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Abstract
S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin) 
2A receptor (5-HT2AR) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate 
signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney’s 
lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immu-
nohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and 
MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retros-
plenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to 
S-ketamine regarding neuronal damage.
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Introduction

Hallucinogens such as psilocybin and ketamine are reported 
as promising rapid-acting antidepressants [1, 2]. Ketamine, a 
non-competitive N-methyl-D-aspartate receptor (NMDAR) 
antagonist, showed antidepressant effects in numerous 
pre-clinical and clinical studies [1–4]. S-ketamine was 
recently approved by the FDA for clinical use in treatment-
resistant depression [3, 4]. Despite its clinical utility, detri-
mental effects such as addiction, psychotic symptoms like 

hallucination, delusions, depersonalization, and cognitive 
deficits have been reported after repetitive ketamine treat-
ment [1, 4].

Ketamine increases glutamate concentration in the brain 
[4–6]. This effect was proposed as a possible mechanism 
involved in the antidepressant activity of ketamine [1]. 
However, some authors claim that increased glutamate con-
centrations additionally enhance the risk of excitotoxicity 
and oxidative stress [3, 6]. Studies reported that ketamine 
might increase the levels of reactive oxygen species as well 
as might enhance inflammation, apoptosis, and autophagy 
[3]. High doses of ketamine and other NMDAR antagonists 
are neurotoxic and induce injury and neuronal cell death in 
retrosplenial cortex and posterior cingulate cortex [3, 7], 
leading to a characteristic neuropathologic lesion known as 
Olney’s lesion [3, 8, 9].

Preclinical [10] and clinical studies [11] indicate that 
psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A recep-
tor (5-HT2AR) agonist, might also be effective as a rapid-
acting drug in treatment-resistant depression [1, 2]. Psilocin, 
a metabolite of psilocybin [12] and ketamine [13] were 
recently shown to promote brain-derived neurotrophic fac-
tor (BDNF) signaling via binding to BDNF receptor TrkB 
(neurotrophic receptor tyrosine kinase, Ntrk2) and by this 
mechanism to induce neuroplasticity. Recent studies in 
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animal models [6] and neuroimaging studies in humans 
[14] revealed that psilocybin increases the extracellular 
level of glutamate in the brain, similar to ketamine [5, 6]. 
One study claimed that the antidepressant effect of psilocy-
bin is independent of the 5-HT2AR agonism and that glu-
tamatergic effects like changes in the α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR)/
NMDAR and excitation/inhibition ratios may underlie its 
therapeutic efficacy [15]. Considering this, psilocybin might 
disturb the proportion between excitation and inhibition in 
cortical networks and lead to hyperexcitation in some cor-
tical areas. Interestingly, a similar mechanism involving a 
disruption of the local excitatory/inhibitory networks with 
subsequent hyperexcitation was proposed for neurotoxicity 
of NMDAR antagonists in retrosplenial cortex [16] i.e., for 
Olney’s lesions, associated with induction of heat shock pro-
tein 70 (HSP70) [7]. Further studies showed that psilocybin 
elevates the oxidative DNA damage in frontal cortex and 
hippocampus [6], suggesting a potential risk by clinical use 
of psilocybin.

However, whether psilocybin indeed produces neurotoxic 
effects, has so far not been investigated experimentally. This 
is an important question, considering the potential large-
scale clinical use of psilocybin in the future. Moreover, 
even though some authors claim that psilocybin might not 
be addictive and might be safe at therapeutic doses [11], 
adverse reaction such as prolonged psychotic symptoms, 
flashback phenomena, and hallucinogen-persisting percep-
tion disorder have also been reported [17]. The exact neuro-
biological mechanisms of these symptoms are still not eluci-
dated. One possible hypothesis might be psilocybin-induced 
neurotoxicity.

To investigate whether psilocybin induces neurotoxic 
effects, we carried out a whole-brain mapping using 
immunohistochemical staining for HSP70, a well-known 
marker for stress reaction and cellular injury [18], in female 
Sprague–Dawley rats 24 h after treatment with psilocybin, 
S-ketamine, and the NMDAR antagonist MK-801. The 
region-specific expression of neuronal HSP70 in rat brain 
was analyzed via qualitative and quantitative analysis under 
light microscopy.

Materials and methods

Experiments were performed in 12-week-old female 
Sprague–Dawley rats (Charles River) as in previous similar 
studies [7, 8, 19], since female rats were shown to be more 
sensitive to neurotoxicity induced by NMDAR antagonists 
[20]. Animals were treated intraperitoneally with: (1) vehicle 
(0.9% NaCl, 10 ml/kg), (2) S-ketamine 100 mg/kg (K1884, 
Sigma–Aldrich, Germany), (3) psilocybin 5 mg/kg, (4) psil-
ocybin 20 mg/kg, and (5) MK-801 (dizocilpine) 1 mg/kg 

(ab120027, Abcam, Great Britain). Psilocybin was purchased 
by RS from Dr. Martin Kuchar, Forensic Laboratory of Bio-
logically Active Compounds, Department of Chemistry of 
Natural Compounds, University of Chemistry and Technol-
ogy Prague, Prague, Czech Republic. The validity of psilo-
cybin produced by this laboratory was demonstrated in clini-
cal studies showing acute psychedelic and long-term clinical 
effects and effects in PET neuroimaging in healthy individu-
als [21–28], as well as in animal studies [29, 30]. Doses of 
psilocybin (5 mg/kg and 20 mg/kg) were chosen according to 
Jefsen et al. (2021) [31]. The induction of HSP70 and immu-
noreactivity was reported in previous studies using NMDAR 
antagonists to be maximal 24 h after treatment [18].

