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Abstract
Whilst cannabis is known to be toxic to brain development, it is unknown if it is driving rising US autism rates (ASMR). A 
longitudinal epidemiological study was conducted using national autism census data from the US Department of Education 
Individuals with Disabilities Act (IDEA) 1991–2011 and nationally representative drug exposure (cigarettes, alcohol, anal-
gesic, and cocaine abuse, and cannabis use monthly, daily, and in pregnancy) datasets from National Survey of Drug Use 
and Health and US Census (income and ethnicity) and CDC Wonder population and birth data. Analysis was conducted in 
R. 266,950 were autistic of a population of 40,119,464 8-year-olds in 1994–2011. At national level after adjustment, daily 
cannabis use was significantly related to ASMR (β estimate = 4.37 (95%C.I. 4.06, 4.68), P < 2.2 ×  10–16) as was first pregnancy 
trimester cannabis exposure (β estimate = 0.12 (0.08, 0.16), P = 1.7 ×  10–12). At state level following adjustment for cannabis, 
cannabigerol (from β estimate = – 13.77 (– 19.41, 8.13), P = 1.8 ×  10–6) and Δ9-tetrahydrocannabinol (from β estimate = 1.96 
(0.88–3.04), P = 4 ×  10–4) were significant. Geospatial state-level modelling showed exponential relationship between ASMR 
and Δ9-tetrahydrocannabinol and cannabigerol exposure. Exponential coefficients for the relationship between modelled 
ASMR and Δ9-tetrahydrocannabinol and cannabigerol exposure were 7.053 (6.39–7.71) and 185.334 (167.88–202.79; both 
P < 2.0 ×  10–7). E-values are an instrument related to the evidence for causality in observational studies. High E-values were 
noted. Dichotomized legal status was linked with elevated ASMR. Data show cannabis use is associated with ASMR, is 
powerful enough to affect overall trends, and persists after controlling for other major covariates. Cannabinoids are expo-
nentially associated with ASMR. The cannabis–autism relationship satisfies criteria of causal inference.

Keywords Cannabis · Cannabinoid · Δ9-tetrahydrocannabinol · Cannabigerol · Pathways and mechanisms

Introduction

It is well known that the incidence of autistic spectrum dis-
order is increasing in the USA, with current annual rates 
as high as 1.68% being reported nationwide by Centers for 
Disease Control, Atlanta, Georgia (CDC) [1]. Indeed up to 
4.5% of 8-year-old boys in New Jersey have been diagnosed 
with this disorder [1]. For reasons which are unclear, the 
syndrome is more common in boys than girls perhaps related 

to the many extra neurological genes on the X-chromosome, 
which is randomly inactivated in females thereby providing 
a wider range of spare alleles from which to support neuro-
logical development [2].

Whilst the literature identifies several causes which con-
tribute to the incidence of autism, including obesity, mater-
nal diabetes, advanced parental age, twin linkage, bleeding, 
having another autistic sibling, higher income, and exposure 
to some drugs including cannabinoids [3–7], the primary 
drivers of the present surge have remained largely elusive.

Of concern, all three longitudinal studies of brain devel-
opment following prenatal cannabis exposure (PCE) have 
identified adverse neurological outcomes mimicking atten-
tion deficit hyperactivity disorder (ADHD) and autistic spec-
trum features [8]. At a time of major commercialization of 
the cannabis industry, such findings must be of particular 
concern.
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It is of interest that a recent population-wide study of all 
births in Ontario 2007–2012 using coarsened exact matching 
and controlling for a wide variety of socioeconomic, medi-
cal, maternal age, maternal psychiatric, other substance use, 
and obstetric covariates found a 51% higher adjusted rate 
of autistic spectrum disorders (adjusted hazard ratio = 1.51 
(95% CI 0.17–1.96)) following cannabis-exposed pregnan-
cies which was invariant across all socioeconomic strata [9].

Because these syndromes are not usually identified prior 
to the age of 8 years, there is inevitably a lengthy delay in 
reporting the current state of the epidemic.

At the time of conducting our analysis, we were aware 
that drug exposure was highly correlated to ethnocultural 
factors and that PCE was known to be rising across USA. 
It was felt to be important to take such considerations into 
account in conducting our analysis.

Our primary hypothesis was that increasing substance 
and/or cannabinoid exposure might constitute a primary 
underlying driver of US autism rate (ASMR) across time. 
This hypothesis was formulated prior to data analysis. We 
wished to explore the effects and relative contribution of 
external demographic and socioeconomic covariates in a 
formal geotemporospatial framework.

Methods

Data sources

State autism rates were derived from the US Department 
of Education Individuals with Disabilities (IDEA) database 
[10]. State population data from the US Census Bureau 
were used to calculate national rates. State population, 
ethnicity and median household income data was sourced 
from US Census via the tidycensus package in “R” from 
Comprehensive “R” Archive Network (CRAN). Data on 
national age of child-bearing was sourced from the births 
registries of the CDC Wonder website [11]. Drug use data 
in various demographic subgroups and in pregnancy was 
taken from the nationally representative National Survey of 
Drugs and Health (NSDUH) conducted each year by the 
Substance Abuse and Mental Health Services Administra-
tion (SAMHSA) and particularly from the online interactive 
Substance Abuse and Mental Health Data Archive (SAM-
HDA [12]). Data on national cannabinoid concentrations 
was from Drug Enforcement Agency [13, 14]. Missing data 
were casewise deleted in linear (lm) and panel (plm) regres-
sion except where otherwise described.

State cannabinoid exposure estimates were derived by 
multiplying the monthly cannabis use rate by state by the 
concentration of the various cannabinoids obtained in Fed-
eral seizures. Data on Δ9-tetrahydrocannabinol (Δ9THC), 
cannabinol (CBN), cannabidiol (CBD), cannabigerol (CBG), 

cannabichromene (CBC) and tetrahydrocannabidivarin 
(THCV) were available [13, 14].

Ethnicity was defined by SAMHSA and US Census. 
These official definitions of ethnicity were used in analysis.

