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Abstract
The relative roles of brainstem, thalamus and striatum in parkinsonism in schizophrenia spectrum disorder (SSD) patients 
are largely unknown. To determine whether topographical alterations of the brainstem, thalamus and striatum contribute to 
parkinsonism in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-P, 
n = 35) and without (SSD-nonP, n = 64) parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥ 4 
and < 4, respectively, in comparison with healthy controls (n = 20). FreeSurfer v6.0 was used for segmentation of four brain-
stem regions (medulla oblongata, pons, superior cerebellar peduncle and midbrain), caudate nucleus, putamen and thalamus. 
Patients with parkinsonism had significantly smaller medulla oblongata (p = 0.01, false discovery rate (FDR)-corrected) and 
putamen (p = 0.02, FDR-corrected) volumes when compared to patients without parkinsonism. Across the entire patient 
sample (n = 99), significant negative correlations were identified between (a) medulla oblongata volumes and both SAS total 
(p = 0.034) and glabella-salivation (p = 0.007) scores, and (b) thalamic volumes and both SAS total (p = 0.033) and glabella-
salivation (p = 0.007) scores. These results indicate that brainstem and thalamic structures as well as basal ganglia-based 
motor circuits play a crucial role in the pathogenesis of parkinsonism in SSD.
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Introduction

Parkinsonism in schizophrenia spectrum disorders (SSD) 
is a multidimensional syndrome characterized by tremor, 
rigor, akinesia and hypersalivation [1–3]. The neurobiologi-
cal mechanisms underlying parkinsonism in SSD are thought 

to reflect an interplay between spontaneous (i.e. disease-
related) and antipsychotic drug-exacerbated movement 
disorder [1, 4–8]. Previous multimodal magnetic resonance 
imaging (MRI) and other studies have considered several 
putative neurobiological mechanisms including prominent 
striatal contributions [9] and disturbed structural–functional 
coupling between cortical and subcortical systems, particu-
larly in cortical-striatal-thalamocortical networks [5, 6, 10, 
11]. However, previous structural MRI studies used tech-
niques that were unable to account sufficiently for the convo-
luted morphological relationships among brainstem, striatal 
and thalamic structures [12]. In addition, there is a paucity 
of evidence concerning structural brainstem abnormalities 
in SSD patients with parkinsonism.

Therefore, the present MRI study used both a categorical 
and a dimensional (correlational) approach to investigate the 
relationships between morphological variations of subcorti-
cal structures [medulla oblongata, pons, superior cerebellar 
peduncle (SCP), midbrain, caudate nucleus, putamen and 
thalamus] and parkinsonism assessed with the Simpson 
and Angus Scale (SAS) [26] in SSD patients. Currently, the 
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SAS is the only instrument that allows robust estimation 
of parkinsonism in SSD patients. The SAS estimates rigor, 
tremor, hypokinesia, hypersalivation, and glabellar tap. 
Particularly noteworthy is glabella tap, as this is ascribed 
to frontal release signs [13] and is considered an intrinsic 
sensorimotor sign (i.e. reflecting vulnerability to and emer-
gence of illness) that is not related to effects of medication. 
This study had two main hypotheses: first, using a categori-
cal approach, we hypothesized that brainstem structures, 
caudate nucleus, putamen and thalamus volumes will dif-
fer between SSD patients with (SSD-P, SAS total score ≥ 4) 
and without (SSD-nonP, SAS total score < 4) parkinsonism. 
Second, using a dimensional approach (i.e. across increasing 
severities of parkinsonism) and in accordance with a model 
of dopaminergic-driven subcortical-cortical motor circuitry 
[14–17], we hypothesized that the volumes of these struc-
tures will be associated with distinct symptom dimensions 
of parkinsonism.

Methods

Study participants

We evaluated a total of 111 right-handed [18] subjects satis-
fying DSM-IV-TR [19] criteria for schizophrenia (n = 104) 
or schizoaffective disorder (n = 7) [20, 21]. Diagnoses were 
made by staff psychiatrists and confirmed using the German 
versions of the Structured Clinical Interview for DSM-IV-
TR axis I and II disorders (SCID) and examination of the 
case notes (D.H. and S.F.). Patients were excluded if: (1) 
they were aged < 18 or > 65 years; (2) they had a history of 
brain trauma or neurological disease (especially movement 
disorders); or (3) they had shown alcohol/substance use dis-
order within 12 months prior to participation.

