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Abstract
Intermittent theta burst stimulation (iTBS) is a novel treatment approach for post-traumatic stress disorder (PTSD), and 
recent neuroimaging work indicates that functional connectivity profiles may be able to identify those most likely to respond. 
However, prior work has relied on functional magnetic resonance imaging, which is expensive and difficult to scale. Alter-
natively, electroencephalography (EEG) represents a different approach that may be easier to implement in clinical practice. 
To this end, we acquired an 8-channel resting-state EEG signal on participants before (n = 47) and after (n = 43) randomized 
controlled trial of iTBS for PTSD (ten sessions, delivered at 80% of motor threshold, 1,800 pulses, to the right dorsolateral 
prefrontal cortex). We used a cross-validated support vector machine (SVM) to track changes in EEG functional connectiv-
ity after verum iTBS stimulation. We found that an SVM classifier was able to successfully separate patients who received 
active treatment vs. sham treatment, with statistically significant findings in the Delta band (1–4 Hz, p = 0.002). Using Delta 
coherence, the classifier was 75.0% accurate in detecting sham vs. active iTBS, and observed changes represented an increase 
in functional connectivity between midline central/occipital and a decrease between frontal and central regions. The primary 
limitations of this work are the sparse electrode system and a modest sample size. Our findings raise the possibility that EEG 
and machine learning may be combined to provide a window into mechanisms of action of TMS, with the potential that these 
approaches can inform the development of individualized treatment methods.
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Introduction

Posttraumatic stress disorder (PTSD) is a highly prevalent 
psychiatric condition marked by trauma exposure. It is often 
associated with severe impairment of occupational and 
social functioning and diminished quality of life [7,12,24]. 
There is an increased need for the development of novel 
treatments for PTSD, specifically for the Veteran popula-
tion, as current PTSD treatments, such as psychotherapy 
and pharmacotherapy, may not be as effective in symptom 
reduction in Veterans compared to the general population 
[25]. Neuromodulation interventions, such as repetitive tran-
scranial magnetic stimulation (rTMS, hereafter TMS), are 
proving to be an effective treatment for pharmacoresistant 
major depressive disorder (MDD) [4,16] and PTSD [3,13]. 
TMS provides a pulsed magnetic field, typically for the left 
dorsolateral prefrontal cortex (DLPFC) for MDD, which 
induces an electric current to modulate activity in that brain 
region. Though effective, standard TMS treatment can be 
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cumbersome and time-consuming. Currently available pro-
tocols generally require at least 30 min, delivered every day, 
for up to six weeks. New treatment protocols for TMS deliv-
ery are being introduced with shorter treatment durations 
and comparable effectivity. One such stimulation protocol, 
Theta-burst stimulation (TBS), is effective in both depressed 
patients [1] and those with PTSD [20].

In TBS, bursts of high-frequency (50 Hz) stimulation 
repeated at 5 Hz (200 ms intervals) is used. These pulses 
are thought to modulate synaptic plasticity [10], and stimu-
lation can be delivered in an intermittent (iTBS) or continu-
ous fashion, where the two approaches are thought to have 
excitatory and inhibitory effects, respectively. TBS can be 
hypothesized to be particularly effective for the treatment 
of PTSD due to the stimulation pattern resembling the theta 
oscillations of hippocampal memory systems, thus relat-
ing to PTSD’s intrusive traumatic memories [14]. Despite 
these, the exact mechanism of TBS treatment is not fully 
understood. Prior imaging studies of TBS have indicated that 
pretreatment functional connectivity, utilizing functional 
magnetic resonance imaging, can predict clinical response 
to stimulation in depression (reviewed in [19] and PTSD 
[21]. However, because fMRI is associated with high costs 
that limit general clinical use, several alternatives to MRI are 
being developed, foremost among them electroencephalog-
raphy (EEG), which may provide a more scalable technol-
ogy to use in clinical contexts. EEG has now been used to 
identify potential signatures related to PTSD [5], in a prior 
study, we were able to identify EEG predictors of symptom 
response to TMS using data from a sparse electrode system 
[29]. Here, we attempted to use EEG to track changes in 
brain functional connectivity associated with iTBS treatment 
in patients with PTSD.

To this end, we recorded resting-state eyes-closed EEG 
before and after a course of sham-controlled iTBS PTSD 
[20]. We used this data to train a machine-learning algo-
rithm to track changes in EEG connectivity associated with 
TBS treatment, hypothesizing this algorithm could reliably 
identify neural signals associated with verum stimulation, 
compared to sham.