Statistics

This study was conducted in 2019. Data was processed using 
“R Studio” version 1.2.5042 based on “R” version 4.0.0 [15]. 
All graphs were prepared in ggplot2 package [16] from the 
tidyverse [17] and 3-D graphs were drawn in NCSS software 
[18]. All graphs and tables are original and have not been 
previously published elsewhere. Variables were log trans-
formed as guided by the Shapiro test. Details of R-packages 
used are provided in the online statistical methods. Mixed 
effects models were performed using R package nlme using 
State as a grouping variable weighted by inverse probability 
weights as described below [19]. Two-step panel regression 
was conducted for space–time panel data using package 
plm [20, 21]. For panel regression the pooling model was 
used, effect was over both space and time, random method 
was that of Swarmy and the instrumental method was that 
of Amemiya. These settings are required by the software 
or were found on preliminary analyses to give optimal out-
put precision. Geospatial links were constructed canoni-
cally using the poly2nb function from spdep [22]. Spatial 
links were edited with Alaska and Hawaii elided (moved) 
conceptually to Oregon and Washington and to California, 
respectively, both to reflect sociocultural relationships and 
to prevent areal zones with no spatial relationships which 
complicates geospatial analysis. Generalized two-step geo-
spatial regression was performed using the spreml function 
from package splm [23, 24], including both spatial autocor-
relation errors and spatial lags and random effects using the 
error structure of Kapoor, Kelejian and Prucha and with the 
method of Baltagi, Pfaffermayr, Jong and Song with initial 
values of zeros (sem2srre) [25]. Model specification was 
checked with Lagrange multiplier tests and models were 
compared by their log-likelihood (logLik) ratios at model 
optimization using the spatial Hausman test (sphtest). Model 
reduction was by the classical technique with sequential 
deletion of the least significant term.

Two-step regression is a powerful well-established tech-
nique which utilizes instrumental variables that are thought 
to more accurately reflect the real situation underlying the 
listed covariates. It has been used in panel and geospatial 
models in this report due to overwhelming evidence (pre-
sented below) of very different cannabis use patterns by 
ethnicity to more accurately explore the underlying drug 
exposure relationships.

Predicted fitted values from final models were calculated 
by matrix multiplication inserting appropriate values along-
side matching model terms.
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Causal inference

Inverse probability weighting (IPW) was conducted 
using the R package ipw [26]. IPW values were calcu-
lated using the last month cannabis use as the exposure of 
interest in a time-dependent manner. The numerator was 
a series of additive terms including four drug variables 
excluding cannabis exposure, four ethnicities, median 
household income and five ethnic cannabis exposure 
terms. The denominator included this list together with 
monthly cannabis exposure. Interactive models included 
a four-way interaction between tobacco, alcohol, canna-
bis and analgesic consumption. Weight truncation was 
not required. All mixed effects and robust models were 
inverse probability weighted. Robust generalized linear 
regression was performed in the survey package (using 
svyglm) with State as the grouping variable utilizing the 
IPW weights [27].

EValue determination was performed using the R pack-
age EValue [28–30]. As eValue estimation of regression 
coefficients requires a model standardized deviation, this 
could not be performed on svyglm models; it was per-
formed instead on mixed effects models structured and 
weighted similarly to the svyglm models.

P < 0.05 was considered significant.

Results

Input data

The national rate of autistic spectrum disorder was derived 
from the IDEA database combined with state population 
data obtained from US Census and used to compute national 
rates of autism. It was combined with other data as shown 
in eTable 1 and graphed in eFigure 1. The IDEA dataset 
for the 50 US states was almost complete for the 18 years 
1994–2011. Only five data points were missing for this 
period: New Hampshire in 1994, Montana 2006, Vermont 
in 2007 and 2008, and Wyoming 2010 and these were filled 
by temporal kriging (mean substitution). This dataset com-
prehended 266,950 autistic children of a total US population 
of 40,119,464 8-year-olds, a mean rate of 66.5/10,000, for 
the period 1994–2011.

Since the IDEA database began in 1991 and terminated 
in 2011, it was extended through to 2018 using conservative 
published national projections [31] which are actually below 
the most recent CDC estimate (1.31% in 2014 v. 1.68% in 
[1]). Data on cannabis use by ethnic group, daily cannabis 
smoking and cannabis use in pregnancy was only available 
from SAMHSA at the national level, which indicated that 
these variables needed to be analysed at the national level. 
Authoritative and nationally representative surveys have 

shown repeatedly that rates of cannabis use in pregnancy 
closely parallel those in the general community [32–38].

Figure 1 presents a sequential map series showing the 
progress of autism across USA 1992–2011.

Figure 2 presents a bivariate map series of the autism rate 
together with the cannabis use rate and one notes that both 
are elevated in the northeast and northwest of the country 
(pink and purple areas).

Figure 3 presents a similar bivariate map of USA show-
ing autism and cigarette use plotted together. As cigarette 
use declines, this map appears to be “turning bluer” than 
the previous map.

The United Nations 2019 World Drug Report clearly 
demonstrates that recent American use of cannabis relates 
primarily to increased daily use [39]. SAMHSA provide 
data that stratify the monthly frequency of cannabis use 
into groups as non-user, 1–2 days, 3–5 days, 6–19 days and 
20–30 days shown in eFigure 2. The confidence intervals are 
taken directly from SAMHDA. Again, one notes that Asian-
Americans smoke less cannabis 20–30 days per month and 
more are non-users. Using the midpoint of these daily inter-
vals as a multiplicand, it is possible to calculate the mean 
daily use of each ethnic group over time with the results 
shown in Fig. 4 and eFigures 2 and 3. Clear differences in 
mean daily cannabis use by ethnicity are evident.

As disclosed by United Nations Office of Drugs and 
Crime (UNODP), the pattern of cannabis use matters. SAM-
HDA data show that in 2017 about 92.6% of Americans 
smoked cannabis to a trivial extent (≤ 3 days/month) and 
7.35% smoked ≥ 3 days/month (eTable 2).

These data allow the calculation of an Ethnic Cannabis 
Exposure Score which can be plotted against a State–Time 
index and against time (eFigure 4A and 4B). These data 
show that without exception in each state, the Ethnic Can-
nabis Exposure Score rose across time. The red line in the 
centre of Panel B shows the median trajectory as a loess 
curve of best fit.

Regression results

Linear regression was used to investigate the association 
between daily cannabis use and ethnicity. The covariates 
were time and ethnicity. eTable 3 shows the results in a 
model quadratic in time and confirms highly significant dif-
ferences in cannabis use by ethnicity (from β estimate = 1.67 
(95% CI 1.45–1.89), P < 2.2 ×  10–16; quadratic superior to 
linear model, ANOVA F = 2.147, df = 13, P = 0.019).

eFigure 5 shows that high intensity cannabis use is falling 
amongst teenagers, but rising in older age groups. eFigure 6 
confirms these age-dependent trends in the first trimester of 
pregnancy which shows more cannabis use than later tri-
mesters. eFigure 7 has been drawn from CDC birth data 
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and confirms the trend of childbirth to be occurring at older 
maternal ages. In the light of the findings of eFigure 5, this 
implies that these women are moving up into a higher can-
nabis use age bracket.