24 h after treatment, rats were anesthetized with an over-
dose of ketamine (Serumwerk, Germany) and xylazin (WDT, 
Germany) and immediately after reaching the complete anes-
thetic state transcardially perfused with 4% paraformaldehyde 
(in 0.1 M phosphate buffer, pH 7.4). To avoid possible con-
founding effects of ketamine, transcardial perfusion and com-
plete blood wash was performed in less than 5 min after the 
injection of ketamine. The brains were removed and postfixed 
in the same fixative for 24 h before vibratome sectioning into 
40 μm thick coronal sections, as previously described [32]. All 
experiments were approved by German animal welfare author-
ities (Regierungspräsidium Karlsruhe) and complied with the 
European Communities Council Directive 2010/63/EU.

Coronal sections were incubated free-floating with an anti-
HSP70 monoclonal antibody (Enzo Life Science, Germany, 
diluted 1:1000), as described earlier [32]. Immunoreactiv-
ity was visualized using avidin–biotin method and staining 
was developed using nickel-3,3-diaminobenzidine (DAB), as 
previously described [33]. Qualitative analysis of the HSP-70 
expression was performed in every third section along the ret-
rocaudal axis (at least 32 whole-brain slides per animal) using 
a light microscope (Leica TCS-NT). The complete surface of 
the whole-brain slide was examined. The brain regions were 
identified according to the atlas of the rat brain [34]. Quan-
tification of HSP70-positive cells in the retrosplenial cortex 
was performed bilaterally at 40 × magnification in at least 10 
whole-brain slides per animal. All HSP70-positive neuronal 
cells on the whole-brain slide situated in the region of interest 
(the retrosplenial cortex) were counted. The average number 
of HSP70-positive cells across all slides for each animal was 
determined. Data were visualized in RStudio using base R 
functions.

Results

In whole-brain mapping using immunohistochemistry, we 
did not detect any expression of HSP70 in the retrosplenial 
cortex in both groups treated with psilocybin (5 mg/kg and 
20 mg/kg) 24 h after treatment (Fig. 1b and c), similar to the 
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saline-treated, negative control group (Fig. 1a). In contrast, 
the S-ketamine-treated group revealed an induction of neu-
ronal HSP70 in the retrosplenial cortex (Fig. 1d), which is 
in accordance with previous studies [7]. In the positive con-
trol group treated with the NMDAR antagonist MK-801, we 
observe an extensive expression of HSP70 in neurons in the 
retrosplenial cortex (Fig. 1e), as previously described [18]. 
Figure 2 illustrates the quantification of the HSP70-positive 
cells in the retrosplenial cortex in the experimental groups.

Qualitative analysis of the HSP70-expression in the hip-
pocampal region revealed in all experimental groups single 
or very few scattered immunostained neurons, without a 
visible difference between the groups. There was a weak 
expression of HSP70 in hippocampus in 2/4 animals in the 
negative control group (Fig. 3a), in 4/6 animals in the group 
treated with 5 mg/kg psilocybin (Fig. 3b), in 3/6 animals in 
the group treated with 20 mg/kg psilocybin (Fig. 3c), in 3/4 
animals in the group treated with S-ketamine (Fig. 3d), and 
in 2/4 animals in the group treated with MK-801 (Fig. 3e). A 
quantitative assessment with statistical analysis did not seem 
constructive due to the very low number of weak immu-
nopositive neurons detected in hippocampus—only single 
or very few positive cells—in only some animals of each 
experimental group. Our observation is consistent with pre-
vious histological studies in Sprague–Dawley rats, which 
detected a weak basal expression of HSP70 in hippocampal 
neurons even under unstressed conditions [35]. With excep-
tion of scattered weakly HSP70-expressing neurons in the 
hippocampus and the septal region similar in all groups, 
there was no further neuronal HSP70-expression in psilo-
cybin-treated rats.

Discussion

In this study, we demonstrate using whole-brain mapping 
for HSP70 that psilocybin does not increase the neuronal 
expression of HSP70 in any brain region, in contrast to 
S-ketamine and MK-801, indicating that psilocybin might 
not induce neurotoxicity.

