Skip to main content
Log in

White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Transcranial direct current stimulation (tDCS) has been used as treatment for depression, but its effects are heterogeneous. We investigated, in a subsample of the clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECTTDCS), whether white matter areas associated with depression disorder were associated with tDCS response. Baseline diffusion tensor imaging data were analyzed from 49 patients (34 females, mean age 41.9) randomized to escitalopram 20 mg/day, tDCS (2 mA, 30 min, 22 sessions), or placebo. Antidepressant outcomes were assessed by Hamilton Depression Rating Scale-17 (HDRS) after 10-week treatment. We used whole-brain tractography for extracting white matter measures for anterior corpus callosum, and bilaterally for cingulum bundle, striato-frontal, inferior occipito-frontal fasciculus and uncinate. For the rostral body, tDCS group showed higher MD associated with antidepressant effects (estimate = −5.13 ± 1.64, p = 0.002), and tDCS significantly differed from the placebo and the escitalopram group. The left striato-frontal tract showed higher FA associated with antidepressant effects (estimate = −2.14 ± 0.72, p = 0.003), and tDCS differed only from the placebo group. For the right uncinate, the tDCS group lower AD values were associated with higher HDRS decrease (estimate = −1.45 ± 0.67, p = 0.031). Abnormalities in white matter MDD-related areas are associated with tDCS antidepressant effects. Suggested better white matter microstructure of the left prefrontal cortex was associated with tDCS antidepressant effects. Future studies should investigate whether these findings are driven by electric field diffusion and density in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DTI:

Diffusion tensor imaging

ELECT-TDCS:

Escitalopram versus electrical current therapy for treating depression clinical study

FA:

Fractional anisotropy

HDRS-17:

Hamilton depression rating scale

MDD:

Major depressive disorder

MRI:

Magnetic resonance imaging

tDCS:

Transcranial direct current stimulation

WM:

White matter

MD:

Mean diffusivity

References

  1. Murray CJL, Lopez AD (2017) Measuring global health: motivation and evolution of the global burden of disease study. Lancet 390:1460–1464

    Article  PubMed  Google Scholar 

  2. Stephan KE, Bach DR, Fletcher PC, Flint J, Frank MJ, Friston KJ et al (2016) Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry 3:77–83

    Article  PubMed  Google Scholar 

  3. Kendrick T, Taylor D, Johnson CF (2019) Which first-line antidepressant? Br J Gen Pract 69:114–115

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brunoni AR, Valiengo L, Baccaro A, Zanão TA, de Oliveira JF, Goulart A et al (2013) The sertraline vs electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiat 70:383–391

    Article  CAS  Google Scholar 

  5. Vittengl JR (2017) Poorer long-term outcomes among persons with major depressive disorder treated with medication. Psychother Psychosom 86:302–304

    Article  PubMed  Google Scholar 

  6. Milev RV, Giacobbe P, Kennedy SH, Blumberger DM, Daskalakis ZJ, Downar J et al (2016) Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4. Neurostimulation Treatments Can J Psychiatry 61:561–575

    Article  PubMed  Google Scholar 

  7. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA et al (2017) Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med 376:2523–2533

    Article  CAS  PubMed  Google Scholar 

  9. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    Article  CAS  PubMed  Google Scholar 

  10. Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A (2012) Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuropsychopharmacol Biol Psychiatry 39:9–16

    Article  PubMed  Google Scholar 

  11. George MS, Ketter TA, Post RM (1994) Prefrontal cortex dysfunction in clinical depression. Depression 2:59–72

    Article  Google Scholar 

  12. Razza LB, Palumbo P, Moffa AH, Carvalho AF, Solmi M, Loo CK et al (2020) A systematic review and meta-analysis on the effects of transcranial direct current stimulation in depressive episodes. Depress Anxiety 37:594–608

    Article  PubMed  Google Scholar 

  13. Vila-Rodriguez F, Frangou S (2021) Individualized functional targeting for rTMS: a powerful idea whose time has come? Hum Brain Mapp 42:4079–4080

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A (2021) Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiat 78:337–339

    Article  Google Scholar 

  15. Modak A, Fitzgerald PB (2021) Personalising transcranial magnetic stimulation for depression using neuroimaging: a systematic review. World J Biol Psychiatry 22:647–669

    Article  PubMed  Google Scholar 

  16. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C et al (2020) Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry 177:716–726

    Article  PubMed  Google Scholar 

  17. Shahid S, Wen P, Ahfock T (2014) Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS. Bioelectromagnetics 35:41–57

    Article  PubMed  Google Scholar 

  18. Bhalerao G, Selvaraj S, Parlikar R, Sreeraj V, Shivakumar V, Damodharan D et al (2019) White matter correlates of electric field activity in HD-tDCS for schizophrenia: a computational neuromodeling study. Brain Stimul 12:503

