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Abstract
Childhood trauma (CT) has been linked to increased risk for psychosis. Moreover, CT has been linked to psychosis pheno-
types such as impaired cognitive and sensory functions involved in the detection of novel sensory stimuli. Our objective was 
to investigate if CT was associated with changes in hippocampal and superior temporal gyrus functional activation and con-
nectivity during a novelty detection task. Fifty-eight young adults were assigned to High-CT (n = 28) and Low-CT (n = 24) 
groups based on their scores on the childhood trauma questionnaire (CTQ) and underwent functional Magnetic Resonance 
Imaging during an auditory oddball task (AOT). Relative to the Low CT group, High CT participants showed reduced func-
tional activation in the left hippocampus during the unpredictable tone condition of the AOT. Furthermore, in the High CT 
group, psychophysiological interaction analysis revealed hypoconnectivity between the hippocampus and temporal and medial 
regions. The present study indicates both altered hippocampal activation and hippocampal-temporal-prefrontal connectivity 
during novelty detection in individuals that experienced CT, similarly to that reported in psychosis risk populations. Early 
stressful experiences and environments may alter hippocampal function during salient events, mediating the relationship 
between childhood trauma and psychosis risk.

Keywords  Schizophrenia spectrum · Neuroimaging · Development

Introduction

Childhood trauma (CT) is a common experience world-
wide, and it is estimated about a third of the general popu-
lation may be affected [1]. Adverse childhood events have 
been widely linked to an increased risk for psychiatric 
disorder and mental ill health (e.g. [2, 3]). In particular, 
there is growing evidence that CT can increase the risk 
of psychosis and psychosis like experiences [4–10], and 
may be a greater risk factor than a genetic predisposition, 
which is now thought to explain approximately 2% of the 
phenotypic variance in schizophrenia cohorts (Psychosis 
Endophenotypes International Consortium, 2014).

A seminal meta-analysis by Varese and colleagues [9] 
reported that the association between childhood adversity 
and psychosis was highly significant and that the estimated 
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population attributable risk was 33% across studies. These 
findings indicate that childhood adversity is strongly asso-
ciated with increased risk for psychosis in adulthood.

Further, the psychopathological outcomes associated 
with CT may be mediated by alterations in cognitive 
processes, that are also observable in the development 
of psychotic disorders [11]. In particular, CT has been 
linked to adverse cognitive consequences such as deficits 
in attention, memory, emotion regulation, and inhibitory 
functioning [12].

One cognitive process of interest when studying CT in 
relation to the development of psychosis, is novelty sali-
ence, which is thought to require sensory specific atten-
tion and memory as well as working memory processes 
involved in updating internal representations of the envi-
ronment [13]. Previous studies demonstrate that these 
processes are altered in patients with schizophrenia and 
psychosis risk cohorts. A useful paradigm to investigate 
updating of working memory and cognitive control is to 
assess the neural systems associated with processing target 
stimuli in the context of oddball tasks [14]. Typically, in 
an oddball detection task, the target stimulus is presented 
much less frequently than the background, standard or reg-
ular stimuli, and successful task performance requires con-
textual attention and updating and working memory [15]. 
Patients with schizophrenia show diffuse hypo functioning 
during novelty processing in frontal, temporal and pari-
etal cortices, as well as amygdala and thalamus [14]. In 
addition, recent studies suggested that neural response in 
the hippocampal-striatal-midbrain circuit during salience 
processing is altered in patients with positive psychotic 
symptoms [16, 17], and in patients in the early stages of 
psychosis development [18, 19].

Whilst psychosis [20–22] and psychosis risk states [23] 
have been linked to a range of functional, anatomical and 
neurochemical changes in the brain, recently a number of 
neuroimaging studies have also investigated the effects 
of childhood trauma on brain function and structure (e.g. 
[24, 25] for reviews). Intriguingly, there appears to be 
considerable overlap between neural changes seen in 
psychosis, and changes seen in an adult population that 
have experienced CT [26], regardless of whether a for-
mal diagnosis is present or not [24]. One of the most 
robust neuroimaging findings in psychosis and schizo-
phrenia populations is alterations in temporal lobe activa-
tion. Reduced or altered medial and lateral temporal lobe 
volume, activation and connectivity have been widely 
reported in psychosis populations (see [27]). In particular, 
altered superior temporal gyrus (STG) structure, function 
and connectivity is seen in psychosis and schizophrenia 
populations [28] and linked to the experience of audi-
tory verbal hallucinations [29–36]. Given the established 
association between childhood trauma and auditory verbal 

hallucinations in adulthood [8], it is interesting that adults 
who have experienced CT also show altered structure in 
language and speech sensory regions encompassing the 
STG [37].

