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Abstract

- Andrei-Nicolae Vasilescu' - Natascha Pfeiffer’ - Rainer Spanagel? - Anne Stephanie Mallien’ -

S-ketamine, a N-methyl-D-aspartate receptor (NMDAR) antagonist, and psilocybin, a 5-hydroxy-tryptamine (serotonin)
2A receptor (5-HT,,R) agonist, are reported as effective rapid-acting antidepressants. Both compounds increase glutamate
signalling and evoke cortical hyperexcitation. S-ketamine induces neurotoxicity especially in the retrosplenial cortex (Olney’s
lesions). Whether psilocybin produces similar neurotoxic effects has so far not been investigated. We performed an immu-
nohistochemical whole-brain mapping for heat shock protein 70 (HSP70) in rats treated with psilocybin, S-ketamine, and
MK-801. In contrast to S-ketamine- and MK-801-treated animals, we did not detect any HSP70-positive neurons in retros-
plenial cortex of rats treated with psilocybin. Our results suggest that psilocybin might be safer for clinical use compared to

S-ketamine regarding neuronal damage.
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Introduction

Hallucinogens such as psilocybin and ketamine are reported
as promising rapid-acting antidepressants [1, 2]. Ketamine, a
non-competitive N-methyl-D-aspartate receptor (NMDAR)
antagonist, showed antidepressant effects in numerous
pre-clinical and clinical studies [1-4]. S-ketamine was
recently approved by the FDA for clinical use in treatment-
resistant depression [3, 4]. Despite its clinical utility, detri-
mental effects such as addiction, psychotic symptoms like
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hallucination, delusions, depersonalization, and cognitive
deficits have been reported after repetitive ketamine treat-
ment [1, 4].

Ketamine increases glutamate concentration in the brain
[4-6]. This effect was proposed as a possible mechanism
involved in the antidepressant activity of ketamine [1].
However, some authors claim that increased glutamate con-
centrations additionally enhance the risk of excitotoxicity
and oxidative stress [3, 6]. Studies reported that ketamine
might increase the levels of reactive oxygen species as well
as might enhance inflammation, apoptosis, and autophagy
[3]. High doses of ketamine and other NMDAR antagonists
are neurotoxic and induce injury and neuronal cell death in
retrosplenial cortex and posterior cingulate cortex [3, 7],
leading to a characteristic neuropathologic lesion known as
Olney’s lesion [3, 8, 9].

Preclinical [10] and clinical studies [11] indicate that
psilocybin, a 5-hydroxy-tryptamine (serotonin) 2A recep-
tor (5-HT,,R) agonist, might also be effective as a rapid-
acting drug in treatment-resistant depression [1, 2]. Psilocin,
a metabolite of psilocybin [12] and ketamine [13] were
recently shown to promote brain-derived neurotrophic fac-
tor (BDNF) signaling via binding to BDNF receptor TrkB
(neurotrophic receptor tyrosine kinase, Ntrk2) and by this
mechanism to induce neuroplasticity. Recent studies in
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animal models [6] and neuroimaging studies in humans
[14] revealed that psilocybin increases the extracellular
level of glutamate in the brain, similar to ketamine [5, 6].
One study claimed that the antidepressant effect of psilocy-
bin is independent of the 5-HT,,R agonism and that glu-
tamatergic effects like changes in the a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR)/
NMDAR and excitation/inhibition ratios may underlie its
therapeutic efficacy [15]. Considering this, psilocybin might
disturb the proportion between excitation and inhibition in
cortical networks and lead to hyperexcitation in some cor-
tical areas. Interestingly, a similar mechanism involving a
disruption of the local excitatory/inhibitory networks with
subsequent hyperexcitation was proposed for neurotoxicity
of NMDAR antagonists in retrosplenial cortex [16] i.e., for
Olney’s lesions, associated with induction of heat shock pro-
tein 70 (HSP70) [7]. Further studies showed that psilocybin
elevates the oxidative DNA damage in frontal cortex and
hippocampus [6], suggesting a potential risk by clinical use
of psilocybin.