Twenty-eight healthy right-handed control subjects (HC) 
were also studied. Exclusion criteria included MRI contrain-
dications, a history of psychiatric, neurological, cardiovas-
cular or metabolic illness, prior head trauma, and current 
alcohol or drug abuse. None of the control subjects had 
a first-degree relative with a psychiatric disorder or were 
receiving psychopharmacological treatment.

The study protocol adhered to the Declaration of Hel-
sinki. The local Research Ethics Committee (Medical Fac-
ulty at Heidelberg University, Germany) approved the study. 
We obtained written informed consent from all study par-
ticipants after all aims and procedures of the study had been 
fully explained.

Clinical assessment

Patients were recruited and examined by SF and DH within 
1 week after partial remission of psychotic symptoms. The 

duration between the evaluation of psychopathology (Posi-
tive and Negative Syndrome Scale [PANSS] [22], Brief 
Psychiatric Rating Scale [BPRS] [23], Clinical Global 
Impression Scale [CGI] [24]), functional capacity (Global 
assessment of functioning [GAF] [25]), sensorimotor assess-
ment (Simpson-Angus Scale (SAS) [26] and Northoff Cata-
tonia Rating Scale (NCRS) [27, 28]) and MRI examination 
was less than 3 days. At the time of examination, none of the 
SSD patients were treated with benzodiazepine or anticho-
linergic medication and all but 4 patients were receiving 
stable antipsychotic medication for at least 2 weeks. Daily 
doses of antipsychotic medication were converted to olan-
zapine equivalents (OLZ) [29].

For assessment of parkinsonism, we used the SAS [26]. 
We then excluded 12 SSD patients from the original study 
sample (111 − 12 = 99) to create two well-balanced (in 
terms of age, sex, education and OLZ-equivalent dose) 
groups of SSD patients with parkinsonism (SSD-P; SAS 
total score ≥ 4, n = 35) and without parkinsonism (SSD-
nonP; SAS total score < 4, n = 64) according to previously 
described cut‐off criteria [30]. The patient groups were care-
fully matched with respect to sex and education because 
both variables can influence sensorimotor functioning in 
SSD [2, 31]. Similarly, we excluded 8 HC from the origi-
nal sample (28 − 8 = 20) to create a well-matched (in terms 
of age, sex and education) control group (n = 20). Finally, 
we followed a correlative approach, assuming dimensional 
symptom expression along a neurobiological continuum in 
SSD patients with various degrees of parkinsonism (n = 99) 
[32].

MRI data acquisition

MRI scans were acquired at the Central Institute of Mental 
Health, Mannheim, Germany, using a 3.0 T Siemens Trio 
whole-body imaging system and a T1-weigthed magneti-
zation-prepared rapid gradient-echo (MP-RAGE) sequence 
with the following parameters: repetition time (ms): 2530; 
echo time (ms): 3.8; inversion time (ms): 1100; flip angle: 
7°; number of averages: 1; slice thickness (mm): 1; image 
columns: 256; image rows: 256; phase encoding direction: 
ROW; voxel size x (mm): 1; voxel size y (mm): 1; number 
of volumes: 1; number of slices: 176; number of files: 176.

Image processing

FreeSurfer v6.0 [33] was used for the segmentation of 
four brainstem regions and the caudate nucleus, puta-
men and thalamus [34–36]; for further details on these 
methods see (http:// surfer. nmr. mgh. harva rd. edu/). This 
segmentation tool is able to perform volumetric segmen-
tation of four brainstem regions (medulla oblongata, pons, 
SCP and midbrain) from T1 (MP-RAGE) images using a 

http://surfer.nmr.mgh.harvard.edu/
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Bayesian algorithm that relies on a probabilistic atlas of 
the brainstem and neighboring brain structures [12]. Fur-
thermore, this tool uses soft segmentation, i.e. a voxel can 
be assigned to multiple structures/tissues, which results 
in improved performance regarding partial volume effects 
from surrounding cerebrospinal fluid [12]. The volumes 
of the caudate nucleus, putamen and thalamus were per-
formed using the aseg.stats command. Since we did not 
have an explicit laterality hypothesis, we calculated a 
mean value from the left and right volumes of these three 
structures. Finally, the estimated total intracranial volume 
(eTIV) was calculated with FreeSurfer as recommended. 
FreeSurfer exploits a relationship between intracranial vol-
ume and linear transformation to MNI305 space (talairach.
xfm) as described previously [37].

