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Abstract
Cognitive impairment has been observed in patients with various psychiatric disorders, including schizophrenia, major 
depressive disorder (MDD), and bipolar disorder (BD). Although modern therapeutic drugs can improve certain symp-
toms (i.e., psychosis, depression) in these patients, these drugs have not been found to improve cognitive impairment. The 
N-methyl-D-aspartate receptor antagonist (R,S)-ketamine has attracted attention as a rapidly acting antidepressant. In addi-
tion to its robust antidepressant effects, (R,S)-ketamine has been suggested to improve cognitive impairment in patients with 
MDD and BD, despite causing cognitive impairment in healthy control subjects. (R,S)-ketamine is a racemic mixture of equal 
amounts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Arketamine has been found to have more potent 
antidepressant-like actions than esketamine in rodents. Interestingly, arketamine, but not esketamine, has been suggested 
to improve phencyclidine-induced cognitive deficits in mice. Furthermore, arketamine has been suggested to ameliorate 
cognitive deficits in rodent offspring after maternal immune activation. In the current article, it is proposed that arketamine 
has therapeutic potential for treating cognitive impairment in patients with psychiatric disorders. Additionally, the potential 
role of the gut–microbiome–brain axis in cognitive impairment in psychiatric disorders is discussed.
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Introduction

Cognitive impairment is common in patients with vari-
ous psychiatric disorders, including schizophrenia, major 
depressive disorder (MDD), bipolar disorder (BD), autism 
spectrum disorder (ASD), post-traumatic stress disorder 
(PTSD), attention deficit/hyperactivity disorder (ADHD), 
obsessive–compulsive disorder (OCD), panic disorder, gen-
eralized anxiety disorder, and social anxiety disorder (Fig. 1) 
[1–3]. Several batteries, such as the Brief Assessment of 
Cognition in Schizophrenia (BACS), MATRICS Consensus 
Cognitive Battery (MCCB), Cambridge Neuropsychological 
Test Automated Battery (CANTAB), the Cogstate battery, 
and the Repeatable Battery for the Assessment of Neuropsy-
chological Status (RBANS) have been used to measure cog-
nitive function in humans. Using the Cogstate battery, we 
previously reported that cognitive impairment in patients 

with schizophrenia was more severe than that in patients 
with MDD [4, 5]. The affected cognitive domains in patients 
with schizophrenia include memory, attention/concentration, 
problem solving, learning, executive function, process-
ing speed, and social cognition. Furthermore, declines of 
these cognitive functions impact various domains, such as 
activities of daily living, occupational functioning, social 
functioning, relationships, health-related quality of life and 
adherence to treatment, resulting in increased direct and 
indirect costs associated with the treatment of schizophre-
nia (Fig. 2) [6]. A recent systematic review showed cogni-
tive deficits in patients with MDD in the acute and remitted 
state [3]. Cognitive impairment of psychiatric disorders is 
not just a secondary consequence of perturbed affect, despite 
a close relationship between cognition and psychiatric symp-
toms. Although certain symptoms (i.e., psychosis, depres-
sion, anxiety) in patients with psychiatric disorders could 
be alleviated by the current therapeutic drugs, these drugs 
could not improve cognitive impairment [1]. Therefore, the 
development of novel therapeutic drugs for cognitive impair-
ment is an unmet need [7–9].

Glutamatergic neurotransmission via the N-methyl-D-
aspartate receptor (NMDAR) regulates synaptic plasticity, 
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memory, and cognition. Abnormalities in glutamatergic 
neurotransmission via the NMDAR play a role in cogni-
tive impairment of psychiatric disorders (Fig. 3). In addi-
tion to psychomimetic and dissociative symptoms, NMDAR 
antagonists such as phencyclidine (PCP) and (R,S)-ketamine 
are known to cause cognitive impairment in rodents and 
humans [10–18]. There are several reports showing abnor-
malities in NMDAR-mediated amino acids (i.e., D-serine 
and L-serine) in patients with schizophrenia [19–22]. Recent 
mega-analysis of proton magnetic resonance spectroscopy 