    Article  Google Scholar 

  19. Kalloch B, Weise K, Lampe L, Bazin P-L, Villringer A, Hlawitschka M et al (2022) The Influence of white matter lesions on the electric field in transcranial electric stimulation. SSRN Electron J. https://doi.org/10.2139/ssrn.4051561

    Article  PubMed  Google Scholar 

  20. Le Bihan D (2014) Diffusion MRI: what water tells us about the brain. EMBO Mol Med 6:569–573

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, Ficek B, Webster K, Frangakis C, Caffo B, Hillis AE et al (2021) White matter integrity predicts electrical stimulation (tdcs) and language therapy effects in primary progressive aphasia. Neurorehabil Neural Repair 35:44–57

    Article  PubMed  PubMed Central  Google Scholar 

  22. McConathey EM, White NC, Gervits F, Ash S, Coslett HB, Grossman M et al (2017) Baseline performance predicts tdcs-mediated improvements in language symptoms in primary progressive aphasia. Front Hum Neurosci 11:347

    Article  PubMed  PubMed Central  Google Scholar 

  23. Podwalski P, Szczygieł K, Tyburski E, Sagan L, Misiak B, Samochowiec J (2021) Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis. Pharmacol Rep 73:43–56

    Article  PubMed  Google Scholar 

  24. Roelofs EF, Bas-Hoogendam JM, van der Werff SJA, Valstar SD, van der Wee NJA, Vermeiren RRJM (2021) Exploring the course of adolescent anxiety and depression: associations with white matter tract microstructure. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-021-01347-8

    Article  PubMed  Google Scholar 

  25. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P et al (2011) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 1:423–446

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luque Laguna PA, Combes AJE, Streffer J, Einstein S, Timmers M, Williams SCR et al (2020) Reproducibility, reliability and variability of FA and MD in the older healthy population: a test-retest multiparametric analysis. Neuroimage Clin 26:102168

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van Velzen, Kelly, Isaev, Aleman. (2020) White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol Life. Available: https://www.nature.com/articles/s41380-019-0477-2.

  28. Emsell L, Adamson C, De Winter F-L, Billiet T, Christiaens D, Bouckaert F et al (2017) Corpus callosum macro and microstructure in late-life depression. J Affect Disord 222:63–70

    Article  PubMed  Google Scholar 

  29. Chen G, Hu X, Li L, Huang X, Lui S, Kuang W et al (2016) Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci Rep 6:21825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M et al (2013) Is depression a disconnection syndrome? Meta- analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci. https://doi.org/10.1503/jpn.110180

    Article  PubMed  PubMed Central  Google Scholar 

  31. Murphy ML, Frodl T (2011) Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression. Biol Mood Anxiety Disord 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D (2016) Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry 79:293–302

    Article  PubMed  Google Scholar 

  33. Fettes P, Schulze L, Downar J (2017) Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front Syst Neurosci 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  35. Wagner G, Koch K, Schachtzabel C, Reichenbach JR, Sauer H, Schlösser Md RGM (2008) Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J Psychiatry Neurosci 33:199–208

    PubMed  PubMed Central  Google Scholar 

  36. Picó-Pérez M, Radua J, Steward T, Menchón JM, Soriano-Mas C (2017) Emotion regulation in mood and anxiety disorders: a meta-analysis of fMRI cognitive reappraisal studies. Prog Neuropsychopharmacol Biol Psychiatry 79:96–104

    Article  PubMed  Google Scholar 

  37. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–348

    Article  PubMed  Google Scholar 

  38. Matsuo K, Glahn DC, Peluso MAM, Hatch JP, Monkul ES, Najt P et al (2007) Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry. https://doi.org/10.1038/sj.mp.4001894

    Article  PubMed  Google Scholar 

  39. Brunoni AR, Sampaio-Junior B, Moffa AH, Borrione L, Nogueira BS, Aparício LVM et al (2015) The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo Med J 133:252–263

    Article  PubMed  Google Scholar 

  40. Seibt O, Brunoni AR, Huang Y, Bikson M (2015) The pursuit of DLPFC: non-neuronavigated methods to target the left dorsolateral pre-frontal cortex with symmetric bicephalic transcranial direct current stimulation (tDCS). Brain Stimul 8:590–602

    Article  PubMed  Google Scholar 

  41. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  42. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  43. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48:63–72

    Article  PubMed  Google Scholar 

  44. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  45. Malcolm JG, Shenton ME, Rathi Y (2010) Filtered multitensor tractography. IEEE Trans Med Imaging 29:1664–1675

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang F, Wu Y, Norton I, Rigolo L, Rathi Y, Makris N et al (2018) An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179:429–447

    Article  PubMed  Google Scholar 

  47. Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I et al (2020) SlicerDMRI: diffusion mri and tractography research software for brain cancer surgery planning and visualization. JCO Clin Cancer Inform 4:299–309

    Article  PubMed  Google Scholar 

  48. Zhang F, Wu Y, Norton I, Rathi Y, Golby AJ, O’Donnell LJ (2019) Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Hum Brain Mapp 40:3041–3057