Previous functional neuroimaging studies in psychosis 
high-risk cohorts also report altered medial temporal lobe 
activity, perfusion, and connectivity in the hippocampus and 
parahippocampus [29, 38–40]. Behaviourally, altered hip-
pocampal functional activity and connectivity (as part of a 
wider hippocampal-midbrain-striatal network) may underlie 
aberrant salience processing [19, 40–42] as well as the forma-
tion of delusions [43]. Moreover, in relation to CT, the hip-
pocampus is a particular region of interest because the effects 
of stress and trauma, are known to affect the hippocampus, via 
the hypothalamic–pituitary–adrenal (HPA) axis [4, 11]. The 
hippocampus, which is involved in learning and memory, is 
particularly sensitive to stress [44, 45], and has shown struc-
tural [46, 47] and functional [48, 49] changes linked to early 
stress exposure.

The main objective of the present study, given the link 
between CT and psychosis and psychosis like experiences, 
was to investigate if CT is associated with changes in hip-
pocampal and STG functional activity and connectivity during 
novelty detection. We hypothesised that, relative to a low CT 
group, young adults with high levels of CT would show altered 
functional activity and connectivity in STG and hippocampal 
regions of interest (ROIs) during an auditory oddball task, 
particularly during the unpredictable tone condition. We also 
predicted that in a high CT group, altered functional activity 
and connectivity in these ROIs would be associated with CT 
levels and psychosis like experience.

Methods

Participants

Fifty-eight participants were recruited through Facebook 
groups on two sites: Roehampton and Royal Holloway 
Universities student groups. They were selected from 230 
respondents who completed a Qualtrics (https://​www.​qualt​
rics.​com) screening survey, using the Childhood Trauma 
Questionnaire (CTQ) to establish two groups: High CT 
group (> 40.5, n = 29), and a Low CT group (< 29.5, n = 29) 
based on the upper and lower quartiles of the sample dis-
tribution of the first 100 respondents. Exclusion criteria 
included: presence of contraindications for MRI scanning 
(i.e. presence of metal, pregnancy, etc.), current use of pre-
scribed medication for neuropsychiatric disorders, or history 
of psychiatric disorders and current use of illicit substances. 
These criteria were assessed via a self-report pre-screening 
survey. Absence of psychiatric or neurological diagnosis was 
assessed with two questions in the screening survey: “have 

https://www.qualtrics.com
https://www.qualtrics.com
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you ever been diagnosed with a psychiatric condition (e.g. 
ADHD, depression, anxiety, mood disorders)?” and “Have 
you ever been diagnosed with a neurological disorder or 
disease (e.g. epilepsy, stroke, head injury, seizures, brain 
tumours, brain surgery, Parkinson’s disease)?”.

Participants in the Low and High CT groups were 
matched for age, gender, estimated IQ, tobacco, cannabis, 
and alcohol use. A total of six participants were excluded 
for data analysis due to missing or unusable MRI and/
or questionnaire data. Thus, the final sample included 52 
participants, with 28 participants included in the High-CT 
group and 24 participants included in the Low-CT group 
(Table 1). Written informed consent was obtained from all 
participants under protocols approved by the Ethical com-
mittee of Roehampton University. They were reimbursed 
to the amount of £20 for their visit.

Clinical and cognitive assessments

Participants’ recall of childhood trauma was measured 
using the Childhood Trauma Questionnaire (CTQ, [50]), 
and is divided in five subscales: emotional, physical, sex-
ual abuse, emotional, and physical neglect.

The Cannabis experience Questionnaire (CEQ) [51] total 
score was used to match Low and High CT groups for can-
nabis consumption, to control for potential effect of cannabis 
consumption on main variables of interest. We also assessed 
Alcohol consumption in terms of alcohol units per day and 
Tobacco consumption as cigarettes per day.