(MRS) shows altered levels of glutamate in the brain from 
patients with schizophrenia [23]. Furthermore, abnormalities 
in NMDAR-mediated neurotransmission are implicated in 
mood disorders such as MDD and BD [24–29]. Meta-anal-
yses of MRS studies showed altered levels of glutamate in 
the brain from patients with MDD or BD [30, 31]. Interest-
ingly, there were significant correlations between cognitive 
functions and glutamate levels in the brain from first epi-
sode drug-naïve patients with MDD [32]. Collectively, it is 
likely that abnormalities in glutamatergic neurotransmission 

Fig. 1  Cognitive impairment in patients with psychiatric disorders. ADHD: attention deficits hyperactivity disorder. ASD: autism spectrum 
disorder. OCD: obsessive–compulsive disorder. PTSD: post-traumatic stress disorder. Some elements of the figure were created using resources 
from www. irasu toya. com

Fig. 2  Impact of cognitive impairment in patients with schizophrenia. 
Cognitive functions affected in patients with schizophrenia include 
memory, attention/concentration, problem solving, learning, execu-
tive function, processing speed, and social cognition. Decline of 

cognitive functioning impacts the ability of individuals to carry out 
activities of daily living, occupational functioning, social functioning, 
relationships, health-related quality of life, and adherence to treat-
ment. This figure was modified from reference [6]

http://www.irasutoya.com
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might play a role in the cognitive impairment in patients 
with psychiatric disorders (Fig. 3). Taken all together, previ-
ous research suggests that NMDAR could be a therapeutic 
target for cognitive impairment in patients with psychiatric 
disorders [14, 18, 33, 34].

It is widely recognized that (R,S)-ketamine causes cog-
nitive impairment in healthy subjects [12, 13, 35]. How-
ever, increasing evidence suggests that (R,S)-ketamine may 
improve cognitive impairment in patients with mood dis-
orders such as MDD and BD [36, 37]. In the current arti-
cle, the author reviewed the therapeutic potential of (R,S)-
ketamine and its enantiomer (R)-ketamine (or arketamine) 
for cognitive impairment in neuropsychiatric disorders. 
Furthermore, the author discussed the possible role of the 
gut–microbiota–brain axis in cognitive impairment of psy-
chiatric disorders.

Brief history of (R,S)‑ketamine and its enantiomers

In 1962, (R,S)-ketamine was synthesized as an alternative 
short-acting anesthetic of PCP [38]. In 1970, (R,S)-ketamine 
was approved for use as an anesthetic in the United States of 
America (USA). In 1985, (R,S)-ketamine was included on 
the World Health Organization’s List of Essential Medicines 
[39]. (R,S)-ketamine is a racemic mixture of equal amounts 
of (R)-ketamine (or arketamine) and (S)-ketamine (or esketa-
mine). Esketamine has greater affinity for the NMDAR than 
arketamine. Because the anesthetic effect of esketamine in 
human volunteers was found to be more potent than that of 

arketamine [40, 41], esketamine has been used as an anes-
thetic in the European Union (EU) and China.

In the research field of mood disorders, (R,S)-ketamine 
has attracted attention as a rapidly acting antidepressant [36, 
42–46]. In 2000, Berman et al. [47] reported that a single 
intravenous infusion of (R,S)-ketamine (0.5 mg/kg) pro-
duced rapidly acting and sustained antidepressant effects 
in drug-free patients with MDD. Subsequent studies con-
firmed robust antidepressant and anti-suicidal effects of 
(R,S)-ketamine (0.5 mg/kg) in treatment-resistant patients 
with MDD or BD [48–52]. (R,S)-ketamine has been widely 
used as an off-label treatment in the USA and EU, despite 
the current lack of safety data [53–55]. In 2019 and 2020, 
a nasal spray containing esketamine produced by Johnson 
and Johnson was approved in the USA and EU for treatment-
resistant patients with MDD and people at high risk of sui-
cide. However, there are several concerns about the efficacy 
and approval of esketamine nasal spray [56, 57].