Figure 5 presents the mean data for cannabis use by preg-
nancy trimester for all age groups and confirms that first 
trimester cannabis use is rising with time, a trend not seen at 
later trimesters. The SAMHSA data for 2015 is incomplete, 
so this point has been filled by mean substitution (0.027). 
The correlation between time and the rising use of cannabis 
in pregnancy is R = 0.6115 (P = 0.001). The slope of the first 
trimester regression line is significantly different to that in 
the third trimester (β estimate = – 4.97 ×  10–8 (– 8.44E-08 
to – 1.5E-08), P = 0.007, model Adj. R2 = 0.174, F = 4.31, 
df = 3.44, P = 0.009).

These data invite exploration by regression analysis. 
Panel regression was utilized as time is an implicit variable 
rather than an explicit one (important in small data tables), 
and one can easily include both temporal lags and instru-
mental variables in the R package plm. Only a limited num-
ber of variables can be included because of the small number 
of observations. The Ethnic Cannabis Exposure Score was 
multiplied by the THC Potency to capture the effect of rising 
THC concentrations. The variable was called the “Ethnic 
Cannabis Score THC Potency”. Cigarettes, the cannabis 
index, analgesics, three races and median household income 
have been included as covariates for 1994–2018. When the 
regression is performed for the national autism rate in this 
manner the results indicated in Table 1 are obtained. A very 

high level of statistical significance of all the variables is 
noted (all P < 2.2 ×  10–16).

Panel regression may also be used to model the rela-
tionship between ASMR and first trimester cannabis use. 
The covariates in this model were first trimester cannabis 
use, THC potency, median household income, cocaine 
and analgesic use, and the three most common races 
(Caucasian-American, African-American and Hispanic-
American). This model has one interaction between first 
trimester cannabis use and THC potency and 2 years of 
lag. The instrumental variables along with the highly sig-
nificant results are listed in Table 1.

Robustness analysis

A robustness analysis on these data using published high 
and low estimates of the national autism rate for 1994–2018 
derived from projections from states where cannabis was 
illegal and those where it was legal, respectively [31], con-
firmed these conclusions (eTable 4).

Geospatial regression

Naturally, we were interested to explore if these relationships 
extended to an analysis at state level. eFigure 8 sets out the 
geospatial links and weights used.

Geospatial regression was performed in 2002–2011 with 
results shown in eTable 5 using five drugs—cigarettes, 
alcohol abuse, monthly cannabis, misuse of analgesics, 
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Fig. 4  Plots of cannabis use in each pregnancy trimester over time. Data from SAMHDA from SAMHSA
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cocaine—and the five races—Caucasian-American, Afri-
can-American, Hispanic-American, Asian-American and 
American Indians and Alaskan Natives—and median house-
hold income were considered as covariates, and instrumen-
tal variables were used for monthly cannabis use, Δ9THC 

and cannabigerol and the annual Ethnic Cannabis Expo-
sure Score was used to control for cannabis exposure aris-
ing in relation to ethnic origin. A three-way interaction 
term included cigarettes, cannabis and opioids. As shown 
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Mean Monthly Days of Cannabis Use by Ethnicity by C.I. Width

Fig. 5  Mean cannabis use by ethnicity. Data from SAMHDA from SAMHSA

Table 1  National panel regression model results

0:2 represents 0–2 years temporal lag, THC tetrahydrocannabinol, Δ9THC Δ9- tetrahydrocannabinol, CI 95% confidence interval

Instrumental ± lagged variables Parameter Parameter

estimate CI P value

General population model
2 lags, 1 interaction
 Lag (Cannabis_Monthly), 0:2 Cigarettes_Monthly 31.83 (29.79–33.87)  < 2.2e-16
 Lag (Δ9THC_Exposure), 0:2 African-American_Ethnicity 11.15 (10.6–11.7)  < 2.2e-16
 Lag (Cannabigerol_Exposure), 0:2 Ethnic_Cannabis_Score_THC_Potency 4.37 (4.06–4.68)  < 2.2e-16
 Cocaine_Annual Hispanic_Ethnicity 0.83 (0.77–0.89)  < 2.2e-16

Median_Household_Income 1.5E-05 (1.4E-05–1.6E-05)  < 2.2e-16
Non-Medical_Use_of_Analgesics  – 2.98 (– 3.3–2.7)  < 2.2e-16
Caucasian-American_Ethnicity  – 14.79 (– 15.3–14.3)  < 2.2e-16
Cigarettes_Monthly: Ethnic_Cannabis_Score_

THC_Potency
 – 18.65 (– 19.9–17.4)  < 2.2e-16

First trimester pregnancy exposure
2 lags, 1 interaction
 Lag(First_Trimester_Cannabis_Exposure), 0:2 First_Trimester_Cannabis_Exposure: THC_Potency  – 0.06 (– 0.08–0.04)  < 2.2e-16
 Lag(THC_Potency), 0:2 Caucasian-American_Ethnicity  – 6.19 (– 7.07–5.31)  < 2.2e-16
 Lag(White_Ethnicity), 0:2 First_Trimester_Cannabis_Exposure 0.12 (0.08–0.16) 1.7E-12
 Lag(Hispanic_Ethnicity), 0:2 Cocaine_Annual 0.25 (0.15–0.35) 3.9E-08



707European Archives of Psychiatry and Clinical Neuroscience (2023) 273:699–717 

1 3

in eTable 5, significant results for cannabis were obtained 
(from β estimate = 8.41 (3.08–13.74), P = 0.002) at 2 years 
lag.

Clearly in such a study, one is concerned that ethnocul-
tural factors relating to increased drug exposure in certain 
communities might be acting in addition to ethnophar-
macogenomic factors relating to different responses to, or 
processing of, addictive drugs. To control at least in part 
for this effect, we performed a further regression not with 
the states’ racial composition, but with the Ethnic Cannabis 
Exposure Score described above. The instrumental variable 
list was similar to that described above. These results are 
shown in eTable 6, where terms including cannabis are noted 
to be significant (from β estimate = 10.88 (5.97–15.79), 
P = 1.4 ×  10–5) at 2 years lag, cannabis is independently sig-
nificant alone (β estimate = 0.63 (0.13–1.13), P = 0.014) and 
the Ethnic Cannabis Exposure Score is highly significant at 
all lags (from β estimate = 0.17 (0.09–0.26), P = 4.6 ×  10–5).