The Brief Symptom Inventory (BSI) was used to meas-
ure self-reported clinically relevant psychological symp-
toms [52]. The positive symptom distress indices (para-
noia and psychoticism) were used to assess psychosis like 
symptoms in our participants and as correlates of interest 
in our functional activity and connectivity MRI analyses.

The Depression and Anxiety Stress Scale (DASS) [53] 
total score was used in second-level fMRI analyses as a 
covariate of no interest to control for current levels of nega-
tive emotions/states.

Intellectual functioning was measured with a validated 
short version of the Wechsler abbreviated scale of intelli-
gence (WASI II; [54] and working memory was assessed 
with the digit span backward task [55]. These measures 
were used to ensure that our High and Low CT groups were 
matched for estimated IQ and working memory function.

Descriptive statistics and statistical comparisons between 
High and Low CTQ groups on all demographic data and 
questionnaire’s variables are presented in Table 1 and sup-
plementary table S1, see supplementary material for more 
details.

Experimental design: Auditory Oddball Task (AOT)

The AOT used consists of a classic auditory oddball para-
digm adapted for fMRI block design, with alternating ON (9 
blocks) and OFF (9 blocks) periods. During ON blocks par-
ticipants were presented with three conditions: Predictable 
(P), Unpredictable (UP), and Passive listening (PL). During 
the P condition, a deviant tone interrupted a regular tone 
at predictable intervals. In UP condition, the deviant tone 
interrupted the regular tone at random, unpredictable, inter-
vals. During PL, only the regular tone was presented with no 
deviant. The regular tone was set at 1000 Hz and the deviant 
tone was set at 1500 Hz. Noise reduction headphones (Sen-
simetrics Ltd.) were used to minimise scanner background 
noise and all participants reported that tone stimuli during 
the AOT were clearly audible. The sound level was adjusted 
for participants individually, however, mean sound level that 
participants received in CT high and Low groups did not 
differ in terms of decibel (mean High CT = 94.8, Sd = 3.11; 
mean Low CT = 95.5, Sd = 2.98; t(50) = − 0.794, p = 0.431). 
See supplementary material for a detailed description of the 
block’s durations.

Data acquisition and analyses

Structural and functional MRI images were acquired using 
a 3 T Siemens Magnetom TIM trio scanner. Full acquisition 
details can be found in supplementary material. FMRI data 
were processed and analysed with the Statistical Parametric 
Mapping 12 (SPM12; Welcome Department of Neurosci-
ence, London, UK) software package. Functional images 
were realigned, and participants’ motion did not exceed 
3 mm in any of the six directions. Each participant’s struc-
tural image was co-registered and segmented. Finally, nor-
malisation was achieved to 1  mm3 Montreal Neurologic 
Institute (MNI) space and images were smoothed with a 
8 mm at full width half maximum three-dimensional Gauss-
ian Kernel.

First-level models were designed to investigate main-
effects of interest (P tone blocks vs. UP tone blocks). At 
the first level, the P and UP tone conditions were entered 
into a Generalized Linear Model (GLM) and contrast images 
were estimated for each participant using the estimated GLM 
parameters. The six movement parameters were included as 
additional regressors of no interests in the design matrix at 
the first-level analysis. To examine the main effect of task 
(UP tone blocks vs. P tone blocks), a second-level random-
effects one-sample t-test was specified in SPM12. To exam-
ine the main-effect of group, a second-level random-effects 
independent sample t-test was specified with a between 
group factor of High and Low CT groups for the condition 
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of interest (UP tone blocks < or > P tone blocks). As High 
and Low CT groups were matched for age, gender, and IQ, 
these variables were not included in the second-level GLM 
as covariates of no-interest. To control for current affective 
states, total DASS scores (centred around overall mean) 
were included as a covariate of no-interest in the second-
level GLM.

We first used an initial cluster defining threshold of 
p < 0.05 uncorrected before we enforced a peak voxel-wise 
height threshold of family wise error (FWE) correction at 
a threshold of p < 0.05. We used small volume correction 
(SVC) for two a-priori, 8 mm regions-of-interest (ROI) in 
the bilateral hippocampus [± 38, − 16, − 14; Modinos et al., 
2020] and bilateral STG [± 57, -27, 6; Mathiak et al., 2002].