An increasing number of preclinical studies has suggested 
that arketamine has greater potency and longer lasting anti-
depressant-like effects than esketamine in rodent models of 
depression, although the affinity of arketamine at NMDAR 
is less potent than that of esketamine [58–66]. Behavioral 
and biological abnormalities in rodents (i.e., hyperactivity, 
prepulse inhibition, dopamine release from the synaptic ter-
minal, abuse liability, parvalbumin (PV)-immunoreactivity 
in the prefrontal cortex (PFC), and heat shock protein HSP-
70 expression in the retrosplenial cortex) after injection of 

Fig. 3  Therapeutic potential of arketamine in cognitive impairment of 
psychiatric disorders. Abnormalities in glutamatergic neurotransmis-
sion via the NMDAR by oxidative stress and inflammation may play 
a role in the cognitive impairment and dysbiosis of gut microbiota in 
patients with psychiatric disorders. Accumulating evidence suggests 
that dysbiosis of gut microbiota may play a role in cognitive impair-

ment in patients with psychiatric disorders. Therefore, it is likely that 
arketamine improves cognitive impairment in patients with psychiat-
ric disorders through the gut–microbiota–brain axis. The figure was 
modified from references [36, 44]. Some elements of the figure were 
created using resources from www. irasu toya. com

http://www.irasutoya.com


1516 European Archives of Psychiatry and Clinical Neuroscience (2023) 273:1513–1525

1 3

arketamine in animals were reduced compared with those 
after (R,S)-ketamine or esketamine [59, 67–71].

An open-label pilot study in Brazil reported that a single 
infusion of arketamine (0.5 mg/kg) caused rapid and sus-
tained antidepressant effects in treatment-resistant patients 
with MDD [72]. Importantly, side effects (i.e., psychotomi-
metic and dissociative effects) of arketamine (0.5 mg/kg) in 
treatment-resistant patients with MDD [72] are substantially 
less severe than those of esketamine (0.2 and 0.4 mg/kg, i.v.) 
[73]. Taken together, previous findings suggest that arketa-
mine might provide a novel antidepressant without the side 
effects of (R,S)-ketamine and esketamine. A phase 2 study of 
arketamine (or PCN-101) in treatment-resistant patients with 
MDD is currently being conducted by Perception Neurosci-
ence, Inc. (New York, USA) [39, 46, 74].

It is well known that non-ketamine NMDAR antagonists/
modulators do not produce ketamine-like robust antidepres-
sant actions in patients with MDD, suggesting that NMDAR 
might not play a major role in the antidepressant effects of 
(R,S)-ketamine in patients with depression [36, 42, 75–77]. 
However, the precise molecular and cellular mechanisms 
underlying the antidepressant effects of arketamine remain 
elusive [36, 39, 46, 78–80].

Effects of (R,S)‑ketamine and its enantiomers 
on cognition in healthy subjects

NMDAR antagonists such as PCP and ketamine are known 
to cause schizophrenia-like symptoms in healthy subjects, 
including cognitive impairment [12, 13]. In addition to posi-
tive and negative symptoms, intravenous administration of 
(R,S)-ketamine (0.5 mg/kg) produced cognitive impair-
ments in healthy subjects [35]. Furthermore, intravenous 
administration of esketamine (0.1 mg/kg/min for 5 min and 
0.006 mg/kg/min for 60 min) or (R,S)-ketamine (0.2 mg/kg/
min for 5 min and 0.012 mg/kg/min for 60 min) to healthy 
subjects was found to produce significant psychopathologi-
cal and neurocognitive impairment compared with placebo 
[81]. Interestingly, esketamine, but not (R,S)-ketamine, sig-
nificantly increased the auditory alterations subscore of the 
five-dimensional questionnaire for the assessment of altered 
states of consciousness, suggesting that arketamine may have 
a potential protective effect against esketamine-induced psy-
chotomimetic effects [81]. Furthermore, a single intranasal 
infusion of esketamine (84 mg) in healthy subjects caused 
a significant cognitive performance impairment at 40 min 
for all five Cogstate tests, although there were no changes 
between the esketamine group and the placebo group at 2, 
4, or 6 h after infusion [82].

A recent meta-analysis showed acute impairment of 
cognition in healthy subjects after acute infusion of (R,S)-
ketamine or esketamine [83]. Furthermore, verbal learning 

and memory are the functions most prominently affected in 
cognitive impairment caused by acute injection of (R,S)-
ketamine or esketamine [83]. Thus, it is possible that (R,S)-
ketamine and esketamine produce cognitive impairment in 
healthy subjects.

