Skip to main content
Log in

Smartphone video games improve cognitive function in patients with chronic schizophrenia: a randomized controlled trial

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript
  • 21 Altmetric

Abstract

This study aimed to examine the efficacy of video games in improving cognitive function in chronic patients with schizophrenia and to evaluate the biomarker of video games for cognitive function. The patients in the game group were requested to play single-player video games on their smartphones for 1 h per day, five times a week for 6 weeks. Those in the control group watched television for 1 h per day, five times a week for 6 weeks. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and Stroop Color and Word Test (SCWT). Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning (GAF), General Self-Efficacy Scale (GSE), Problematic Mobile Gaming Questionnaire (PMGQ), and Patient Health Questionnaire-9 (PHQ-9). The game group demonstrated improved RBANS total score during the trial. There were no significant group effects among all SCWT scores. The game group demonstrated greater improvement on the PANSS Negative Scale, and global function (GAF score). The PMGQ scores were lower than the cutoff score at all time points in both groups. There were no significant group differences in the PHQ-9 and GSE scores. The serum BDNF levels were significantly higher in the game group following 6 weeks of video game intervention. The BDNF serum levels of all participants were positively associated with the RBANS total scores. This preliminary study suggested that video games can improve cognitive function in schizophrenia patients. Serum BDNF levels may be a suitable biomarker for predicting an improvement in cognitive function in schizophrenia patients.

Trial registration: This study was registered on March 11, 2021 (ChiCTR2100044113).

Clinical trials: Smartphone video games improve cognitive function in patients with chronic schizophrenia; https://www.chictr.org.cn/hvshowproject.aspx?id=95623; ChiCTR2100044113.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated by the survey research during and/or analyzed during the current study are available. Researchers may obtain data for this study by contacting the corresponding author.

References

  1. Correll CU, Schooler NR (2020) Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat 16:519–534. https://doi.org/10.2147/NDT.S225643

    Article  PubMed  PubMed Central  Google Scholar 

  2. Strauss GP, Esfahlani FZ, Galderisi S, Mucci A, Rossi A, Bucci P, Rocca P, Maj M, Kirkpatrick B, Ruiz I, Sayama H (2019) Network analysis reveals the latent structure of negative symptoms in schizophrenia. Schizophr Bull 45(5):1033–1041. https://doi.org/10.1093/schbul/sby133

    Article  PubMed  Google Scholar 

  3. Kaneko K (2018) Negative symptoms and cognitive impairments in schizophrenia: two key symptoms negatively influencing social functioning. Yonago Acta Med. 61(2):91–102. https://doi.org/10.33160/yam.2018.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bucci P, Galderisi S, Mucci A, Rossi A, Rocca P, Bertolino A, Aguglia E, Amore M, Andriola I, Bellomo A, Biondi M, Cuomo A, dell’Osso L, Favaro A, Gambi F, Giordano GM, Girardi P, Marchesi C, Monteleone P, Montemagni C, Niolu C, Oldani L, Pacitti F, Pinna F, Roncone R, Vita A, Zeppegno P, Maj M (2018) Premorbid academic and social functioning in patients with schizophrenia and its associations with negative symptoms and cognition. Acta Psychiatr Scand 138(3):253–266. https://doi.org/10.1111/acps.12938

    Article  CAS  PubMed  Google Scholar 

  5. Koshiyama D, Fukunaga M, Okada N, Yamashita F, Yamamori H, Yasuda Y, Fujimoto M, Ohi K, Fujino H, Watanabe Y, Kasai K, Hashimoto R (2018) Role of subcortical structures on cognitive and social function in schizophrenia. Sci Rep 8(1):1183. https://doi.org/10.1038/s41598-017-18950-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melle I (2019) Cognition in schizophrenia: a marker of underlying neurodevelopmental problems? World Psychiatry 18(2):164–165. https://doi.org/10.1002/wps.20646

    Article  PubMed  PubMed Central  Google Scholar 

  7. MacKenzie NE, Kowalchuk C, Agarwal SM, Costa-Dookhan KA, Caravaggio F, Gerretsen P, Chintoh A, Remington GJ, Taylor VH, Müeller DJ, Graff-Guerrero A, Hahn MK (2018) Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front Psychiatry 9:622. https://doi.org/10.3389/fpsyt.2018.00622

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goff DC, Hill M, Barch D (2011) The treatment of cognitive impairment in schizophrenia. Pharmacol Biochem Behav 99(2):245–253. https://doi.org/10.1016/j.pbb.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  9. Fleischhacker WW, Podhorna J, Gröschl M, Hake S, Zhao Y, Huang S, Keefe RSE, Desch M, Brenner R, Walling DP, Mantero-Atienza E, Nakagome K, Pollentier S (2021) Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 8(3):191–201. https://doi.org/10.1016/S2215-0366(20)30513-7