PPI connectivity analysis

A psychophysiological analysis (PPI) was used to measure 
functional connectivity between the chosen seed region(s) 
and each voxel in the whole brain during each experimental 
condition (UP > P). For the PPI analysis, two participants 
were excluded because they did not show any activation in 
the defined ROIs, the final groups for PPI analysis therefore 
included 28 High CT (mean age = 20.8, sd = 1.83) and 22 
Low CT (mean age = 20.0, sd = 1.70) participants.

Based on the group GLM result (see Results), a 6 mm 
region of interest was defined around the SVC coordinates 
of interest [− 38, − 18, − 14], representing the group-effect 
(Low CT > High CT) in the left hippocampus. The PPI term 
was estimated as the first eigenvariates of the extracted 
BOLD signal of the seed volume of interest (VOI) for each 
subject. Haemodynamic deconvolution was used on the 
extracted time-series, which were then multiplied by the 
psychological variable (demeaned time course of the task) 
and re-convolved with the HRF to obtain the PPI interaction 
term. Time-series were not corrected for any covariates, as 
potential confounds were factored into the previous stages 
of analyses.

The psychological, physiological and interaction terms 
were entered in a GLM for each subject with the interaction 
term as regressor of interest. Subsequently they were entered 
in an independent two-sample t-test to examine differences 
between High and Low CT groups. All statistical whole 
brain maps were thresholded at p < 0.001 (uncorrected) and 
k > 50. For voxels that survived this threshold at the peak 
level, a cluster-extant family-wise correction (FWE-c) for 
multiple comparison at p < 0.05 was applied.

Behavioural task

Behavioural data from the AOT task were analysed to deter-
mine omission and commission error rates. Omission errors 
appear when participants miss a response to the standard 

1000 Hz tone. A commission error occurs when participants 
erroneously respond to the target deviant tone (1500 Hz). 
Response time and percentages of correct and incorrect 
responses were calculated across all trial types and con-
trasted between High and Low CT groups using independ-
ent sample t-tests.

Results

Participant characteristics, sub‑clinical data

Participant demographic and clinical data are shown in 
Table 1. Overall, Low and High CT groups were matched for 
Age, Sex, Ethnicity, level of education, WRAT estimated IQ, 
cannabis, alcohol, and tobacco use. By design the High CT 
groups had significantly higher CTQ scores (total and sub-
scales) relative to the Low CT group. As would be expected, 
participants in the High CT group also had significantly 
higher BSI and DASS scores (total and subscales).

Behavioural AOT performance

During the AOT High and Low CT groups did not differ 
in terms of task performance with both groups complet-
ing the task with a high level of accuracy: Overall, 94.18% 
(sd = 9.84) correct responses for the Low CT group and 
91.69% (sd = 11.6) correct responses for the High CT group 
(t = 0.807, p = 0.423).

Error Rates: High and Low CT groups did not differ in 
terms of omission errors (failing to respond when presented 
with a stimulus tone of 1000 Hz). Error rates were 6.30% 
(sd = 12.2) in the Low CT group, and 8.40% (sd = 14.4) in 
the High CT group (t = − 0.547, p = 0.587; see Supplemen-
tary Figure S1.C). High and Low CT groups differed slightly 
in terms of commission errors (erroneously responding 
when being presented with the deviant tone of 1500 Hz). 
Error rates were 3.78% (sd = 4.34) in the Low CT Group 
and 7.98% (sd = 8.92) in the High CT group (t = − 2.049, 
p = 0.046; see Supplementary Fig. S1.D). Relative to the 
Low CT groups, the High CT group made more commission 
errors during the P tone blocks (Low CT, 2.09% (sd = 3.84); 
High CT, 6.84% (sd = 8.16); t = − 2.547, p = 0.014, see Sup-
plementary Fig. S1.F). However, no group difference was 
observed during the UP tone blocks (t = − 1.182, p = 0.243, 
see Supplementary Fig. S1.H).