Finally, we were interested to learn if the inclusion of spe-
cific cannabinoids in the model would be significant when 
race and median household income were included. Geospa-
tial links were derived from the R spdep package and edited 
as shown in eFigure 8A to achieve the final spatial links 
shown in eFigure 8B. The regression results from spatial 
two-stage and lagged models are shown in Table 2 with full 
model details provided in eTable 7. Instrumental variables 
included individual terms for ethnic cannabis exposure and 
are indicated in the table. Terms including cannabinoids are 
significant in an unlagged model (from β estimate = – 13.77 
(– 19.41 to – 8.13), P = 1.8 ×  10–6) and across all models 
Δ9THC and cannabigerol are independently significant 
(from β estimate = 1.96 (0.88–3.04), P = 4 ×  10–4 and β esti-
mate = 0.81(0.34–1.28), P = 9 ×  10–4). Spatial Hausman tests 
confirm that the unlagged model is superior to models lagged 
to 2 and 4 years (ChiSq. = 66.879, df = 9, P = 3.21 ×  10–11 
and ChiSq. = 626.46, df = 9, P = 8.744 ×  10–129).

It was also of interest to consider the outcome if ethnic 
cannabis exposure terms were included as covariates in the 
model and no instrumental variables were used at all. This 
interesting and highly significant model is shown in the final 
panel of Table 2. Δ9THC exposure and the Δ9THC: can-
nabigerol interaction are both significant as are five ethnic 
cannabis exposure terms.

Effect size

The availability of a final (unlagged) geospatial model 
allows modelling of cannabinoid effects and potentially the 
calculation of an effect size. When minimal and maximal 
values for THC and cannabigerol exposure are inserted into 
this model, autism rates of 0.37 and 38.42, respectively, are 
predicted, a variation of 102.72-fold. Similarly, ASMR at 
each decile of cannabinoid exposure may be calculated as 

shown in eTable 8 and Fig. 6. Steep rises with rising can-
nabinoid concentration are shown (top panels) which are 
linear on log plots, thus implying exponential relationships 
(middle panels) and to which tight-fitting regression lines 
may be fitted for deciles 2–9 (lower panels). The exponential 
regression coefficients for the relationship between ASMR 
and THC and cannabigerol exposure for deciles 2–9 are 
7.053 (6.39–7.71) and 185.334 (167.88–202.79) with both 
P < 2.0 ×  10–7 (eTable 9) and both Pearson correlation coef-
ficients R > 0.992, P < 2.0 ×  10–7.

As one doubles the THC exposure from 0.4 to 0.8 and to 
1.6%% (compound units), the predicted ASMR rises from 
0.022 to 0.382 to 107.83/10,000 children or 4,736.81-fold. 
As the cannabigerol exposure rises from 0.02 to 0.04 to 
0.08%%, the modelled ASMR rises from 0.059 to 2.43 to 
4029.65/10,000 children, or 67,511.42-fold which reflects 
the exponential relationship.

The THC–cannabigerol–autism rate relationship is 
illustrated from different perspectives in the 3D plots of 
eFigure 9.

Causal inference

In addition to geospatiotemporal modelling, this dataset 
lends itself also to the techniques of formal causal inference 
to investigate further the nature of the association between 
cannabis exposure and autism.

Inverse probability weighting was conducted considering 
the monthly use of cannabis as the key exposure of interest. 
Although this was an observational ecological study, weight-
ing the key exposure variable in this manner allows one to 
achieve a quasi-randomized design. Robust regression was 
conducted in the R package survey.

When a full list of the five drug variables, four ethnici-
ties, median household income and five ethnic cannabis 
exposures was included in the robust regression model, the 
results are as shown in Table 3. In the additive model only 
a single ethnicity, non-Hispanic Asian is significant. The 
other five significant terms all include cannabis. Cannabis 
exposure alone is significant (β estimate = 1.08 (0.63–1.54), 
P = 2.90 ×  10–5) and terms involving ethnic cannabis expo-
sure are significant (from β estimate = 3.63 (2.94–4.34), 
P = 5.9 ×  10–13).

In a model including a four-way interaction term between 
substance exposure terms tobacco–alcohol–cannabis–anal-
gesics, 13 of 22 terms remaining in the final model included 
cannabis. In five cases, this related to ethnic cannabis expo-
sure. In eight cases cannabis exposure itself was significant 
in interactive terms. Cannabis exposure alone was also sig-
nificant (β estimate = 803.00 (326.72–1279.28), P = 0.0024).

When a similar exercise is conducted using mixed 
effects models, qualitatively similar results were obtained 
(eTable 10).
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Table 2  Geospatial state-based regression of autism rate by individual cannabinoids, race and income

NH non-Hispanic, Am American, NHAIAN non-Hispanic-American Indian/Alaskan-Native, 0:2 0–2 years temporal lag, Δ9THC 
Δ9-tetrahydrocannabinol, CI 95% confidence interval, 0:4 0–4 years temporal lag

General Parameters

Instumental ± lagged variables Parameter Estimate 95% CI P value

0 lags
 Cannabis, monthly NHAsian Ethnicity 0.43 (0.33–0.53)  < 2.2e-16
 Δ9THC NHWhite Ethnicity 2.01 (1.42–2.6) 1.5E-11
 Cannabigerol Cannabigerol: Alcohol_Abuse  – 13.77 ( – 19.41 to – 8.13) 1.8E-06
 NHWhite_Score Alcohol_Abuse  – 44.35 ( – 65.89 to – 22.81) 5.5E-05
 NHBlack_Score Cannabigerol 0.81 (0.34–1.28) 9.0E-04
 Hispanic_Score NHAIAN Ethnicity  – 0.04 ( – 0.06 to – 0.02) 0.002
 NHAsian_Score cigmon: Cannabigerol: Alcohol_Abuse 8.91 (2.79–15.03) 0.004
 NHAIAN_Score Δ9THC 4.59 (1.41–7.77) 0.005

Cigarettes: Δ9THC  – 16.23 ( – 28.64 to – 3.82) 0.010
Δ9THC: Cannabigerol 0.94 (0.21–1.67) 0.011
Cigarettes: Δ9THC: Cannabigerol  – 3.39 ( – 6.21 to – 0.57) 0.018

2 lags
 cannabis, monthly, 0:2 NHAsian Ethnicity 0.42 (0.3–0.54) 3.1E-12
 Δ9THC, 0:2 NHWhite Ethnicity 1.95 (1.22–2.68) 1.2E-07
 Cannabigerol, 0:2 Alcohol_Abuse  – 43.92 ( – 69.97 to – 17.87) 0.001
 NHWhite_Score, 0:2 NHAIAN Ethnicity  – 0.06 ( – 0.1 to – 0.02) 0.001
 NHBlack_Score, 0:2 Cannabigerol: Alcohol_Abuse  – 11.24 ( – 18.12 to – 4.36) 0.001
 Hispanic_Score, 0:2 Δ9THC 1.14 (0.36–1.92) 0.005
 NHAsian_Score, 0:2 Cannabigerol 0.81 (0.22–1.4) 0.007
 NHAIAN_Score, 0:2 Δ9THC: Cannabigerol 0.25 (0.03–0.47) 0.023