Methods

We used the EEG data recorded during a previously pub-
lished randomized, double-blind study of iTBS for PTSD, 
conducted at the Providence VA Medical Center in Provi-
dence, RI, USA. For full details of the study, including inclu-
sion/exclusion criteria, clinical outcomes, and initial fMRI 
results, see [17,20]. In brief, all participants met DSM-5 cri-
teria for PTSD and eligibility to receive TMS treatment, and 
any medications and psychotherapeutic treatments were sta-
ble for at least 6 weeks before beginning study procedures. 

After randomization and motor threshold determination, 
sham-controlled iTBS was delivered to the right dorsolateral 
prefrontal cortex (DLPFC) daily for ten business days via 
a Magstim Rapid 2 + 1 system (Magstim, Whitland, U.K.). 
Separate (and double-blinded) stimulation coils were used 
for sham and active stimulation. The sham coil was designed 
to mimic the sound and sensory feelings associated with 
transcranial magnetic stimulation but with weaker e-field. 
Stimulation was delivered at 80% of active motor threshold, 
for 1800 pulses and 9.5 min. In that study, there was a sta-
tistically significant and clinically meaningful improvement 
in social and occupational function at two weeks, with clini-
cally meaningful effect sizes at the end of the two weeks. 
EEG was obtained after randomization, and then after the 
final iTBS session. Of the 50 participants in the intent-to-
treat (ITT) sample, pretreatment EEG was obtained from 
47 participants, and post-treatment EEG was obtained from 
43 participants (of the 47, three participants withdrew from 
the study prior to completion of the post-EEG, and one 
participant complete post-treatment EEG but the data was 
not usable). The clinical symptoms were assessed via self-
report symptom checklists, namely Inventory of Depressive 
Symptoms-Self Report (IDS-SR) [23] PTSD Checklist for 
DSM-5 (PCL-5) [26]. The summary changes in symptoms 
are reported previously [20] and reviewed again in the sup-
plementary results.

EEG acquisition

EEG was acquired following similar methods, as described 
in Zandvakili et al. [29]. In brief, resting-state eyes open and 
eyes-closed EEG was recorded for 10–15 min while partici-
pants were asked to sit quietly and to remain as still as pos-
sible during the recording. Participants were asked to keep 
eyes open for a minute, eyes closed for 10–12 min, and eyes 
open again for another minute. Only eyes-closed data were 
analyzed. Using an 8-channel electrode cap and EEG device 
(StarStim, Neuroelectrics, Cambridge, MA, USA), dry elec-
trodes were placed over FP1, FP2, FPz, F3, Fz, Cz, Pz, and 
Oz (Fig. 1a). Electrode placement included the TMS target 
area, the dorsolateral prefrontal cortex (DLPFC), plus mid-
line sites where we expected modulation in functional con-
nectivity, informed by previous work [15]. EEG acquisition 
used a low-pass filter (50 Hz), a high-pass filter (0.5 Hz), 
sampled at 500 Hz, and was digitized at 24-bit precision.

EEG analysis

EEG preprocessing was conducted using custom computer 
scripts written for MATLAB (v2019a; Mathworks, Natick, 
MA, USA), and using the methods described in [29]. EEG 
data were re-referenced through amplitude subtraction 
into eight nearest-neighbor bipolar electrode pairs. We 
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used bipolar montage to avoid volume conductance and 
shared electrode noise (see discussion for further details 
on the rational). The data was then segmented into 2-s 
non-overlapping epochs. Epochs containing artifacts (eye 
movement, muscle, or movement-related) or amplifier drift 
were removed after manual inspection. Only data from 
individuals with > 120 s of usable data (sixty 2-s epochs) 
were used in the analysis. We also excluded EEG data 
when it was not recorded in all 8 electrodes, or one or 
more electrodes had low quality of data,this was neces-
sary as extrapolating the signal from neighboring sites 
was not feasible with eight recording electrodes. 19 of 24 
participants in the active treatment and 16 of 23 partici-
pants in the sham group had either pretreatment or post-
treatment EEG recording that fulfilled the above criteria. 
Eyes closed recording was done for 10–12 min; and of the 
sessions that met the above criteria, there was an aver-
age of 6.8 ± 3.2 min of usable data. The power spectral 
density of artifact-free 2-s epochs was calculated using a 
Welch Power Spectral Density estimate and a Hamming 
window with a 50% overlap (MATLAB Signal Process-
ing Toolbox). Power was calculated for frequency bands 
corresponding to delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), beta (13–30 Hz), for all nearest-neighbor bipo-
lar electrode pairs (see the list in supplementary methods).