    Article  PubMed  Google Scholar 

  10. Yamada R, Wada A, Stickley A, Yokoi Y, Sumiyoshi T (2023) Effect of 5-HT1A receptor partial agonists of the azapirone class as an add-on therapy on psychopathology and cognition in schizophrenia: a systematic review and meta-analysis. Int J Neuropsychopharmacol 26(4):249–258. https://doi.org/10.1093/ijnp/pyad004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Falkai P, Malchow B, Schmitt A (2017) Aerobic exercise and its effects on cognition in schizophrenia. Curr Opin Psychiatry 30(3):171–175. https://doi.org/10.1097/YCO.0000000000000326

    Article  PubMed  Google Scholar 

  12. Firth J, Stubbs B, Rosenbaum S, Vancampfort D, Malchow B, Schuch F, Elliott R, Nuechterlein KH, Yung AR (2017) Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43(3):546–556. https://doi.org/10.1093/schbul/sbw115

    Article  PubMed  Google Scholar 

  13. Zhang K, Zhang Q, Jiang H, Du J, Zhou C, Yu S, Hashimoto K, Zhao M (2018) Impact of aerobic exercise on cognitive impairment and oxidative stress markers in methamphetamine-dependent patients. Psychiatry Res 266:328–333. https://doi.org/10.1016/j.psychres.2018.03.032

    Article  CAS  PubMed  Google Scholar 

  14. Bredin SS, Warburton DE, Lang DJ (2013) The health benefits and challenges of exercise training in persons living with schizophrenia: a pilot study. Brain Sci 3(2):821–848. https://doi.org/10.3390/brainsci3020821

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stanton R, Happell B (2014) A systematic review of the aerobic exercise program variables for people with schizophrenia. Curr Sports Med Rep 13(4):260–266. https://doi.org/10.1249/JSR.0000000000000069

    Article  PubMed  Google Scholar 

  16. Sahakian BJ, Savulich G (2019) Innovative methods for improving cognition, motivation and wellbeing in schizophrenia. World Psychiatry 18(2):168–170. https://doi.org/10.1002/wps.20649

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang XY, Chen DC, Xiu MH, Haile CN, Luo X, Xu K, Zhang HP, Zuo L, Zhang Z, Zhang X, Kosten TA, Kosten TR (2012) Cognitive and serum BDNF correlates of BDNF Val66Met gene polymorphism in patients with schizophrenia and normal controls. Hum Genet 131(7):1187–1195. https://doi.org/10.1007/s00439-012-1150-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang XY, Liang J, Chen DC, Xiu MH, Yang FD, Kosten TA, Kosten TR (2012) Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology 222(2):277–284. https://doi.org/10.1007/s00213-012-2643-y

    Article  CAS  PubMed  Google Scholar 

  19. Zhang XY, Chen DC, Tan YL, Tan SP, Wang ZR, Yang FD, Xiu MH, Hui L, Lv MH, Zunta-Soares GB, Soares JC (2014) Gender difference in association of cognition with BDNF in chronic schizophrenia. Psychoneuroendocrinology 48:136–146. https://doi.org/10.1016/j.psyneuen.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Lee DH, Geyer E, Flach AC, Jung K, Gold R, Flügel A, Linker RA, Lühder F (2012) Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination. Acta Neuropathol 123(2):247–258. https://doi.org/10.1007/s00401-011-0890-3

    Article  CAS  PubMed  Google Scholar 

  21. Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T (2016) Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res 41(7):1662–1672. https://doi.org/10.1007/s11064-016-1881-5

    Article  CAS  PubMed  Google Scholar 

  22. Man L, Lv X, Du XD, Yin G, Zhu X, Zhang Y, Soares JC, Yang XN, Chen X, Zhang XY (2018) Cognitive impairments and low BDNF serum levels in first-episode drug-naive patients with schizophrenia. Psychiatry Res 263:1–6. https://doi.org/10.1016/j.psychres.2018.02.034

    Article  CAS  PubMed  Google Scholar 

  23. Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A (2018) Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem 155:528–542. https://doi.org/10.1016/j.nlm.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  24. Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM (2011) Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav 104(5):934–941. https://doi.org/10.1016/j.physbeh.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  25. Gökçe E, Güneş E, Nalcaci E (2019) Effect of exercise on major depressive disorder and schizophrenia: a BDNF focused approach. Noro Psikiyatr Ars. 56(4):302–310. https://doi.org/10.2939/npa.23369