NHAfrican-American Ethnicity 0.08 (0–0.16) 0.046
4 lags
 cannabis, monthly, 0:4 NHAIAN Ethnicity  – 0.11 ( – 0.13 to – 0.09) 9.0E-15
 Δ9THC, 0:4 NHAsian Ethnicity 0.37 (0.23–0.51) 1.9E-07
 Cannabigerol, 0:4 NHWhite Ethnicity 1.52 (0.74–2.3) 1.0E-04
 NHWhite_Score, 0:4 Cannabigerol: Alcohol_Abuse  – 22.68 ( – 34.89 to – 10.47) 3.0E-04
 NHBlack_Score, 0:4 Δ9THC 1.96 (0.88–3.04) 4.0E-04
 Hispanic_Score, 0:4 Alcohol_Abuse  – 72.45 ( – 114.28 to – 30.62) 7.0E-04
 NHAsian_Score, 0:4 Cigarettes: Cannabigerol: Alcohol_Abuse 71.65 (25.41–117.89) 0.002
 NHAIAN_Score, 0:4 Cigarettes: Δ9THC  – 6.44 ( – 10.63 to – 2.25) 0.003

Cigarettes: Alcohol_Abuse 214.56 (56.98–372.14) 0.008
0 lags, 0 instrumental variables

NHAIAN  – 0.14 ( – 0.17 to – 0.1) 2.9E-14
Alcohol_Abuse  – 53.52 ( – 68.57 to – 38.47) 3.2E-12
CBG: Alcohol_Abuse  – 13.87 ( – 17.85 to – 9.89) 8.5E-12
Asian.Am.Cannabis 2.60 (1.79–3.42) 4.3E-10
Cauc.Am.Cannabis  – 3.23 ( – 4.27 to – 2.19) 1.1E-09
Hispanic.Am.Cannabis 2.96 (1.99–3.93) 2.2E-09
NHAsian 0.34 (0.22–0.45) 5.6E-09
AIAN.Am.Cannabis 0.48 (0.32–0.65) 7.1E-09
Δ9THC 2.08 (1.23–2.92) 1.4E-06
Afric.Am.Cannabis 0.30 (0.15–0.45) 8.8E-05
NHWhite 1.25 (0.55–1.94) 0.0004
Δ9THC:Cannabigerol 0.24 (0.06–0.41) 0.0098
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The above findings using IPW show that cannabis appears 
to be causally related to the autism rate. However, it is theo-
retically possible that some unidentified and unmeasured 
confounding factor, which is correlated with both the expo-
sure of interest and the outcome, might be confounding these 
results in the background. The magnitude required of this 

unknown dual correlation effect to obviate the present results 
can be quantified using the eValue.

Table 4 lists a set of eValues calculated from some of the 
main results of this study listed above. One notes that many 
of these eValues are very high, especially those deriving 
from spatial models. This implies that a significant degree 
of unmeasured confounding is unlikely. This fits with the 

Fig. 6  Modelled autism rate 
by exposure to Δ9THC and 
cannabigerol. A Linear. B Loga-
rithmic and C regression plots 
for Δ9THC and cannabigerol, 
respectively
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highly significant findings obtained in many of the earlier 
results, and particularly with the close geotemporospatial 
relationships demonstrated earlier.

These 29 E-value estimates and lower bounds may be 
listed consecutively as shown in Table 5. Since both E Value 
lists are shown in descending order, this presentation dis-
rupts the pairing structure shown in Table 4. From this table 
it is observed that of the E-value estimates, 4 are infinite and 
25/30 (83.3%) exceed 9 and so are in the high range [40] 
and 26/30 (86.7%) are greater than 1.25 and thus exceed 
the threshold of causality [29]. Similarly for the minimum 
E-values, 1 is infinite, 22/30 (73.3%) exceed 9 and thus 
are in the high range and 25/30 exceed 1.25 (83.3%) and 
therefore cross the threshold for causal effects. Consider-
ing the descriptive statistics for these two data pairs, the 
E-value estimates have a median of 5.97 ×  108 (interquar-
tile range (IQR) 17.97, 2.40 ×  1065) and the lower bound of 
the E-values has a median value of 1.07 ×  104 (IQR 5.54, 
6.51 ×  1024). These are very high and very dramatic results 
and effectively exclude a significant role for hypothetical 
confounder covariates.

Finally, it has previously been shown that liberal legis-
lative paradigms for cannabis are associated with elevated 

rates of autism [41]; however, this has not been confirmed 
in the geospatial context. eFigure  11 shows the (log) 
autism rate against time by legal status dichotomized as 
illegal status v. liberal status. Table 6 sets out the result of 
geospatial regression of the (log) autism rate against the 
dichotomized legal status and confirms a highly significant 
finding. This regression coefficient is associated with a 
relative risk of 2.05 (95% CI 1.20, 3.49) and eValues of 
3.51 and 1.70, which are clearly relatively high. These 
E-values have been included in Table 5.

Discussion

The principal question addressed by the present study was 
to explore the mystery of the remarkable rise in US autism 
rate which has remained hitherto largely unexplained. 
This study is an epidemiological investigation which uses 
national panel and state-level geospatial regression to ana-
lyse ecological covariates of childhood autism across a 
diverse range of domains including socioeconomic, eth-
nicity and drug exposure. A particular focus of this study 
is on environmental exposure to cannabis and selected 

Table 3  Multivariable robust 
regression models of autism rate

CI 95% confidence interval, NH non-Hispanic, NHAIAN non-Hispanic-American Indian/Alaskan-Native

Parameter Estimate CI P Value

Additive
 Hispanic.Cannabis 3.63 (2.94–4.34) 5.9E-13
 NHAIAN.Cannabis 1.94 (1.34–2.55) 1.3E-07
 NHAsian.Cannabis 1.27 (0.81–1.73) 2.3E-06
 Cannabis 1.08 (0.63–1.54) 2.9E-05
 NHAsian 0.25 (0.13–0.37) 2.0E-04
 NHWhite.Cannabis  – 11.70 (– 16.61 to – 6.81) 2.8E-05