We used coherence to quantify the statistical dependence 
between two EEG signals and as a tool to make inferences 
about functional connectivity between two recorded sites. 
We calculated coherence between all possible pairings of 
the eight bipolar recording sites (28 possible pairings for 8 
recording sites). Coherence was calculated based on spec-
tral density (estimated via Welch method and a Hamming 
window with a 50% overlap) using the following function:

where for each frequency, f, Gx,y(f) is the cross-spectral den-
sity between x and y, and Gx,x(f), and Gy,y(f) are the auto-
spectral density of x and y, respectively. |G| denotes the mod-
ulus of G. Coherence values, Cx,y(f), vary between 0 and 1 
with 0 indicating no statistical relationship and 1 being full 
coherence. Coherence values from individual bins within a 
frequency band were averaged to obtain the coherence for 
that band.

Machine learning

The analyses were conducted using MATLAB. For the 
Support Vector Machine, we used the LIBLINEAR library 
[6] compiled in MATLAB. We also used Support Vector 
Machine (SVM, specifically an L1 regularized SVM imple-
mentation through LIBLINEAR [6]. In its simplest form, a 
linear classifier works by calculating a weighted sum of a 
set of predictor inputs (also called “features” or independent 
variables) and then applying a threshold to assign each of 
the cases to one of the two classification categories (Fig. 1b). 
Classifier algorithms, such as SVM, are algorithms that 
assign and find the optimal weights for the classifier. A set 
of weights/a trained classifier is also called a “model.” To be 
more specific, if the training dataset is represented as a set 
of values (x1, y1), …, (xn, yn), where x1−xn each represent a 
vector of features and y1−yn can assume values of − 1 or + 1 
to point to pre- and post-ITBS or sham vs. active session, 
respectively. The classifier fitted a vector of weights, wn to 
minimize this equation:
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Fig. 1   EEG electrode placement and classifier design. a Placement 
of 8 dry electrodes.iTBS was delivered over site F3, targeting the 
DLPFC. Red circles indicate the location of bipolar montage sites, 
used to avoid noise introduced by a common reference. b Schematic 
depicting a linear classifier. Classification is done by calculating a 

weighted sum of a set of predictor inputs (also called “features” hear 
marked by x1, x2, …, xn) and then applying a threshold to assign each 
of the cases to one of the two classification categories. The algorithm 
assigned the weights (W1, W2, …Wi)
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||w||1 denotes the Euclidean norm of w and wT denotes the 
transpose of array w. The SVM algorithm uses a weighted 
sum of the coherence measures (28 coherence measurements 
in each EEG session) and minimizing the equation above by 
adjusting C to achieve the best predictive outcome.

We trained four independent sets of linear classifiers to 
assign EEG recordings. The classifiers were trained to sepa-
rate sham vs. active participants in pre- and post-treatment 
groups, and also trained to separate pretreatment vs. post-
treatment recordings in sham and active treatment groups. 
The classifiers were trained on several control contrasts to 
identify results related to active stimulation. This included 
baseline (pretreatment) sham vs. active participants, as well 
as pre vs. post sham treatment. The algorithm was trained 
on 28 features (i.e., coherence in all possible pairings of 
the eight recording sites). Linear SVM has one modifying 
parameter, C (i.e., misclassification cost, error penalty). 
When a small misclassification cost is used, the algorithm 
can find more global and generalizable trends in the data but 
is prone to making errors. A higher misclassification cost is 
associated with more specific solutions, a lower error rate, 
but less generalizability. The goal is a misclassification cost 
best balancing error and generalizability.

We thus explored misclassifications (C) values ranging 
from 0.1–100 (30 bins in log scale) to find the C with the 
best balance between error and generalizability. Classifi-
ers were trained on a training data set comprising all EEG 
recordings except for one of each classifying recordings 
(i.e., leave-two-out cross-validation). We used leave-two 
out to have both conditions represented on the test set of 
each cross-validation iteration. This process was repeated 
for 500 iterations, each time leaving out two random sam-
ples (one from each group) (i.e., 500-fold). The model was 
trained on all the data except for the left-out samples, and 
the performance was examined on the test set, consisting of 
the two samples that were left out of training. To calculate 
AUC, sensitivity, and specificity, we retrain the full model 
with all samples and with the misclassification cost (C) that 
was associated with the best performance. The classifier was 
independently trained for the four frequency bands, defined 
as Alpha, Beta Theta, and Delta (Alpha: 8–13 Hz, Beta 
13–30 Hz, Delta 1–4 Hz, and Theta 4–8 Hz).

To ensure observed results were not related to over-fit-
ting, we used shuffling as an additional validation step. To 
do this, we randomly shuffled the EEG recordings for each 
classifier, training the model to use the EEG data to classify 
and learn the (now randomly shuffled) classification group. 
We repeated this process 1,000 times, each time shuffling 
the outcome data and rerunning the model. Similar to the 
original analysis, the model’s ability to predict classification 

||w||1 + C
∑n

i=1

(
max

(
0,1 − yiw

Txi
))2 group was assessed with leave-two-out cross-validation (i.e., 

Shuffled training set used to classify the two left-out shuffled 
test set and repeated for 500 iterations).