However, whether psilocybin indeed produces neurotoxic
effects, has so far not been investigated experimentally. This
is an important question, considering the potential large-
scale clinical use of psilocybin in the future. Moreover,
even though some authors claim that psilocybin might not
be addictive and might be safe at therapeutic doses [11],
adverse reaction such as prolonged psychotic symptoms,
flashback phenomena, and hallucinogen-persisting percep-
tion disorder have also been reported [17]. The exact neuro-
biological mechanisms of these symptoms are still not eluci-
dated. One possible hypothesis might be psilocybin-induced
neurotoxicity.

To investigate whether psilocybin induces neurotoxic
effects, we carried out a whole-brain mapping using
immunohistochemical staining for HSP70, a well-known
marker for stress reaction and cellular injury [18], in female
Sprague—Dawley rats 24 h after treatment with psilocybin,
S-ketamine, and the NMDAR antagonist MK-801. The
region-specific expression of neuronal HSP70 in rat brain
was analyzed via qualitative and quantitative analysis under
light microscopy.

Materials and methods

Experiments were performed in 12-week-old female
Sprague-Dawley rats (Charles River) as in previous similar
studies [7, 8, 19], since female rats were shown to be more
sensitive to neurotoxicity induced by NMDAR antagonists
[20]. Animals were treated intraperitoneally with: (1) vehicle
(0.9% NacCl, 10 ml/kg), (2) S-ketamine 100 mg/kg (K1884,
Sigma-Aldrich, Germany), (3) psilocybin 5 mg/kg, (4) psil-
ocybin 20 mg/kg, and (5) MK-801 (dizocilpine) 1 mg/kg
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(ab120027, Abcam, Great Britain). Psilocybin was purchased
by RS from Dr. Martin Kuchar, Forensic Laboratory of Bio-
logically Active Compounds, Department of Chemistry of
Natural Compounds, University of Chemistry and Technol-
ogy Prague, Prague, Czech Republic. The validity of psilo-
cybin produced by this laboratory was demonstrated in clini-
cal studies showing acute psychedelic and long-term clinical
effects and effects in PET neuroimaging in healthy individu-
als [21-28], as well as in animal studies [29, 30]. Doses of
psilocybin (5 mg/kg and 20 mg/kg) were chosen according to
Jefsen et al. (2021) [31]. The induction of HSP70 and immu-
noreactivity was reported in previous studies using NMDAR
antagonists to be maximal 24 h after treatment [18].

24 h after treatment, rats were anesthetized with an over-
dose of ketamine (Serumwerk, Germany) and xylazin (WDT,
Germany) and immediately after reaching the complete anes-
thetic state transcardially perfused with 4% paraformaldehyde
(in 0.1 M phosphate buffer, pH 7.4). To avoid possible con-
founding effects of ketamine, transcardial perfusion and com-
plete blood wash was performed in less than 5 min after the
injection of ketamine. The brains were removed and postfixed
in the same fixative for 24 h before vibratome sectioning into
40 pm thick coronal sections, as previously described [32]. All
experiments were approved by German animal welfare author-
ities (Regierungsprisidium Karlsruhe) and complied with the
European Communities Council Directive 2010/63/EU.

Coronal sections were incubated free-floating with an anti-
HSP70 monoclonal antibody (Enzo Life Science, Germany,
diluted 1:1000), as described earlier [32]. Immunoreactiv-
ity was visualized using avidin—biotin method and staining
was developed using nickel-3,3-diaminobenzidine (DAB), as
previously described [33]. Qualitative analysis of the HSP-70
expression was performed in every third section along the ret-
rocaudal axis (at least 32 whole-brain slides per animal) using
a light microscope (Leica TCS-NT). The complete surface of
the whole-brain slide was examined. The brain regions were
identified according to the atlas of the rat brain [34]. Quan-
tification of HSP70-positive cells in the retrosplenial cortex
was performed bilaterally at 40 X magnification in at least 10
whole-brain slides per animal. All HSP70-positive neuronal
cells on the whole-brain slide situated in the region of interest
(the retrosplenial cortex) were counted. The average number
of HSP70-positive cells across all slides for each animal was
determined. Data were visualized in RStudio using base R
functions.