Interactive
 NHAsian 0.31 (0.15–0.47) 0.0008
 Cannabis 803.00 (326.72–1279.28) 0.0024
 Cannabis: Analgesics 265.20 (105.46–424.54) 0.0026
 Analgesics 791.40 (302.96–1279.04) 0.0032
 Cigarettes: Alcohol: Cannabis 32,850.00 (8008–57,792) 0.0145
 Cigarettes: Alcohol: Cannabis: Analgesics 10,730.00 (2428.8–18,971.2) 0.0160
 Cigarettes: Alcohol 97,700.00 (22,240–173,160) 0.0163
 Cigarettes: Alcohol: Analgesics 31,900.00 (6812–56,988) 0.0184
 NHWhite.Cannabis  – 3.98 (– 7.12 to – 0.84) 0.0185
 Alcohol: Analgesics  – 9688.00 (– 16393.2 to – 2986.8) 0.0080
 Cigarettes: Analgesics  – 2634.00 (– 4454.76 to – 805.24) 0.0080
 Alcohol  – 29570.00 (– 49,788 to – 9412) 0.0071
 Cigarettes  – 7994.00 (– 13419.2 to – 2560.8) 0.0070
 Alcohol: Cannabis: Analgesics  – 3244.00 (– 5435.2 to – 1044.8) 0.0069
 Cigarettes: Cannabis: Analgesics  – 886.60 (– 1484.8 to – 289.2) 0.0066
 Alcohol: Cannabis  – 9894.00 (– 16534.4 to – 3245.6) 0.0063
 Cigarettes: Cannabis  – 2689.00 (– 4477.52 to – 902.48) 0.0059
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cannabinoids which have been noted to be neurotoxic with 
effects on foetal brain development including microceph-
aly, anencephaly and impaired child neurological devel-
opment [8, 42–45]. Given historically very different and 
well-established rates of cannabis use by ethnic groups, 

two-stage panel and geospatial regression techniques have 
been utilized to carefully adjust for these effects.

Spatiotemporal regression studies implicate both ethnic 
and drug exposure variables as being significantly associ-
ated with autism incidence with three ethnicities, Cauca-
sian-American, Asian-American and American-Indian and 
Alaskan-Native Americans, three drugs, tobacco, alcohol 

Table 4  eValues for major results from foregoing analyses

THC Δ9 tetrahydrocannabinol, CBG cannabigerol, Am American, NH non-Hispanic, RR relative rate, CI 95% confidence interval

Parameter Table β estimate (C.I.) RR (95% CI) eValues

Decile Estimates
 THC_Decile eTable 9 7.0526 (6.37, 7.71) 1.10E + 27 (3.26E + 24, 3.71E + 29) 2.19E + 27, 6.51E + 24
 CBG_Decile 185.33 (167.87, 202.79) Infinity (Infinity, Infinity) Infinity, Infinity

Mixed Effects Models
Additive
 African.Am.Cannabis eTable 10 0.509099 (0.39–0.63) 1.011 (1.008, 1.014) 1.12, 1.10

Cannabis 0.393926 (0.30–0.49) 1.102 (1.064, 1.011) 1.10, 1.08
NHAIAN.Cannabis 0.258642 (0.10–0.41) 1.006 (1.002, 1.009) 1.08, 1.05
Interactive
 Cigarettes: Cannabis: Cocaine eTable 10 3753.1 (1451.28–6054.92) 6.1E + 51 (1.22E + 20, 3.04E + 83) 1.22E + 52, 4.5E + 20
 Cigarettes: Cannabis 15,065.8 (5585.85–24,545.75) 7.6E + 207 (2.2E + 77, Infinity) Infinity, 4.37E + 77
 NHWhite.Cannabis 2 (0.73–3.27) 1.06 (1.02, 1.11) 1.33, 1.18
 Cigarettes: Cannabis: Analgesics: 

Cocaine
1167.2 (409.64–1924.76) 1.3E + 16 (4.7E + 04, 3.4E + 26) 2.5E + 16, 9.4E + 05

 Cigarettes: Cannabis: Analgesics 4717 (1593.82–7840.18) 1.2E + 65 (2.0E + 22, 1.2E + 108) 2.4E + 65, 2.4E + 22
 Alcohol: Cannabis: Cocaine 9890.4 (2955.51–16,825.29) 2.9E + 136 (9.4E + 40, 9.3E + 2321) 5.9E + 136, 1.88E + 41
 Alcohol: Cannabis 38,348.6 (9877.05–66,820.15) Infinity (1.2E + 137, Infinity) Infinity, 2.4E + 137
 Alcohol: Cannabis: Analgesics: 

Cocaine
2955.3 (673.59–5237.01) 6.0E + 40 (2.3E + 09, 1.5E + 72) 1.2E + 41, 4.5E + 09

Alcohol: Cannabis: Analgesics 11,491.4 (2112.41–20,870.39) 3.6E + 158 (2.6E + 29, 5.2E + 287) Infinity, 5.1E + 129
Spatial Spreml Models
0 lags
 THC Table 2 4.58 (1.41, 7.76) 1.92E + 15 (5.34E + 04, 6.93E + 25) 3.85E + 15, 1.07E + 04
 Cannabigerol 0.81 (0.33, 1.29) 495.54 (12.81, 1.92E + 04) 990.59, 25.11
 THC*Cannabigerol 0.94 (0.21, 1.67) 1.38E + 03(5.30, 3.61E + 04) 2.77E + 03, 10.07
 Cigarettes: Cannabigerol: Alcohol 8.91 (2.80, 15.02) 4.82E + 29 (2.38E + 07, 9.75E + 49) 9.65E + 29, 4.77E + 09

2 lags
 THC Table 2 1.14 (0.35, 4.31) 6.03E + 03 (14.51, 2.51E + 06) 1.21E + 04, 28.51
 Cannabigerol 0.81 (0.23, 1.39) 480.0 (5.65, 4.07E + 04) 959.59, 10.78
 THC*Cannabigerol 0.25 (0.023, 0.46) 6.48 (1.29, 32.42) 12.44 1.91

4 lags
 THC Table 2 1.95 (0.87, 3.04) 349.01 (13.73, 8.87E + 04) 697.51, 26.95
 THC*Cannabigerol 71.65 (25.41, 117.88) 1.19E + 93 (1.36E + 33, 1.05E + 153) 2.39E + 93, 2.71E + 33

0 Lags, Zero Instrumental Variables
 THC Table 2 2.07 (1.23, 2.91) 5.71E + 06 (10.5E + 04, 3.11E + 09) 1.14E + 08, 2.10E + 04
 Afrc.Am.Cannabis 0.29 (0.14, 0.44) 9.24 (3.04, 28.02) 17.97, 5.54
 Hispanic.Am.Cannabis 2.95 (1.99, 3.93) 4.28E + 09 (3.04E + 06, 6.04E + 12) 8.56E + 10, 6.07E + 06
 Asian.Am.Cannabis 2.6 (1.78, 3.42) 2.98E + 08 (6.60E + 05, 1.34E + 11) 5.96E + 08, 1.32E + 06
 AIAN.Am.Cannabis 0.48 (0.32, 0.65) 37.14 (10.95, 125.96) 73.77, 21.39
 THC: Cannabigerol 0.24 (0.06, 0.41) 5.82 (1.53, 22.12) 11.12, 2.43
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abuse or dependence, and two cannabinoids, Δ9THC and 
cannabigerol, remaining in final models with high levels of 
statistical significance when ethnic cannabis use is included 
as instrumental variables. When ethnic cannabis use is 
included as covariates, all five of them remain significant 
in final models.