Reaction Times: Mean reaction times for correct trials 
(correctly pressing the button when presented with the stim-
ulus tone of 1000 Hz), did not differ between groups (Low 
CT, rt = 0.430 s; High CT, rt = 0.428; t = 0.06, p = 0.946). 
See Supplementary Table S3 and Supplementary Figure 
S1.I.
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fMRI Analysis of AOT: Task Effects

Relative to P tone blocks, during UP tone blocks there 
was greater activation in the STG ROI (left STG: x = − 54, 
y = − 32, z = 10, Zpeak = 2.51, p(FWE) = 0.048). There were 
no regions within the STG ROI that showed greater activa-
tion during P tone blocks relative to UP tone blocks. Relative 
to P tone blocks, during UP tone blocks activation in the hip-
pocampal ROI was observed at an uncorrected threshold but 
was non-significant after peak level correction was applied 
(x = − 32, y = − 16, z = 10, Zpeak = 1.67, p(FWE) = 0.16). See 
Fig. 1 (Left side) and Table 2A).

fMRI analysis of the AOT: group effects

In the STG ROI there were no significant group effects 
for the contrast UP tone > P tone blocks. In the hippocam-
pal ROI during the UP tone > P tone block contrast, the 
High CT group showed reduced activation in the left 
hippocampus (x = − 34, y = − 20, z = − 10, Zpeak = 2.62, 
p(FWE) = 0.036) relative to the Low CT group (see Fig. 1 
(Right panel), Table 2B)). There were no areas in the right 
hippocampal ROI where activity was greater in the High 
relative to the Low CT group.

Functional connectivity: PPI effects 
during unpredictable versus predictable condition

The between-group comparison of PPI (functional con-
nectivity) effects during UP tone > P tone blocks showed 
that compared to the Low CT group, the high CT group 

had reduced functional connectivity between the left-hip-
pocampus (seed region) the bilateral inferior temporal gyri 
(right (x = 50, y = − 48, z = − 22): Zpeak = 4.53, t = 4.79, 
p(FWE) = 0.001; left (x = − 54, y = − 64, z = − 18): 
Zpeak = 4.09, t = 4.28, p(FWE) = 0.012); left subcallosal 
gyrus (x = − 4, y = 6, z = − 10; Zpeak = 3.84, t = 4.01, p 
(FWE) = 0.006); and right superior temporal gyrus (x = 58, 
y = 10, z = -8; Zpeak = 3.69, t = 3.84, p (FWE) = 0.031). See 
Table 2C) and Fig. 2.

Discussion

We examined the functional architecture of two regions of 
interest, i.e. the hippocampus, and superior temporal gyrus 
(STG), during a novelty salience task in young adults report-
ing exposure to childhood trauma (CT). We chose to focus 
on these regions as functional activation and connectivity in 
the hippocampus and STG have previously been shown to 
be altered in schizophrenia [14, 16, 17] and early psychosis 
cohorts [18, 19, 40] during salience and oddball tasks.

Although the effect of conditions in the hippocampal 
region of interest failed to reach a corrected level of sta-
tistical significance, possibly due to adaptive habituation 
[56, 57], we did observe a group-effect in hippocampal 
functional activation and connectivity. In line with our first 
prediction, individuals with higher levels of CT (High CT 
group) showed reduced hippocampal activation during the 
unpredictable tone condition, suggesting dysregulation at 
the neural substrate of salience processing in this group. 
We then used a seed-based approach to examine functional 
coupling between hippocampus and the whole brain during 

Fig. 1   Left Panel: Activation Maps showing Task effects: the contrast 
unpredictable tone blocks > predictable tone block was associated 
with greater activation in the Left STG. Right Panel: Activation Maps 
showing Group effects: reduced activity in the left hippocampus 

in the High CTQ relative to the Low CTQ group during unpredict-
able > predictable tone blocks. All results are corrected using Family 
Wise Error thresholds p < .05
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salience processing. Findings revealed that the High CT 
group showed significantly reduced functional connectiv-
ity between the left hippocampus (seed region) and inferior 
and superior temporal gyri, and the medial PFC during the 
unpredictable tone condition. Previous findings have shown 
the same left-hemisphere bias in victims of abuse, with 
reduced connectivity notably in typical attention network 
[58]. Moreover, in the context of novelty detection of faces, 
studies showed altered activation of the left hippocampus 
related to degree of exposure to childhood maltreatment 