Statistical analysis

We used SPSS version 26. Initially, a descriptive analysis 
for demographic, clinical and volumetric data in SSD-P and 
SSD-nonP patients (Table 1) was performed. Then, homoge-
neity of variance for each subcortical region and SAS scores 
in both patient groups was evaluated and confirmed using 
Levene’s test.

Group differences: in a first step, one-way analysis of 
variance (ANOVA), based on the General Linear Model 
procedure as implemented in SPSS, was used to iden-
tify any significant differences between the means of the 
three study groups. In a second step, we performed a one-
way ANCOVA using eTIV, OLZ and PANSS-P scores as 
covariates to identify any significant differences between 
SSD-P and SSD-nonP patients. Then, we performed a 

Table 1  Demographic, clinical and sensorimotor characteristics for SSD patients with (SSD-P) and without (SSD-nonP) parkinsonism and 
healthy controls (HC)

Data are mean ± standard deviation. Significant results (p < 0.05) are displayed in bold font
SSD schizophrenia spectrum disorders, SSD-P SSD patients with parkinsonism, SSD-nonP SSD patients without parkinsonism, HC healthy con-
trols, OLZ mean daily dose of antipsychotics in olanzapine equivalents, PANSS Positive and Negative Syndrome Scale, as -total score, and -posi-
tive (P), -negative (N) and -general (G) subscale scores, BPRS Brief Psychiatric Rating Scale, GAF Global Assessment of Functioning, CGI-S 
Clinical Global Impression Scale for Schizophrenia, SAS Simpson and Angus Scale, with total and subscale scores, NCRS Northoff Catatonia 
Rating Scale, with total and subscale scores, eTIV estimated total intracranial volume  (mm3)
a F, df,and p values were obtained using ANOVA
b χ2, df and p values were obtained using the Chi-squared test
c t, df and p values were obtained using independent sample t tests (two-tailed)

Variable SSD-P
(n = 35)

SSD-nonP (n = 64) HC
(n = 20)

F/χ2/t df p

Age (years)a 40.9 ± 11.2 40.7 ± 9.7 40.7 ± 13.6 0.002 2116 0.99
Sex (male/female)b 19/16 32/32 9/11 0.44  2116 0.79
Education (years)a 13.2 ± 2.9 13.2 ± 2.6 13.5 ± 1.8 0.06 2116 0.93
Duration of illness (years)c 13.7 ± 12.4 10.6 ± 10.4 – 1.30 97 0.19
OLZa 20.1 ± 11.3 17.2 ± 8.9 0.0 ± 0.0 1.69 97 0.17
Duration of illness (years)c 13.7 ± 12.4 10.6 ± 10.4 – 1.3 97 0.19
PANSS-P  scorec 13.4 ± 5.6 16.3 ± 7.6 – 1.96 97 0.051
PANSS-N  scorec 17.3 ± 7.8 15.27 ± 7.1 – 1.34 97 0.18
PANSS-G  scorec 32.3 ± 8.4 35.2 ± 11.4 – 1.39 97 0.19
PANSS-total  scorec 62.9 ± 17.0 66.7 ± 22.0 – 0.88 97 0.37
GAF  scorec 68.6 ± 16.5 71.2 ± 16.9 – 0.75 97 0.45
CGI-Sc 3.9 ± 1.0 3.9 ± 0.9 – 0.16 97 0.86
SAS hypokinesiac 1.1 ± 0.7 0.4 ± 0.5 – 5.72 97 < 0.0001
SAS rigidityc 2.6 ± 2.2 0.3 ± 0.5 – 8.38 97 < 0.0001
SAS tremorc 0.9 ± 0.7 0.4 ± 0.5 – 4.49 97 < 0.0001
SAS glabella-salivationc 1.3 ± 0.9 0.5 ± 0.7 – 4.92 97 < 0.0001
SAS total scorec 5.9 ± 2.2 1.5 ± 1.1 – 13.43 97 < 0.0001
NCRS motorc 1.1 ± 1.5 0.6 ± 0.8 – 2.30 97 0.024
NCRS affectivec 1.8 ± 1.4 1.5 ± 1.9 – 1.0 97 0.31
NCRS behavioralc 1.2 ± 1.5 0.7 ± 1.1 – 1.88 97 0.062
NCRS total scorec 4.1 ± 3.4 2.7 ± 3.0 – 2.16 97 0.03
eTIV 1.47 ± 0.20 ×  106 1.50 ± 0.20 ×  106 1.51 ± 0.22 ×  106 0.29 2116 0.74
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one-way ANCOVA using eTIV and OLZ as covariates to 
determine whether there are any significant differences 
between SSD-P and SSD-nonP patients and HC.