HSP70 neuronal expression is widely recognized as a 
reliable marker of vulnerability after neuronal injury [18]. 
The neurotoxic effects of NMDAR antagonists like MK-801 
and ketamine were analyzed in previous studies using the 
expression of HSP70 in neurons [7, 18]. In our present study, 
animals treated with MK-801 and S-ketamine revealed a dis-
tinct neuronal expression of HSP70 in retrosplenial cortex, 
as previously described [7, 18], indicating a stress response 
and neuronal injury in this brain region [18]. In contrast, 
psilocybin in both doses used did not induce an expression of 
HSP70 in neurons 24 h after treatment. Our results suggest 
that psilocybin in contrast to S-ketamine might not induce 
neurotoxicity and, consequently, that psilocybin might be a 
safer compound for clinical use compared to ketamine.

Both ketamine, a NMDAR antagonist, and psilocybin, 
a 5-HT2AR agonist, are reported to have similar rapid anti-
depressant effects, despite initial pharmacologic action on 
distinct receptors. Recent studies demonstrated that both 
psilocin, the active metabolite of psilocybin, and ketamine 
directly activate TrkB, the receptor of BDNF [12, 13]. 
Some authors proposed as shared mechanism of action 
an increased glutamatergic signalling with elevated con-
centrations of extracellular glutamate that activate AMPA 

Fig. 1  Representative cropped microscopic images showing the 
expression of HSP70 in retrosplenial cortex after treatment with a 
saline, b psilocybin 5  mg/kg, c psilocybin 20  mg/kg, d S-ketamine 
100  mg/kg, and e MK-801 1  mg/kg. Note the prominent induction 

of HSP70 after MK-801-treatment and the weak induction in the 
S-ketamine-treated group, whereas no HSP70 expression is detected 
in the groups treated with psilocybin and saline. The arrows indicate 
HSP70-positive cells. Scale bar = 200 µm
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receptors, which induce BDNF release and activation of 
mammalian target of rapamycin (mTOR) signalling, promot-
ing neuroplasticity [1]. This common mechanism of action 
suggests that ketamine and psilocybin, and more generally 
NMDAR antagonists and 5-HT2AR agonists, might also 
exhibit similar detrimental effects. Supporting this, neuro-
toxicity was previously demonstrated for ketamine [7] and 
recently also reported for other 5-HT2AR agonists like the 
novel compound 25I-NBOMe [36]. However, using histo-
logical methods we did not observe in the present study neu-
rotoxic effects in psilocybin-treated rats.

We chose the doses of psilocybin according to Jefsen 
et al. (2021), who used doses up to 20 mg/kg in rats with-
out reporting any adverse effects or mortality [31]. Another 
study reported that a single dose of psilocybin 1 mg/kg 
induces long-lasting antidepressant effects in rats [10]. The 
doses of psilocybin used in our study (5 mg/kg and 20 mg/
kg) are much higher than those having an antidepressant 
effect in animal models [10] and those used in clinical stud-
ies in humans, where the weight-adjusted dose of psilocy-
bin ranges from 0.025 mg/kg to 0.42 mg/kg [11, 14, 21–23, 
25]. Clinical studies reported that psilocybin in doses of 
around 0.2–0.3 mg/kg per os induces in healthy individuals 

acute subjective psychedelic effects such as altered state of 
consciousness, dissolution of ego and personhood, mysti-
cal experience, disembodiment, changed perception of 
time and space, audio-visual synesthesiae, positive mood, 
blissful state, reduction of sense of self and of the border 
between self and the external world, as well as long-term 
effects like increase in openness to new experiences and 
mindfulness, positive changes in mood, behavior and per-
sonality, increased cognitive flexibility [21, 23, 25]. A dose 
of 1 mg/kg psilocybin in Sprague–Dawley rats is equiva-
lent to 0.16 mg/kg in humans [37]. We used in our study 
higher doses of psilocybin to detect even minimal neurotoxic 
effects. Even at the highest dose used (20 mg/kg) we did not 
detect any induction of HSP70 in neurons of retrosplenial 
cortex 24 h after treatment. We used this timepoint in our 
experiments since in previous studies using NMDAR antag-
onists the induction of HSP70 was reported to be maximal 
24 h after treatment [18]. However, psilocybin changes could 
occur at later time points than 24 h after treatment, as inves-
tigated in this study. Further studies are, therefore, needed 
to investigate the potential long-term detrimental effects of 
psilocybin on neurons.

Fig. 2  Quantitative analysis of 
HSP70-expression in the ret-
rosplenial cortex. The boxplot 
shows the number of HSP70-
positive cells in the retrosplenial 
cortex (RSC) per slide (median, 
1st quartile, 3rd quartile, 
minimum, and maximum). 
HSP70-positive cells in the 
RSC were counted bilaterally 
on whole-brain slides in at least 
10 slides per animal in the fol-
lowing groups: a saline (n = 4), 
b psilocybin 5 mg/kg (n = 6), c 
psilocybin 20 mg/kg (n = 6), d 
S-ketamine 100 mg/kg (n = 4), 
and e MK-801 1 mg/kg (n = 4)
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