    PubMed  PubMed Central  Google Scholar 

  49. O’Donnell LJ, Wells WM 3rd, Golby AJ, Westin C-F (2012) Unbiased groupwise registration of white matter tractography. Med Image Comput Comput Assist Interv 15:123–130

    PubMed  PubMed Central  Google Scholar 

  50. Zekelman LR, Zhang F, Makris N, He J, Chen Y, Xue T et al (2022) White matter association tracts underlying language and theory of mind: an investigation of 809 brains from the human connectome project. Neuroimage 246:118739

    Article  PubMed  Google Scholar 

  51. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum postmortem morphological study. Brain 112(Pt 3):799–835

    Article  PubMed  Google Scholar 

  52. Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ et al (2017) SlicerDMRI: open source diffusion mri software for brain cancer research. Cancer Res 77:e101–e103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61

    Article  CAS  PubMed  Google Scholar 

  54. Makris N, Meyer JW, Bates JF, Yeterian EH, Kennedy DN, Caviness VS (1999) MRI-based topographic parcellation of human cerebral white matter and nuclei. Neuroimage. https://doi.org/10.1006/nimg.1998.0384

    Article  PubMed  Google Scholar 

  55. Shah A, Jhawar S, Goel A, Goel A (2021) Corpus callosum and its connections: a fiber dissection study. World Neurosurg 151:e1024–e1035

    Article  PubMed  Google Scholar 

  56. Kurtin DL, Violante IR, Zimmerman K, Leech R, Hampshire A, Patel MC et al (2021) Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity. Brain Stimul 14:1261–1270

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vieira R, Coelho A, Reis J, Portugal-Nunes C, Magalhães R, Ferreira S et al (2021) White matter microstructure alterations associated with paroxetine treatment response in major depression. Front Behav Neurosci 15:693109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davis AD, Hassel S, Arnott SR, Harris J, Lam RW, Milev R et al (2019) White matter indices of medication response in major depression: a diffusion tensor imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging 4:913–924

    PubMed  Google Scholar 

  59. Vasavada MM, Leaver AM, Espinoza RT, Joshi SH, Njau SN, Woods RP et al (2016) Structural connectivity and response to ketamine therapy in major depression: a preliminary study. J Affect Disord 190:836–841

    Article  CAS  PubMed  Google Scholar 

  60. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B (2012) Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci 24:223–236

    Article  PubMed  Google Scholar 

  61. Coenen VA, Bewernick BH, Kayser S, Kilian H, Boström J, Greschus S et al (2019) Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology 44:1224–1232

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N et al (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–377

    Article  PubMed  Google Scholar 

  63. Bulubas L, Padberg F, Bueno PV, Duran F, Busatto G, Amaro E Jr et al (2019) Antidepressant effects of tDCS are associated with prefrontal gray matter volumes at baseline: evidence from the ELECT-TDCS trial. Brain Stimul 12:1197–1204

    Article  PubMed  Google Scholar 

  64. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P et al (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127:1031–1048

    Article  CAS  PubMed  Google Scholar 

  65. Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ (2022) Inter-individual variability in tDCS effects: a narrative review on the contribution of stable, variable, and contextual factors. Brain Sci. https://doi.org/10.3390/brainsci12050522

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grieve SM, Korgaonkar MS, Gordon E, Williams LM, Rush AJ (2016) Prediction of nonremission to antidepressant therapy using diffusion tensor imaging. J Clin Psychiatry 77:e436–e443

    Article  Google Scholar 

  67. Bulubas L, Padberg F, Mezger E, Suen P, Bueno PV, Duran F et al (2021) Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 271:123–134

    Article  PubMed  Google Scholar 

  68. Suen PJC, Doll S, Batistuzzo MC, Busatto G, Razza LB, Padberg F et al (2021) Association between tDCS computational modeling and clinical outcomes in depression: data from the ELECT-TDCS trial. Eur Arch Psychiatry Clin Neurosci 271:101–110

    Article  PubMed  Google Scholar 

  69. Zhan L, Zhou J, Wang Y, Jin Y, Jahanshad N, Prasad G et al (2015) Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2015.00048

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was primarily supported by a FAPESP grant (2012/20911-5). ARB is a recipient of a UK Newton Advanced Fellow (2020–2022)—Oxford University and FAPESP grant (2019/06009-6); TZ and MSL are recipient of FAPESP grants (2020/03235-2 and 2021/10574-0, respectively).

Funding

ELECT-TDCS funding: Sao Paulo Research State Foundation (FAPESP) and others. Registration: ClinicalTrials.gov NCT01894815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre R. Brunoni.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanao, T.A., Luethi, M.S., Goerigk, S. et al. White matter predicts tDCS antidepressant effects in a sham-controlled clinical trial study. Eur Arch Psychiatry Clin Neurosci 273, 1421–1431 (2023). https://doi.org/10.1007/s00406-022-01504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-022-01504-7

Keywords

Navigation