Results

In whole-brain mapping using immunohistochemistry, we
did not detect any expression of HSP70 in the retrosplenial
cortex in both groups treated with psilocybin (5 mg/kg and
20 mg/kg) 24 h after treatment (Fig. 1b and c), similar to the
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saline-treated, negative control group (Fig. 1a). In contrast,
the S-ketamine-treated group revealed an induction of neu-
ronal HSP70 in the retrosplenial cortex (Fig. 1d), which is
in accordance with previous studies [7]. In the positive con-
trol group treated with the NMDAR antagonist MK-801, we
observe an extensive expression of HSP70 in neurons in the
retrosplenial cortex (Fig. 1e), as previously described [18].
Figure 2 illustrates the quantification of the HSP70-positive
cells in the retrosplenial cortex in the experimental groups.

Qualitative analysis of the HSP70-expression in the hip-
pocampal region revealed in all experimental groups single
or very few scattered immunostained neurons, without a
visible difference between the groups. There was a weak
expression of HSP70 in hippocampus in 2/4 animals in the
negative control group (Fig. 3a), in 4/6 animals in the group
treated with 5 mg/kg psilocybin (Fig. 3b), in 3/6 animals in
the group treated with 20 mg/kg psilocybin (Fig. 3c), in 3/4
animals in the group treated with S-ketamine (Fig. 3d), and
in 2/4 animals in the group treated with MK-801 (Fig. 3e). A
quantitative assessment with statistical analysis did not seem
constructive due to the very low number of weak immu-
nopositive neurons detected in hippocampus—only single
or very few positive cells—in only some animals of each
experimental group. Our observation is consistent with pre-
vious histological studies in Sprague—Dawley rats, which
detected a weak basal expression of HSP70 in hippocampal
neurons even under unstressed conditions [35]. With excep-
tion of scattered weakly HSP70-expressing neurons in the
hippocampus and the septal region similar in all groups,
there was no further neuronal HSP70-expression in psilo-
cybin-treated rats.

44

Fig. 1 Representative cropped microscopic images showing the
expression of HSP70 in retrosplenial cortex after treatment with a
saline, b psilocybin 5 mg/kg, ¢ psilocybin 20 mg/kg, d S-ketamine
100 mg/kg, and e MK-801 1 mg/kg. Note the prominent induction

Discussion

In this study, we demonstrate using whole-brain mapping
for HSP70 that psilocybin does not increase the neuronal
expression of HSP70 in any brain region, in contrast to
S-ketamine and MK-801, indicating that psilocybin might
not induce neurotoxicity.

HSP70 neuronal expression is widely recognized as a
reliable marker of vulnerability after neuronal injury [18].
The neurotoxic effects of NMDAR antagonists like MK-801
and ketamine were analyzed in previous studies using the
expression of HSP70 in neurons [7, 18]. In our present study,
animals treated with MK-801 and S-ketamine revealed a dis-
tinct neuronal expression of HSP70 in retrosplenial cortex,
as previously described [7, 18], indicating a stress response
and neuronal injury in this brain region [18]. In contrast,
psilocybin in both doses used did not induce an expression of
HSP70 in neurons 24 h after treatment. Our results suggest
that psilocybin in contrast to S-ketamine might not induce
neurotoxicity and, consequently, that psilocybin might be a
safer compound for clinical use compared to ketamine.