Effects of (R,S)‑ketamine on cognitive impairment 
in patients with MDD or BD

Clinical studies suggest that (R,S)-ketamine may improve 
cognitive impairment in patients with mood disorders. Six 
repeated infusions of (R,S)-ketamine (0.5 mg/kg) were found 
to ameliorate cognitive impairment (i.e., processing speed) 
in treatment-resistant patients with MDD or BD [84–86]. 
A systematic review revealed that (R,S)-ketamine infusion 
led to significant improvements in cognitive impairment in 
treatment-resistant patients with MDD, and (R,S)-ketamine 
did not worsen cognitive function in depressed patients [87]. 
Furthermore, the improvement in working memory may be 
predictive of the anti-suicidal ideation response to (R,S)-
ketamine in treatment-resistant patients with MDD [88]. 
Repeated infusion of (R,S)-ketamine (0.5 mg/kg) caused sig-
nificant improvement of working memory in MDD patients 
with PTSD [89]. Interestingly, depression symptom severity 
and processing speed performance in patients with MDD or 
BD partially mediated the improvements in suicidal idea-
tion after repeated infusion of (R,S)-ketamine [90]. A recent 
systematic review indicated potential procognitive effects of 
subanesthetic doses of (R,S)-ketamine among patients with 
depression, although there is evidence for immediate altered 
cognitive dysfunction in healthy subjects [91]. In addition, 
precognitive effects of (R,S)-ketamine were pronounced in 
cognitive domains of executive function. A short course of 
repeated infusion of (R,S)-ketamine (0.5 mg/kg) produced 
significant improvements in several cognitive domains, 
including attention, working memory, verbal memory, and 
visuospatial memory in treatment-resistant patients with 
MDD [92]. Taken together, these findings suggest that (R,S)-
ketamine has beneficial effects on cognitive impairment in 
depressed patients, although further studies with larger sam-
ple sizes are needed.

Patients with MDD or BD typically exhibit a range of 
negative beliefs, such as worthlessness, hopelessness, and 
pessimism, and these conditions are considered to be a 
major public mental health concern [93, 94]. A recent study 
demonstrated that infusion of (R,S)-ketamine (0.5  mg/
kg) improved depressive symptoms in treatment-resistant 
patients with MDD, and that the improvement was associ-
ated with changes in belief-updating processes [95]. These 
recent data provide new insights into the cognitive mecha-
nisms of action of (R,S)-ketamine in mood disorders.
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In contrast, Ochs-Ross et al. [96, 97] reported that intra-
nasal injection of esketamine did not induce any changes in 
cognitive function of MDD patients from baseline, indicat-
ing a lack of beneficial effects of esketamine nasal spray on 
cognitive impairment.

Effects of ketamine enantiomers on PCP‑induced 
cognitive deficits in rodents

It is well known that NMDAR antagonists such as PCP 
cause cognitive deficits in rodents. Using the novel object 
recognition test, we previously reported that repeated admin-
istration of PCP (10 mg/kg/day for 10 days) caused cognitive 
deficits in mice over a long period (more than 6 weeks), and 
that PCP-induced cognitive deficits could be improved by 
subsequent sub-chronic administration of clozapine, but not 
haloperidol [98]. Using the paradigm of PCP-induced cog-
nitive deficits, we reported several candidates for cognitive 
impairment in psychiatric disorders [99–103].

We compared the effects of two ketamine enantiomers 
in a PCP-induced cognitive deficits model. Interestingly, 
PCP-induced cognitive deficits in mice were ameliorated 
after subsequent repeated intermittent administration of 
arketamine (10 mg/kg/day, twice weekly for 2 weeks), but 
not esketamine (10 mg/kg/day, twice weekly for 2 weeks) 
[104]. Western blot analysis showed decreased levels of 
brain-derived neurotrophic factor (BDNF) in the PFC and 
hippocampus of PCP-treated mice [104]. Furthermore, the 
beneficial effects of arketamine on cognitive deficits of 
PCP-treated mice were blocked by pretreatment with TrkB 

inhibitor ANA-12. These findings suggest that arketamine 
could ameliorate PCP-induced cognitive deficits via acti-
vation of BDNF-TrkB signaling in the brain [104]. Taken 
together, these findings suggest that arketamine could poten-
tially provide a useful therapeutic drug for cognitive impair-
ment in patients with schizophrenia (Fig. 3).