Structure-symptom associations: in a third step, partial 
correlations (Pearson coefficient, two-tailed) using age, 
sex, OLZ, eTIV, and PANSS-N scores as covariates were 
run to determine the relationships between medulla oblon-
gata and putamen volumes and SAS scores in the whole 
sample of SSD patients (n = 99). A nominal significance 
threshold of p ≤ 0.05 was defined. Finally, out of concern 
that some parkinsonian features might be misinterpreted 
as catatonic symptoms, thus inflating SAS scores, in a 
further step NCRS total scores were included as covari-
ates in all structure-symptom analyses. To account for 
false-positive findings within identified between-group 
differences and structure-symptom associations, p-values 
were adjusted after each step using the false discovery 
rate (FDR; p ≤ 0.05) correction [38].

Results

Clinical, demographic and volumetric characteristics

Demographic and clinical characteristics of the three study 
groups are shown in Table 1. Of the 99 SSD patients ana-
lyzed, 35 (35.4%) were operationally defined as having par-
kinsonism (SSD-P, SAS total score ≥ 4) and compared with 
64 (64.6%) who were operationally defined as not having 
parkinsonism (SSD-nonP, SAS total score < 4); SSD-P and 
SSD-nonP patients were well balanced (propensity matched) 
for age, sex, education and OLZ. In further between-group 
analyses, these 35 SSD-P patients and 64 SSD-nonP patients 
were each compared with the 20 HC that were similarly well 
matched for age, sex and education.

Group differences

First, on ANOVA there were significant overall differences 
between the three study groups in the medulla oblongata 
(F(2,116) = 4.53, p = 0.01), putamen (F(2,116) = 3.14, p = 0.04) 

Table 2  Brainstem and basal ganglia structural volumes in SSD patients with (SSD-P) and without (SSD-nonP) parkinsonism and healthy con-
trols (HC)

Data are mean ± standard deviation  (mm3). Significant differences (p < 0.05) in means between all three groups using one-way ANOVA are indi-
cated in bold. Significant differences (p < 0.05) in means between two groups using ANCOVA are indicated in bold
LSD Fisher’s least significant difference test, SCP superior cerebellar peduncle, eTIV estimated total intracranial volume
a F and p values are for ANCOVA with OLZ, eTIV and PANSS-P score as covariates (see Table 1)
b F and p values are for ANCOVA with OLZ and eTIV as covariates (see Table 1). ANCOVA were followed by Benjamini & Hochberg correc-
tion for false discovery rate [38] to test the differences among groups. Values surviving Benjamini & Hochberg correction are indicated by an 
asterisk (*)
c Mean of bilateral values

Structure SSD-P SSD-nonP HC p values for ANOVA and LSD tests p values for ANCOVA

(n = 35) (n = 64) (n = 20) SSD-P vs. 
SSD-
nonPa

SSD-P
vs.  HCb

SSD-nonP 
vs.  HCb

Medulla oblongata 4476 ± 512 4764 ± 541 4821 ± 325 ANOVA: 0.01
LSD: SSD-P < SSD-nonP 0.007; 