Application of the techniques of causal inference to this 
dataset indicate that the cannabis–autism association satis-
fies the criteria for causality.

Geospatial analysis confirmed the previously demon-
strated increased rate of autism in states where cannabis is 
legal.

Of importance, effect size studies demonstrated that 
the relationship between both Δ9THC and cannabigerol 
and autism is exponential and powerful enough to induce 
the seismic paradigm shift which has been observed 
epidemiologically.

One notes also that autism is rising whilst the use of the 
classical intoxicants tobacco and alcohol is falling. Since 
opioid and cocaine use only impact a small segment of the 
community, this naturally impugns cannabis use which alone 
is rising dramatically.

Whilst the rise in autism rates has been said to be due to 
changes in its rate of diagnosis, careful studies in the USA 
have shown that the rise is indeed real beyond simply an 
increase in diagnostic suspicion or nosology [9].

Modelling studies based on the final models across both 
space and time provide robust epidemiological evidence 
of a strong upward exponential association between both 
Δ9THC and cannabigerol and the autism rate. Combined 
with concordant trends in tobacco, alcohol and cannabis 
use (mentioned above) and multiple biological pathways 
(mentioned below), and satisfaction of causal criteria, these 
strong and consistent findings across both space and time 
strongly implicate rising cannabis exposure in the commu-
nity and in pregnancy as a primary underlying driver of the 
wave of autism and epidemiologically support our opening 
hypotheses.

Whilst cannabis was only used more than 3 days per 
month by 7.35% of the population in 2017, high intensity 
cannabis use has grown dramatically across the USA in the 
past decade with overall daily or near daily use doubling 
nationwide [39] and having increased from 0.38 to 1.5% 
in the > 35 years cohort 2002–2017 (Fig. 3 [12]). As part 
of increased use, the rate of cannabis exposure during the 
first trimester of pregnancy is growing steeply as cannabis 
use in the wider population increases. Furthermore, women 
are having their children later and in so doing are moving 

Table 5  List of E-Values

No E Value Estimates Lower Bound E Values

1 Infinity Infinity
2 Infinity 2.40E + 137
3 Infinity 5.10E + 129
4 Infinity 4.37E + 77
5 5.90E + 136 1.88E + 41
6 2.39E + 93 2.71E + 33
7 2.40E + 65 6.51E + 24
8 1.22E + 52 2.40E + 22
9 1.20E + 41 4.50E + 20

10 9.65E + 29 4.77E + 09
11 2.19E + 27 4.50E + 09
12 2.50E + 16 6.07E + 06
13 3.85E + 15 1.32E + 06
14 8.56E + 10 9.40E + 05
15 5.96E + 08 2.10E + 04
16 1.14E + 08 1.07E + 04
17 1.21E + 04 28.51
18 2.77E + 03 26.95
19 990.59 25.11
20 959.59 21.39
21 697.51 10.78
22 73.77 10.07
23 17.97 5.54
24 12.44 2.43
25 11.12 1.91
26 1.33 1.18
27 1.12 1.10
28 1.10 1.08
29 1.08 1.05

Table 6  Geospatial Regression 
of Dichotomized Legal Status

CI 95% Confidence Interval, LogLik Log likelihood ratio at model optimization

Parameters Model

Parameter Estimate 95% CI P Value LogLik Parameters Value P value

Spatial spreml Model
 Liberal Legal Status 0.0938 (0.02–0.16) 0.0085 191.68 phi 9.8E-06 NA

psi 0.9508  < 2.2e-16
rho  – 0.8141  < 2.2e-16
lambda 0.0938  < 2.2e-16
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into older cohorts with cannabis users having a longitudinal 
history of greater cumulative cannabis exposure. It is noted 
due to the long half-time of cannabis retention and excre-
tion from body fat stores in regular cannabis smokers that 
first trimester exposure will occur almost inevitably even if 
the mother stops cannabis consumption upon receiving a 
diagnosis of pregnancy [46, 47].

In this sense, therefore, the present rapid increase in 
numbers presenting with child autism is occurring against a 
background of sociodemographic trends in the wider com-
munity where high intensity cannabis use is becoming more 
common.

Mechanisms

That cannabis potency and use is increasing, is retained in 
tissue for significant periods, and has been shown to have 
a number of severely neurotoxic activities particularly on 
the developing brain is pertinent. Several reports from CDC 
have linked cannabis exposure with anencephalus [43, 44] 
with separate data linking it to spina bifida in Canada [42], 
microcephaly in Hawaii [45] and adverse child neurologi-
cal outcomes in Pittsburgh, Toronto and the Netherlands 
[8]. A generalized inhibitory effect on cell growth has been 
reported [48–51], as have interference with synapse forma-
tion by inhibition of neuroligin and neurexin, key partners in 
synapse formation and determination [7, 52, 53]; an uncou-
pling of neuronal mitochondrial oxidative phosphorylation 
[54, 55] and of grey–white matter connections [56], and 
increase in astrogliosis [47], neuroinflammation [57] and 
thus brain aging [58], an inhibition of brain neurogenesis 
and thus plasticity [59, 60] and adverse effect on the slit:robo 
ratio which is one of the key determinants of the formation 
of the exuberant cortex characterizing human beings [61, 
62] along with numerous other genetic and epigenetic dis-
ruptions [63–66].

Epigenetic mechanisms

Recently, profoundly insightful and deeply meaningful 
results from an epigenome-wide association study (EWAS) 
of cannabis dependence and withdrawal have been published 
[67]. The authors examined the DNA methylation status of 
20 cannabis-dependent patients both before and after an 
11-week period of documented abstinence and compared 
these results with those from a comparable group of can-
nabis-naïve control patients who were sampled at similar 
time points.