Cognitive impairment in the prodromal state 
of psychosis and the potential of arketamine

Cognitive impairment has been shown in the prodromal 
stage of psychosis [105–109]. Findings from meta-analyses 
support neurocognitive dysfunction as a potential detection 
and prognostic biomarker in individuals at clinical high risk 
(CHR) for psychosis [106, 107]. Therefore, it is important 
to treat cognitive impairment in individuals at CHR for psy-
chosis to block the conversion to psychosis.

Epidemiological data suggest that maternal immune acti-
vation (MIA), such as maternal infection, might be asso-
ciated with the risk of neuropsychiatric disorders, such as 
schizophrenia and ASD in offspring [110, 111]. During 
the coronavirus disease 2019 (COVID-19) pandemic, an 
increasing number of pregnant women have become infected 
with COVID-19 worldwide, and MIA induced by COVID-
19 infection has been suggested as a risk factor for schizo-
phrenia and ASD [112–114]. A cohort study shows that 
severe acute respiratory syndrome-coronavirus-2 (SARS-
CoV-2) exposure in utero may be associated with neurode-
velopmental sequelae in some offspring [115].

Fig. 4  Therapeutic potential of arketamine in subjects at ultra-high 
risk (UHR) for psychosis. Maternal immune activation (MIA), such 
as that caused by maternal infection, causes inflammatory events in 
pregnant women, resulting in higher levels of inflammatory biomark-
ers (i.e., C-reactive protein [CRP], IL-6, and TNF-α) in the blood and 
tissues. Epidemiological data suggest that MIA can increase the risk 

of ASD and schizophrenia in offspring. Because subjects at UHR for 
psychosis have cognitive impairment as a prodromal symptom, early 
intervention using arketamine may block the onset of neuropsychiat-
ric disorders in subjects at UHR of psychosis. This figure was modi-
fied from Fig. 3 in reference [113]. Some elements of the figure were 
created using resources from www. irasu toya. com

http://www.irasutoya.com
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Toll-like receptor-3 agonist polyriboinosinic–polyribo-
cytidylic acid (poly[I:C]) has been used to establish a rodent 
model of MIA [116, 117]. Exposure of pregnant mice to 
poly(I:C) causes cognitive deficits in juvenile offspring 
[118–121], and these cognitive deficits in juvenile offspring 
appear to be similar to the prodromal stage of psychosis.

We investigated whether arketamine could prevent the 
development of psychosis-like phenotypes in adult off-
spring after MIA. We examined the effects of arketamine 
(10 mg/kg/day, twice weekly for 4 weeks) during juvenile 
and adolescent stages (P28–P56) on the development of cog-
nitive deficits, loss of PV-immunoreactivity in the medial 
PFC (mPFC), and decreased dendritic spine density in the 
mPFC and hippocampus from adult offspring after prena-
tal poly(I:C) exposure [122]. Repeated intermittent admin-
istration of arketamine (10 mg/kg/day, twice weekly for 
4 weeks) during juvenile and adolescent stages (P28–P56) 
significantly blocked the development of cognitive defi-
cits, reduced PV-immunoreactivity in the prelimbic (PrL) 
of mPFC, and decreased dendritic spine density in the PrL 
of the mPFC, CA3, and dentate gyrus of the hippocampus 
from adult offspring after MIA. Furthermore, pretreatment 
with TrkB inhibitor ANA-12 significantly blocked the ben-
eficial effects of arketamine on cognitive deficits of adult 
offspring after MIA [122]. These data suggest that repeated 
intermittent administration of arketamine during the juve-
nile and adolescent stages could prevent the development 
of psychosis in adult offspring after MIA through activa-
tion of BDNF-TrkB signaling. Therefore, it is possible that 
arketamine represents a useful prophylactic drug to prevent 
subsequent conversion from UHR to psychosis (Fig. 4).