SSD-P < HC 0.01; SSD-nonP vs. HC 
0.65

0.01* 0.04 0.61

Pons 14,329 ± 1888 14,897 ± 1752 15,150 ± 1320 0.17 – – –
SCP 261 ± 54 277 ± 59 295 ± 52 0.08 – – –
Midbrain 5762 ± 558 6006 ± 508 6003 ± 509 0.07 – – –
Whole brainstem 24,829 ± 2792 25,945 ± 2662 26,270 ± 2028 0.07 – – –
Caudatec 3432 ± 437 3638 ± 465 3541 ± 458 0.10 – – –
Putamenc 4802 ± 571 5056 ± 522 4754 ± 558 ANOVA: 0.02

LSD: SSD-P < SSD-nonP 0.02; SSD-P 
vs. HC 0.75; SSD-nonP > HC 0.03

0.02* 0.94 0.72

Thalamusc 6813 ± 756 7066 ± 775 7353 ± 827 ANOVA: 0.04
LSD: SSD-P vs. SSD-nonP 0.12; 

SSD-P < HC 0.01; SSD-nonP vs. HC 
0.15

0.14 0.02 0.58
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and thalamic (F(2,116) = 3.77, p = 0.02) volumes (Table 2). 
There were no significant overall group differences in the 
midbrain, SCP, pons, whole brainstem or caudate nucleus 
(p > 0.05) volumes. Least significant difference (LSD) post 
hoc tests were then applied for individual group compari-
sons. In medulla oblongata (Fig. 1), volume in SSD-nonP 
patients did not differ from HC, while volume in SSD-P 
patients was decreased relative to HC (p = 0.01); volume in 
SSD-P patients was reduced relative to SSD-nonP patients 
(p = 0.007). In putamen (Fig.  2), volume in SSD-nonP 
patients was increased relative to HC (p = 0.03), while vol-
ume in SSD-P patients did not differ from HC; volume in 
SSD-P patients was decreased relative to SSD-nonP patients 
(p = 0.02). In thalamus (Fig. 3), volume in SSD-P patients 
was decreased relative to HC (p = 0.01), while volume 
in SSD-nonP was intermediate and differed from neither 
SSD-P nor HC.   

Second, on ANCOVA (Table 2), there were significant 
differences (1) between SSD-P and SSD-nonP patients in 
medulla oblongata (p = 0.01) and putamen (p = 0.02) vol-
umes, and (2) between SSD-P patients and HC in medulla 
oblongata (p = 0.04) and thalamic (p = 0.02) volumes, while 
these volumes did not differ between SSD-nonP patients and 
HC.

Structure‑symptom associations

Higher SAS total and SAS glabella-salivation scores were 
each negatively associated with medulla oblongata vol-
ume (r = − 0.219, p = 0.034 and r = − 0.277, p = 0.007, 
respectively) and thalamic volume (r = − 0.220, p = 0.033 
and r = − 0.274, p = 0.007, respectively); only the associa-
tions between SAS glabella-salivation scores and medulla 
oblongata and thalamic volumes survived FDR correction 
(p < 0.05). Finally, using NCRS total scores as a covariate, 
higher SAS total scores were negatively associated with 
medulla oblongata volumes (r = − 0.212, p = 0.041) and 
SAS glabella-salivation scores were negatively associated 

with medulla oblongata volumes (r = − 0.267, p = 0.009) and 
thalamic volumes (r = − 0.259, p = 0.012); only the asso-
ciation between SAS glabella-salivation scores and medulla 

Fig. 1  Scatter plot showing 
medulla oblongata volumes 
in SSD patients with (SSD-P, 
n = 35) and without (SSD-
nonP, n = 64) parkinsonism and 
healthy controls (HC, n = 20). 
Significant between-group 
differences are designated with 
one asterisk (p < 0.05) or two 
asterisks (p < 0.01); ns not 
significant

Fig. 2  Scatter plot showing putamen mean volumes in SSD patients 
with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism 
and healthy controls (HC, n = 20). Significant between-group differ-
ences are designated with one asterisk (p < 0.05); ns not significant
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oblongata and thalamic volumes survived FDR correction 
(p ≤ 0.05).