[59–61]. Thus, whilst using a different salience paradigm 
to those used in previous studies (Blackford, Allen, Cowan, 
& Avery, 2013; Edmiston & Blackford, 2013; Hart et al., 
2017), we showed similar CT-related alterations in the hip-
pocampus during a novelty salience/detection task. We also 
add to previous findings by showing that during salience 
detection, CT is associated with reduced hippocampal-lat-
eral temporal-mediofrontal functional connectivity.

During the unpredictable (UP) tone condition (rela-
tive to the predictable (P) tone condition), we did observe 

z=120z=108 z=123RL RL RL

Seed VOI

A C

D

B

SeeS dd VVOI

Fig. 2   Functional connectivity (PPI) during UP > P tone blocks: 
regions exhibiting reduced functional connectivity with the seed VOI 
(Left hippocampus showed in dark Blue and in box D) in the High 
CTQ group. A Right and left inferior temporal gyri (ITG) in Yellow; 

B left subcallosal gyrus (l-SubcallosalG) in cyan; C right superior 
temporal gyrus (r-STG) in red. p(FWE) < 0.05. Bar charts illustrate 
reduced functional connectivity (PPI parameters) in the High-CTQ 
group relative to the Low-CTQ group
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increased activation in the left STG (a task effect). Increased 
activation in the STG region is thought to correspond to the 
evoked P300 component (a component sensitive to unpre-
dictable events) and appears to involve a distributed network 
including, temporo-occipital and superior temporal regions 
[62–65]. Furthermore, Downar and colleagues [66], sug-
gested that the STG plays a central general role in identify-
ing salient stimuli within the sensory environment across 
modalities. Contrary to our prediction however, we did not 
observe a group effect for functional activation in the STG 
region of interest during the AOT. However, functional con-
nectivity between the hippocampal seed region and infe-
rior and superior temporal gyri was reduced in the High 
CT group relative to Low CT group. Previous ERP work 
[67, 68] suggests that the presentation of deviant tones is 
associated with bidirectional connectivity changes within 
temporal and frontal regions which may be important for 
inferring the level of predictability of sensory inputs. Our 
findings suggest that, although no differences in functional 
activation were seen between Low and High CT groups, 
wider functional networks, that include lateral temporal lobe 
hubs, are affected by CT.

We also predicted that these functional changes in the 
High CT group would be associated with psychosis like 
experiences. Indeed, in the High CT group, changes in left 
hippocampus activation and connectivity during the unpre-
dictable tones condition were similar to those reported in 
schizophrenia [14, 16, 17] and clinical high-risk groups 
(Allen, Chaddock, et al., 2012; Allen et al., 2011; Modinos 
et al., 2020; Winton-Brown et al., 2017), congruent with the 
notion that altered hippocampal activation during stimulus 

novelty are present in psychosis risk cohorts. However, in 
the present study we did not test for a statistical association 
between reduced hippocampal activation and connectivity 
and psychosis like experiences. Thus, it remains unclear if 
changes in hippocampal function due to CT increases the 
likelihood of psychosis like symptoms or increases risk for 
the psychotic like experiences.

The psychophysiological (PPI) analysis revealed 
reduced functional connectivity in the High CT group 
during novelty detection, between the hippocampus and 
bilateral inferior temporal gyri, right STG, and middle 
prefrontal cortex. This novelty detection network includes 
sensory cortices, medial PFC, and the anterior hippocam-
pus, regions that have been identified in several studies 
using various experimental novelty-detection paradigms 
[69–72]. Interestingly, our findings are in line with exist-
ing literature, showing that alterations in the hippocampus 
were associated with exposure to stress, trauma and child-
hood maltreatment [73, 74]. Overall, the present results 
seem to point towards alterations in a network implicated 
in novelty detection, including hippocampal, temporal, and 
mid PFC regions, that are associated with more physical 
and sexual forms of childhood maltreatment.