The results were of profound importance as relates to 
perturbation of normal brain development. Significant hits 
were found for the brain, cerebrum, cerebral cortex, head 
development, brain size, brain formation, forebrain pat-
terning, proliferation of neural cells, brain neurogenesis, 

neuronal morphology, central nervous system development 
(139 hits), neuronal outgrowth and brain cell movement. 
When major brain receptors were considered, there were 
132 hits for the AMPA receptor (GRIA), 165 hits for the 
kainate receptor (GRIK), 26 hits for the NMDA receptor 
(GRIN), 11 hits for the delta glutamate receptor (GRID), 
122 hits for the metabotropic glutamate receptor (GRM), 
125 hits for the GABA-A receptor (GABRA), 22 hits for the 
GABA-B receptor (GABRB), 85 hits for the serotonin recep-
tor (HTR), 17 hits for the dopamine receptor (DRD1), 52 
hits for the dopamine transporter (DAT, SLC6A3), 7 hits for 
the oxytocin receptor (OXTR), 5 hits for the μ-opioid recep-
tor (ORPM1) and 5 hits for the δ-opioid receptor (ORPD1).

14 and 8 hits were noted for Down syndrome cell adhe-
sion molecule (DSCAM) and discs large homolog associated 
protein 2 (DLGAP2) which have both been previously linked 
with autism [68–70].

As noted above, the exuberant outgrowth of the human 
cortex has been causally attributed to the slit–robo system. 
There were 351 hits for slits and 40 hits for robo. Addition-
ally, there were 8 hits for a slit–robo Rho activating GTPase 
activating protein 2 (SRGAP2).

It has also been shown that the exuberant frontal out-
growth of the human cortex can be attributed to a steep gra-
dient of the key human morphogen retinoic acid [71, 72]. 
A high concentration of this key transcription factor at the 
frontal pole fell to low levels at the premotor cortex. Indeed, 
forced expression of this gradient in the mouse reproduced 
the high number of cells seen in the human neocortex in the 
murine model [71]. The high frontal concentration of reti-
noic acid was maintained by an isoform of alcohol dehydro-
genase (ALDH1), the lower premotor cortical level was con-
trolled by metabolism by enzymes of the cytochrome system 
(CYP26B1) and the retinoic acid signal was transduced by 
the key retinoid receptors RXRA and RARB. There were 
13 hits in the Schrott dataset for the enzymes of the ALDH1 
system (including cadherin 8 and protocadherin 17), 10 hits 
for the cytochromes of the CYP2 series, and 9 hits for the 
retinoid receptor group.

While these very impressive and stunning results do not 
formally prove the salience of epigenomic results in the 
aetiology of cannabis-associated congenital brain damage, 
they do strongly imply that such data is highly pertinent and 
likely to at least partly contribute to meaningful and detailed 
explanatory and causal mechanisms which manifest clini-
cally as the autistic spectrum of disorders.

Causal inference

Some comments on the use of the techniques of causal infer-
ence in this study are in order. As mentioned in “Methods”, 
all mixed effects and robust regressions were performed 
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with inverse probability weighting. This is the technique of 
choice in causal modelling, which has the effect of making 
an observational group broadly comparable across its sub-
groups, an effect which greatly increases the power of the 
study from being purely observational in nature to a pseudo-
randomized study which has been shown to produce ana-
lytical results similar to those found in formal randomized 
controlled trials [73]. Hence the use of such inverse prob-
ability controlled modelling, especially using several regres-
sion techniques (here mixed effects and robust), allows us to 
be confident that the results reported are indeed of a causal 
nature and not simply associational as may otherwise be 
mistakenly assumed.

Secondly, we used the technique of E-values widely 
throughout the linear, mixed effects and spatial models 
which were reported. E-values quantitate the degree of asso-
ciation required of some hypothetical confounder covari-
ate with both the exposure of interest and the outcome of 
concern to explain away an apparently causal relationship. 
The scale of the extraordinarily high E-values reported in 
this study is unprecedented in the autism literature to our 
knowledge. As noted in “Results”, we found that the median 
E-value estimate was very high 5.96 ×  108 and of the lower 
bound of the E-values was 1.07 ×  104. Five E-value esti-
mates were infinite and one minimum E-value was infinite. 
E-values of this extremely high magnitude clearly discount 
the realistic possibility that the reported results may be due 
to some extraneous and unidentified confounder covariate 
[29, 30, 74–76]. It may be that the very high magnitude of 
the E-values reported in the present study reflect the very 
large sample size.

Combining inverse probability weighting, E-values, vari-
ous forms of regression techniques along with the study of 
the association in its native space–time context provides 
several strong lines of analytical epidemiological evidence 
that the relationship reported is real in nature, powerful in 
its effect, and amply satisfies the quantitative criteria for 
epidemiological causality.

Strengths and limitations

The present study has a number of strengths and limitations. 
Its strengths include the use of several nationally representa-
tive databases, the application of geospatial and causal infer-
ence analytical techniques to these questions for the first 
time to our knowledge, the timeliness of the information 
presented, the cultural and community-wide implications 
at a time when cannabis use is expanding rapidly the use 
of multiple forms of regression including space–time stud-
ies and the use of the formal and quantitative techniques of 
causal inferential modelling. The limitations of the present 
study relate mainly to its ecological design which include the 
lack of individual participant-level data. In the present study, 

community cannabis use was used as a surrogate marker 
for parental cannabis use, as there is no direct database of 
which we are aware which links these covariates directly, 
and as the cannabis use of pregnant women has been shown 
to follow community cannabis use in several studies [35, 
36, 38, 77–79]. The findings of this exploration of these 
wide-ranging studies are, however, provocative and indicate 
further research in this area.

Generalizability

Given that the data we have employed come from the USA, 
which by many metrics is reflective of other Western coun-
tries, the study findings are likely to be generalizable to other 
nations. Whilst there are to our knowledge no other similar 
wide-ranging analyses of autism, adverse reports of neu-
rological function following widespread cannabis use have 
issued from other countries such as Egypt, China, India and 
Morocco [39].

Conclusions

Our results implicate both Δ9THC and cannabigerol in these 
studies, which suggest that merely lowering the Δ9THC con-
tent of widely available cannabinoid preparations would not 
constitute a sufficient public health response. These data 
including geotemporospatial analysis and pseudo-randomi-
zation of an observational population confirm our open-
ing hypothesis that increased cannabis use and its related 
socioethnodemographic trends is one of the principal causes 
and primary drivers of escalating US autism rates. The issue 
of the exponential relationship between exposure to the can-
nabinoids Δ9-tetrahydrocannabinol and cannabigerol is of 
particular concern and necessarily implies a non-linear, 
and in a public health sense, apparently abrupt relationship 
between exposure and downstream consequences, which 
would be consistent with multiple mechanistic pathways. In 
view of the present aggressive growth phase of the emerging 
cannabis industry, further research on the factors identified 
in this ecological study, including higher definition spati-
otemporal epidemiological studies, are indicated.
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