Discussion

Using subcortical segmentation tools implemented in 
FreeSurfer v6.0, we investigated structural differences in 
brainstem structures, caudate nucleus, putamen and thala-
mus between SSD patients with and without parkinsonism 
in comparison with healthy controls. Three main find-
ings emerged: firstly, SSD-P patients showed a reduced 
volume of the medulla oblongata and putamen compared 
to SSD-nonP and HC; secondly, SSD-P patients did not 

show the increase in volume of the putamen that was evi-
dent in SSD-nonP patients compared to HC; thirdly, SAS 
glabella-salivation scores were associated negatively with 
medulla oblongata and thalamic volumes in the whole 
SSD sample.

Group differences

To our knowledge, this is the first MRI study that specifically 
aimed to compare volumes of subcortical sensorimotor brain 
regions in SSD patients with and without parkinsonism and 
HC. In line with our hypothesis, SSD-P patients showed 
reduced volumes of the medulla oblongata and putamen 
compared to SSD-nonP patients. These findings are impor-
tant for better understanding the pathogenesis of parkinson-
ism for several reasons:

First, the medulla oblongata is the lowest part of the 
brainstem and contains multiple nuclei (e.g. nucleus 
ambiguus, the dorsal vagal motor nucleus and the raphe 
nucleus) and tracts that connect the spinal cord with the 
forebrain. In particular, the medulla oblongata contains the 
inferior olivary nuclei, the pyramidal decussation of the 
motor pathways, and the spinothalamic tract [39]. The infe-
rior olivary nuclei are responsible for proprioception, mus-
cle tension and motor intention [39]. These nuclei are also 
closely connected to the cerebellum. The medulla oblongata 
is a location where the majority of motor pathways from the 
cortex decussate to form the corticospinal tract (CST). In 
addition to the CST, the medulla oblongata includes the spi-
nothalamic tract and serves as a switch point between motor 
pathways from the cortex, thalamus, cerebellum, and spinal 
cord. In line with this functionality, atrophy of the brainstem 
and medulla oblongata [40] are associated with neurologi-
cal disorders characterized by parkinsonian symptoms [41]. 
More recently, Fritze and colleagues [42] found that medulla 
oblongata volumes are associated significantly with motor 
coordination abilities in SSD. Taken together, structural 
abnormalities of the medulla oblongata can result in aber-
rant signal transmission between sensorimotor regions that 
lead to the development of sensorimotor abnormalities, and 
the present findings extend this to parkinsonism in SSD. 
Patients with SSD show an overall decrease in volume of 
the medulla oblongata, which is subject to broad genetic 
regulation [43] in a manner that may differ between SSD-P 
and SSD-nonP patients.

Second, SSD-P patients did not show the increase in 
putamen volume that was evident in SSD-nonP patients 
relative to HC. The putamen, together with the caudate 
nucleus, is now considered to play a critical role in the 
pathobiology of SSD [44] in addition to its classical 
role in sensorimotor abnormalities; it is interconnected 
with the primary motor cortex and the supplementary 
motor area and hence has a fundamental role in motor 

Fig. 3  Scatter plot showing thalamus mean volumes in SSD patients 
with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism 
and healthy controls (HC, n = 20). Significant between-group differ-
ences are designated with one asterisk (p < 0.05); ns not significant
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control [45]. Previous reports have indicated that overall 
increases in the volume of the putamen in SSD patients 
involve a trophic effect of treatment with antipsychotic 
drugs at a site rich in D2 dopamine receptors, which are 
the primary targets for antipsychotics [46–49]. Therefore, 
such a trophic effect of antipsychotic treatment may con-
tribute to the increase in putamen volume found in SSD-
nonP patients, perhaps as a compensatory mechanism to 
overcome impaired sensorimotor functioning intrinsic to 
the disease process of SSD. In contrast, the absence of 
an increase in putamen volume in SSD-P patients may 
reflect a reduced capacity to invoke such a response to 
antipsychotic treatment, which is reflected in the overt 
sensorimotor dysfunction of parkinsonism. Increase in 
putamen volume appears to be under specific genetic 
regulation in a manner that is weakened in SSD [50] and 
may differ between SSD-P and SSD-nonP patients.