Limitations

Although we had an adequate sample of participants to 
detect functional group effects [75], these results would 
benefit from replication in a larger sample. Our definition 
of high and low CT groups was also somewhat arbitrary 

Table 2   MNI coordinates and labels of areas showing significant 
A) increased activation unpredictable > predictable contrast; B) 
decreased activation in unpredictable vs predictable contrast between 

groups (High CTQ < Low CTQ); C) Reduced functional connectivity 
(PPI parameter estimates) based on the left-hippocampus seed region 
(High CTQ group < Low CTQ group)

Note. Coordinates of peak effects are provided in MNI space, Montreal Neurological Institute, BA, Brodman area. Neuroanatomical locations of 
activations were identified using Talairach Client software

k t P (unc) MNI(x,y,z) Hemisphere Lobe Region BA

A) Task Effect
 122 2.60 0.006 − 54, − 32, 10 L Temporal Superior Temporal Gyrus 41

2.51 0.008 − 60, − 32, 10 L Temporal Superior Temporal Gyrus 22
2.36 0.011 − 60, − 30, 6 L Temporal Superior Temporal Gyrus 42
2.32 0.012 − 62, − 24, 8 L Temporal Superior Temporal Gyrus 42

B) Group Effect
 56 2.73 0.004 − 34, − 20, − 10 L Parahippocampal gyrus, Hippocampus

2.44 0.009 − 34,− 18,− 14 L Parahippocampal gyrus, Hippocampus
2.36 0.010 − 36,− 18,− 18 L Temporal Sub-Gyral 20

C) PPI analysis
134 4.79 0.001 50, − 48, − 22 R Temporal Inferior Temporal Gyrus 37
73 4.58 0.012 − 54, − 64, − 18 L Temporal Inferior Temporal Gyrus 37
92 4.01 0.006 − 4, 6, − 10 L Frontal Subcallosal Gyrus 25
51 3.84 0.031 58, 10, -8 R Temporal Superior Temporal Gyrus 38
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and based on the upper and lower quartiles of the 100 first 
respondents. As such, results must be interpreted with cau-
tion. Furthermore, the CTQ is a self-report retrospective 
measure which relies upon autobiographical recall that 
may be biassed by current affective states [76]. Besides, 
we could not assess whether the traumatic events in the 
High CT group were suffered during early childhood or 
more recently in mid adolescence, this should be taken 
into consideration when investigating further brain func-
tion and development. Also, we classified our participants 
based on the total CTQ scores, however abuse profiles 
might differ in terms of structural, behavioural and psy-
chiatric consequences [77, 78]. Thus, different profiles 
(sexual abuse, physical abuse, emotional abuse) might be 
associated with different neural signatures. Furthermore, 
we did not detect hippocampal activation at a corrected 
threshold level for the main task effect, during unpredict-
able tones relative to predictable tones. Whilst our a priori 
ROI was sensibly informed by findings from a previous 
study ([40]), an ROI approach may have limited observ-
able effects in the present study in two ways. First, there 
may be extrahippocampal tissue or CSF included within 
the spherical ROI used, contributing to noise in the BOLD 
signal. Second, childhood trauma is associated with reduc-
tions in hippocampal volume. It may be the case that more 
extrahippocampal tissue or CSF is being included in the 
high CT group as a result. Finally, the hippocampus can be 
divided in subfields, which might be differentially affected 
by childhood trauma. Thus, replication of the results with 
inclusion of hippocampal subfields might bring new and 
more precise insight on the specificities of this region 
related to aberrant salience processing and childhood 
trauma.

Conclusions

The findings from the present study indicate both altered 
hippocampal activation and hippocampal-temporal-prefron-
tal connectivity in the context of novelty salience in indi-
viduals who reported previous childhood trauma. Whilst 
these functional changes appear to be linked to childhood 
maltreatment, the association with psychosis like experi-
ences, and potentially psychosis risk, was not established. 
Nevertheless, the neural signature of novelty salience pro-
cessing/detection in a high CT group is similar to that seen 
in psychosis and psychosis risk cohorts. Future neuroimag-
ing research need to focus on how childhood trauma influ-
ences the stress-response system which in turns may affect 
medial temporal function, and consequently the function of 
brain areas important for cognition such as novelty salience 
sustained by the hippocampus and prefrontal regions [44].
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