Dysbiosis of gut microbiota and cognitive 
impairment of psychiatric disorders

Accumulating evidence suggests the role of dysbiosis of gut 
microbiota in a variety of psychiatric disorders [123–126]. 
A narrative review shows that intervention of gut micro-
biota can improve cognitive or brain function, suggesting 
a role of gut microbiota in cognitive performance [127]. A 
recent population-based study of middle-aged adults demon-
strated that microbial community composition on the basis 
of beta-diversity was associated with all cognitive measures 
in multivariable-adjusted analysis [128], suggesting a role 
of gut microbiota in cognitive decline with aging. It has also 
been suggested that dysbiosis of gut microbiota may play 
a role in cognitive impairment in patients with psychiatric 
disorders such as schizophrenia, MDD, and BD [128–132].

In addition to rapid antidepressant-like effects, arketa-
mine, (R,S)-ketamine, and (S)-norketamine have been sug-
gested to improve abnormal composition of gut microbiota 
in mice with depression-like behaviors [133–138]. Further-
more, arketamine could ameliorate abnormal composition 

of gut microbiota in mouse models of multiple sclerosis 
[139] and postmenopausal osteoporosis [140]. Consider-
ing the beneficial effects of arketamine on dysbiosis of gut 
microbiota, it is likely that arketamine may improve cogni-
tive impairment in patients of psychiatric disorders through 
the gut–microbiota–brain axis [36, 42, 44, 125, 126]. There-
fore, it is of interest to investigate whether arketamine can 
improve cognitive impairment and abnormal composition of 
gut microbiota in patients with psychiatric disorders.

Conclusion and future directions

As stated in the introduction, cognitive impairment is shown 
in patients with a variety of psychiatric disorders. Neural 
mechanisms of cognitive impairment between schizophrenia 
and mood disorders such as MDD and BD may be differ-
ent. However, a systematic review of MRS studies suggest 
that abnormal neurotransmission of glutamate and GABA 
(γ-aminobutyric acid) plays a role in cognitive impairment 
in patients with schizophrenia and mood disorders such as 
MDD and BD [141]. Given the role of glutamine–gluta-
mate–GABA cycle in the brain [14, 16, 142], it is possible 
that abnormalities in the neurotransmission of glutamate and 
GABA may contribute to cognitive impairment in patients 
with psychiatric disorders such as schizophrenia and mood 
disorders. Nonetheless, further study is needed to ascertain 
the role of glutamate and GABA on cognitive impairment in 
patients with a variety of psychiatric disorders.

As discussed above, accumulating clinical data suggest 
that (R,S)-ketamine could improve cognitive impairment 
in patients with MDD or BD, although it causes cognitive 
impairment in healthy subjects. Preclinical data suggest that 
arketamine, but not esketamine, can improve PCP-induced 
cognitive deficits in rodents [104]. Furthermore, there is evi-
dence that arketamine can ameliorate cognitive deficits in 
offspring after MIA through activation of BDNF-TrkB sign-
aling [122]. Preclinical findings suggest that BDNF-TrkB 
signaling could play a role in the beneficial effects of arketa-
mine in several animal models [36, 42–45, 66, 143–147]. 
However, the precise molecular and cellular mechanisms 
underlying the beneficial effects of arketamine remain elu-
sive [36, 42–46, 148].

The COVID-19 pandemic began at the end of 2019, and 
continues to the present. The COVID-19 pandemic causes 
short-term and long-term mental health problems in survi-
vors after SARS-CoV-2 infection [149–152]. A recent meta-
analysis suggests that half of COVID-19 survivors have a 
high burden of either physical or mental sequelae (i.e., cog-
nitive impairment) for up to at least 12 months [153]. Addi-
tionally, it may be useful to investigate whether arketamine 
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can improve long-term mental sequelae in COVID-19 
survivors.

Clinical trials of arketamine in healthy subjects and 
treatment-resistant patients with MDD are currently being 
conducted by several pharmaceutical companies, includ-
ing Perception Neuroscience Inc. (USA), Otsuka Pharma-
ceutical Co., Ltd. (Japan), Jiangsu HengRui Medicine Co., 
Ltd. (China), and Jiangsu Enhua Pharmaceutical Co., Ltd. 
(China) [46]. Given the detrimental effects of cognitive 
impairment in patients with psychiatric disorders [1], it is 
of great interest to investigate whether arketamine could 
improve cognitive impairment in a number of psychiatric 
disorders, including schizophrenia, MDD, and BD. Finally, 
future clinical studies are needed to ascertain the efficacy of 
arketamine on cognitive impairment in patients with psy-
chiatric disorders.
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