Third, SSD patients showed a graded decrease in tha-
lamic volume (SSD-P < SSD-nonP < HC). The thalamus is 
an important component in cortical-striatal-thalamocorti-
cal networks that have fundamental roles in the sensorimo-
tor function and movement disorder [10] and the volumes 
of several thalamic nuclei are known to be decreased in 
SSD [51]. Decrease in thalamic volume is associated with 
polygenic risk for SSD [52], which may vary between 
SSD-P and SSD-nonP patients.

Structure‑symptom relationships

The SAS glabella-salivation scores were negatively asso-
ciated with medulla oblongata and thalamic volumes. 
Interestingly, glabellar tap is a frontal release sign, which 
can be detected early after birth but disappears in the pro-
cess of further brain development [13]. Consequently, the 
origin of the glabellar tap sign, like other frontal release 
signs associated with movement disorder in SSD [53], 
may be ascribed not to antipsychotic treatment effects but, 
rather, to frontal lobe dysfunction intrinsic to the underly-
ing disease process [54]. In the present study, the nega-
tive association between glabellar tap scores and medulla 
oblongata and thalamic volumes suggests a disturbance 
of bottom-up modulation via subcortical-extrapyramidal 
circuits [55–57] leading to disinhibition of cortical sen-
sorimotor regions (as reflected by frontal release signs), 
particularly on taking into account thalamic function as a 
‘gatekeeper’ [58].

Salivation is under  M3- and  M4-mediated cholinergic 
control and the antipsychotic clozapine is associated with 
hypersalivation, while other antipsychotic drugs are more 
prone to anticholinergic side effects such as dry mouth 
[59]. Hypersalivation in SSD-P can be due to increased 
production or decreased swallowing, the latter possibly 

due to bradykinesia or clozapine-associated decrease in 
laryngeal peristalsis [59]. However, the influence of clo-
zapine on the salivation item of the SAS in our sample 
seems rather limited when taking into account that only 19 
of 99 patients (19%) received clozapine treatment.

Limitations

Despite the advantages of the study (sample size, sys-
tematic comparisons between HC, SSD-nonP and SSD-P 
patients), there are some limitations: first, the cross-sec-
tional design does not allow conclusions about the stabil-
ity or dynamics of the findings over time, as both parkin-
sonian symptoms and subcortical structure and function 
may vary over the course of illness. Second, our study 
included SSD patients receiving antipsychotic medication. 
Although antipsychotic drugs might still be considered 
as potentially influencing sensorimotor assessment, the 
contribution of spontaneous sensorimotor abnormalities 
intrinsic to the disease process of SSD [60] and the effects 
of such treatment to exacerbate such intrinsic abnormali-
ties (rather than ‘cause’ them de novo) are increasingly 
recognized [1, 3, 61]. Thus, though it might be argued that 
there is no way to reliably differentiate spontaneous and 
drug-induced parkinsonian symptoms in patients receiv-
ing antipsychotic medication, this appears to be a false 
dichotomy given that the latter appear to be an antipsy-
chotic-induced exacerbation of the former within unitary 
network dysfunction [3, 5, 7]. Furthermore, SSD and par-
kinsonian movement disorder share genetic risk factors 
and thus appear to involve overlapping pathobiologies 
[62]. To clarify these issues would require longitudinal 
instrumental and momentary ecological assessments in 
both antipsychotic-naïve and treated SSD patients, includ-
ing periods both on- and off-medication.

Conclusion

These relationships between parkinsonism in SSD and 
volumes of the medulla oblongata, putamen and thalamus 
should not be considered independently. As the medulla 
oblongata enjoys functionally important efferent and affer-
ent connectivity with the thalamus and putamen as well as 
the cortex, it interacts closely across several components in 
the cortical-striatal-thalamocortical networks that have been 
implicated in the pathobiology of parkinsonian movement 
disorder [10, 63, 64]. These three brain structures involved 
in dopaminergically based motor circuits appear to play an 
important, integrative role in the pathobiology of parkinson-
ism in SSD.
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