Both ketamine, a NMDAR antagonist, and psilocybin,
a 5-HT,,R agonist, are reported to have similar rapid anti-
depressant effects, despite initial pharmacologic action on
distinct receptors. Recent studies demonstrated that both
psilocin, the active metabolite of psilocybin, and ketamine
directly activate TrkB, the receptor of BDNF [12, 13].
Some authors proposed as shared mechanism of action
an increased glutamatergic signalling with elevated con-
centrations of extracellular glutamate that activate AMPA
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of HSP70 after MK-801-treatment and the weak induction in the
S-ketamine-treated group, whereas no HSP70 expression is detected
in the groups treated with psilocybin and saline. The arrows indicate
HSP70-positive cells. Scale bar =200 um
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Fig.2 Quantitative analysis of
HSP70-expression in the ret-
rosplenial cortex. The boxplot
shows the number of HSP70-
positive cells in the retrosplenial
cortex (RSC) per slide (median,
Ist quartile, 3rd quatrtile,
minimum, and maximum).
HSP70-positive cells in the
RSC were counted bilaterally
on whole-brain slides in at least
10 slides per animal in the fol-
lowing groups: a saline (n=4),
b psilocybin 5 mg/kg (n=6), ¢
psilocybin 20 mg/kg (n=6), d
S-ketamine 100 mg/kg (n=4),
and e MK-801 1 mg/kg (n=4)
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receptors, which induce BDNF release and activation of
mammalian target of rapamycin (mTOR) signalling, promot-
ing neuroplasticity [1]. This common mechanism of action
suggests that ketamine and psilocybin, and more generally
NMDAR antagonists and 5-HT,,R agonists, might also
exhibit similar detrimental effects. Supporting this, neuro-
toxicity was previously demonstrated for ketamine [7] and
recently also reported for other 5-HT, R agonists like the
novel compound 25I-NBOMe [36]. However, using histo-
logical methods we did not observe in the present study neu-
rotoxic effects in psilocybin-treated rats.

We chose the doses of psilocybin according to Jefsen
et al. (2021), who used doses up to 20 mg/kg in rats with-
out reporting any adverse effects or mortality [31]. Another
study reported that a single dose of psilocybin 1 mg/kg
induces long-lasting antidepressant effects in rats [10]. The
doses of psilocybin used in our study (5 mg/kg and 20 mg/
kg) are much higher than those having an antidepressant
effect in animal models [10] and those used in clinical stud-
ies in humans, where the weight-adjusted dose of psilocy-
bin ranges from 0.025 mg/kg to 0.42 mg/kg [11, 14, 21-23,
25]. Clinical studies reported that psilocybin in doses of
around 0.2-0.3 mg/kg per os induces in healthy individuals
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acute subjective psychedelic effects such as altered state of
consciousness, dissolution of ego and personhood, mysti-
cal experience, disembodiment, changed perception of
time and space, audio-visual synesthesiae, positive mood,
blissful state, reduction of sense of self and of the border
between self and the external world, as well as long-term
effects like increase in openness to new experiences and
mindfulness, positive changes in mood, behavior and per-
sonality, increased cognitive flexibility [21, 23, 25]. A dose
of 1 mg/kg psilocybin in Sprague—Dawley rats is equiva-
lent to 0.16 mg/kg in humans [37]. We used in our study
higher doses of psilocybin to detect even minimal neurotoxic
effects. Even at the highest dose used (20 mg/kg) we did not
detect any induction of HSP70 in neurons of retrosplenial
cortex 24 h after treatment. We used this timepoint in our
experiments since in previous studies using NMDAR antag-
onists the induction of HSP70 was reported to be maximal
24 h after treatment [18]. However, psilocybin changes could
occur at later time points than 24 h after treatment, as inves-
tigated in this study. Further studies are, therefore, needed
to investigate the potential long-term detrimental effects of
psilocybin on neurons.
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Fig.3 Representative cropped microscopic images showing the
expression of HSP70 in hippocampus after treatment with saline a
saline, b psilocybin 5 mg/kg, ¢ psilocybin 20 mg/kg, d S-ketamine
100 mg/kg, and e MK-801 1 mg/kg. The arrows indicate HSP70-posi-
tive cells. Scale bar =200 pm
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