Nhwa (China) [15].

The precise role of 5-HT2A receptor activation and its 
associated hallucinogenic effects in the antidepressant action 
of psychedelics remains unclear. A recent study has shown 
that psilocybin, unlike lisuride, can induce antidepressant-
like effects in 5-HT2A receptor knock-out mice subjected to 
repeated swimming stress (10 min daily for five consecu-
tive days) [123]. This implies that the antidepressant-like 
effects of psilocybin might not involve the 5-HT2A recep-
tor. Furthermore, recent clinical studies suggest there is 
no significant relationship between the hallucinogenic and 
antidepressant effects of psilocybin [111, 113–115]. Inves-
tigating whether the antidepressant effects of psychedelics 
like psilocybin can be inhibited by treatment with 5-HT2A 
receptor antagonist in depressed patients is a topic of signifi-
cant interest. Furthermore, clinical trials investigating new 
non-hallucinogenic psychedelics for the treatment of depres-
sion are garnering significant interest [124–126].

The molecular mechanisms driving the potent antidepres-
sant effects of serotonergic psychedelics are not yet fully 
understood. These classic psychedelics are known to primar-
ily influence the serotonergic system in the brain, but they 
also exert significant effects on the GI tract. Given that GI 
tract is home to a vast array of 5-HT receptors, psychedelics 
can induce a range of effects, including altered gut motility. 
This can manifest as symptoms such as nausea, vomiting, 
diarrhea, or altered perception of GI sensations [127–129]. 
Recent studies demonstrated that the gut–brain axis via the 
vagus nerve plays a crucial role in the stress resilience of 
the serotonergic entactogen 3,4-methylenedixoymetham-
phetamine in rodents [130, 131]. Moreover, various studies 
propose that the gut–brain axis might also play a role in 
the antidepressant-like actions of ketamine and arketamine 
[132–137]. Considering that over 95% of the body’s 5-HT 
is found in the GI tract [138, 139], the role of 5-HT in this 
region and its subsequent impact on the gut–brain axis are 
important factors to consider in understanding the antide-
pressant mechanisms of ketamine and serotonergic psych-
edelics [140, 141].

Finally, the use of ketamine and psychedelics for depres-
sion therapy, while showing promise, raises several major 
concerns: First, ketamine and psychedelics can induce sig-
nificant side effects, including psychotomimetic and dis-
sociative symptoms, and hallucinogenic effects during the 
acute phase of the experience. The primary challenge in 
blind studies is preserving their blind aspect. Due to the 
distinct mystical experience often induced by ketamine and 
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psychedelics, participants and researchers may easily deduce 
whether they have received the actual substance or a placebo. 
Long-term effects and the potential for psychological harm 
in vulnerable individuals are not fully understood. A recent 
study, analyzing data from the US FAERS, underscored 
potential negative outcomes and hazards (i.e., dissociation, 
sedation, suicidal ideation, suicidal attempt) linked to the 
clinical application of esketamine nasal spray [69]. Addi-
tionally, a recent longitudinal observational study, which 
included samples from adult populations in the US and UK 
(total 9,732 participants), revealed correlations between the 
use of psychedelic and the occurrence of unusual visual 
experiences that manifest after the acute pharmacological 
effects have diminished [142]. Recent research indicated that 
prolonged microdosing of psychedelics like psilocybin and 
LSD, over several months or more, may increase the risk 
of cardiac fibrosis [143]. This is attributed to the stimula-
tion of the 5-HT2B receptor by these substances, potentially 
leading to the development of fibrosis [143]. Second, keta-
mine and psychedelics can trigger or exacerbate psychotic 
episodes in individuals with a personal or family history 
of psychiatric disorders. A prior investigation demonstrated 
that the repeated administration of esketamine, as opposed 
to arketamine, augmented locomotor activity in mice follow-
ing additional methamphetamine exposure [144], indicating 
an elevated likelihood of psychosis in subjects treated with 
esketamine. Third, both ketamine and psychedelics generally 
have a potential for addition. There is concern about their 
misuse outside a therapeutic context. A study, analyzing data 
from the US FAERS, highlighted the potential risk of abuse 
associated with the clinical use of esketamine nasal spray 
[69]. Fourth, the necessity of psychotherapy in conjunction 
with psychedelic treatment remains a question [145–148]. 
Finally, the off-label use of ketamine and psychedelics chal-
lenges current medical, ethical, and societal norms around 
drug use and mental health treatment, requiring careful con-
sideration and potentially new frameworks for understanding 
and managing mental health.
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