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang K, Jiang H, Zhang Q, Du J, Wang Y, Zhao M (2016) Brain-derived neurotrophic factor serum levels in heroin-dependent patients after 26 weeks of withdrawal. Compr Psychiatry 65:150–155. https://doi.org/10.1016/j.comppsych.2015.11.010

    Article  PubMed  Google Scholar 

  27. Kahn RS, Keefe RSE (2013) Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiat 70(10):1107–1112. https://doi.org/10.1001/jamapsychiatry.2013.155

    Article  Google Scholar 

  28. Veselinović T, Scharpenberg M, Heinze M, Cordes J, Mühlbauer B, Juckel G, Habel U, Rüther E, Timm J, Gründer G, NeSSy Study Group (2019) Disparate effects of first and second generation antipsychotics on cognition in schizophrenia–findings from the randomized NeSSy trial. Eur Neuropsychopharmacol. 29(6):720–739. https://doi.org/10.1016/j.euroneuro.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  29. Kostova R, Cecere R, Thut G, Uhlhaas PJ (2020) Targeting cognition in schizophrenia through transcranial direct current stimulation: a systematic review and perspective. Schizophr Res 220:300–310. https://doi.org/10.1016/j.schres.2020.03.002

    Article  CAS  PubMed  Google Scholar 

  30. Smith RC, Md WL, Wang Y, Jiang J, Wang J, Szabo V, Faull R, Jin H, Davis JM, Li C (2020) Effects of transcranial direct current stimulation on cognition and symptoms in Chinese patients with schizophrenia. Psychiatry Res. 284:112617. https://doi.org/10.1016/j.psychres.2019.112617

    Article  PubMed  Google Scholar 

  31. Narita Z, Stickley A, DeVylder J, Yokoi Y, Inagawa T, Yamada Y, Maruo K, Koyanagi A, Oh H, Sawa A, Sumiyoshi T (2020) Effect of multi-session prefrontal transcranial direct current stimulation on cognition in schizophrenia: a systematic review and meta-analysis. Schizophr Res 216:367–373. https://doi.org/10.1016/j.schres.2019.11.011

    Article  PubMed  Google Scholar 

  32. d’Arma A, Isernia S, Di Tella S, Rovaris M, Valle A, Baglio F, Marchetti A (2021) Social cognition training for enhancing affective and cognitive theory of mind in schizophrenia: a systematic review and a meta-analysis. J Psychol 155(1):26–58. https://doi.org/10.1080/00223980.2020.1818671

    Article  PubMed  Google Scholar 

  33. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A (2013) Video game training enhances cognitive control in older adults. Nature 501(7465):97–101. https://doi.org/10.1038/nature12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma W, Grafton RQ, Renwick A (2020) Smartphone use and income growth in rural China: empirical results and policy implications. Electron Commer Res 20(4):713–736. https://doi.org/10.1007/s10660-018-9323-x

    Article  Google Scholar 

  35. Krause M, Zhu Y, Huhn M, Schneider-Thoma J, Bighelli I, Nikolakopoulou A, Leucht S (2018) Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 268(7):625–639. https://doi.org/10.1007/s00406-018-0869-3

    Article  PubMed  Google Scholar 

  36. Niitsu T, Shirayama Y, Matsuzawa D, Shimizu E, Hashimoto K, Iyo M (2014) Association between serum levels of glial cell-line derived neurotrophic factor and attention deficits in schizophrenia. Neurosci Lett 575:37–41. https://doi.org/10.1016/j.neulet.2014.05.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of participants who volunteered to participate in the study. Thanks to Chaohu Hospital of Anhui Medical University and corresponding authors for their support.

Funding

This work was supported by the China International Medical Exchange Foundation (grant numbers Z-2018-35-2002), the Anhui Province Outstanding Young Talents Support Program (grant nmuber gxyqZD2022022), and the Anhui Provincial Key R&D Programme (grant numbers 202004j07020030).

Author information

Authors and Affiliations

Authors

Contributions

SS, SC and YY performed experiments, analyzed data, generated figures. MG, MY, XS and BL provided patient material and discussed data. YY and XY supported data analyses. KZ wrote the manuscript. XZ, HL and KZ designed and cosupervised the study.

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Cui, S., Yao, Y. et al. Smartphone video games improve cognitive function in patients with chronic schizophrenia: a randomized controlled trial. Eur Arch Psychiatry Clin Neurosci 274, 929–939 (2024). https://doi.org/10.1007/s00406-023-01660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01660-4

Keywords

Navigation