As an additional, third step of validation, we used the 
model trained on Active vs. Sham post-treatment and 
applied it to all of the recorded pretreatment EEG record-
ings without retraining.

Results

A classifier trained on EEG data was able to successfully 
separate patients who received active treatment vs. sham 
treatment (see Fig. 2d), with significant findings in the Delta 
band. When using coherence in the Delta band, the classi-
fier was able to detect sham vs. active iTBS significantly 
(AUC = 0.89, 95% confidence interval = 0.62–0.98, sensitiv-
ity in detecting active 93%, specificity 85%, cross-validated 
accuracy 75.0%). We used a permutation method to assess 
the significance of this performance. The likelihood that this 
performance was due to chance was 0.2% (the equivalent of 
p = 0.002). Classifiers trained on other frequency bands did 
not reach significance. There was a similar trend in classifier 
separating pre- vs. post-treatment in the active group (i.e., 
to predict response to active iTBS) where the model was 
able to predict post-treatment EEG with a cross-validated 
accuracy of 62.1%, but the performance did not reach sig-
nificance in permutation test (p = 0.088). As expected, the 
classifier trained on pretreatment data (i.e., active vs. sham 
group before treatment) and also the classifier trained on 
pre- and post-treatment sham group did not find any changes 
in coherence.

We interrogated the classifier, identifying the functional 
connections that were used by the model to classify EEG 
recordings. We only limited this to the Delta band EEG in 
the Active vs. Sham post-TBS group as this was the only 
model with statistically significant performance. As stated 
above, we used a regularized implementation of the SVM 
classifier, limiting the complexity of the model and the num-
ber of connections used in the prediction. When checking 
the model, we found that the model used two sets of func-
tional connections. First, there was an increase in midline 
functional coherence, between central and occipital regions 
after iTBS. Second, iTBS was also associated with a reduc-
tion in coherence between the right frontal and central elec-
trodes (Fig. 3a).

To demonstrate the classifier’s function, we have calcu-
lated the classifier score for all patients (Fig. 3b). The clas-
sifier assigns a score to each EEG recording, those with a 
positive score are classified as “treated with active iTBS,” 
and those with negative scores are treated with sham. Note 
that only 5 out of 26 recordings are misclassified (4 patients 
receiving sham treatment were classified as active and 1 



33European Archives of Psychiatry and Clinical Neuroscience (2021) 271:29–37	

1 3

active recipient classified as sham). We then used the same 
classifier (trained on post-treatment active vs. sham data) 
to assign pretreatment data in both active and sham groups. 
The classifier had not been trained on this data, and we 
expected that all of them would be assigned to the “sham” 
group as none of these EEGs are from patients treated with 
iTBS. Indeed, the classifier assigned 19 out of 28 of these 
cases (67.9% performance) to the “sham”/untreated group. 
The score is plotted in Fig. 3c and provided further valida-
tion of observed results.

Finally, we assessed whether iTBS emerged changes in 
EEG connectivity was associated with changes in symptom 
severity. To this end, we assessed if post-treatment coher-
ence in the two sets of connections that had a non-zero 
weight in the classifier were corrected with a change in clini-
cal symptoms (as quantified by changes IDS-SR and PCL-5 
scores, tracking depression and PTSD symptom severity, 
respectively). We found that a lower post-treatment right 
frontal connectivity was associated with higher clinical 
symptom improvement (for IDS-SR, r = − 0.68, p = 0.0072, 
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Fig. 2   Performance of an SVM-trained classifier in assigning EEG 
sessions. The plots show the performance of the classifier as a func-
tion of C, the misclassification cost term. Lower C values indicate 
that the classifier has a broad scope and can detect global features but 
can undertrain, higher C values mean that the classifier relies on more 
global features but can overfit. Also, lower C is associated with less 
complex models and higher C is associated with higher model com-

plexity. To detect an optimal C value, we assessed the performance 
of the classifier for a range of C values. Panel a is classifying pre vs. 
post-treatment recordings in the active group, panel d is classifying 
active vs. sham post-treatment sessions. Panel c and b are controls, 
classifying pre- vs. post-treatment recordings in the sham group, and 
active vs. sham group pretreatment, respectively. The points where 
the classifier predicted significantly are marked by a bold line
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for PCL-5, r = − 0.54, p = 0.046) but the same trend was 
not present for midline central connections (for IDS-SR, 
r = − 0.16, p = 0.59, for PCL-5, r = − 0.33, p = 0.25, Fig. 4).

Discussion

This report describes a novel application of machine learn-
ing to identify EEG changes in functional connectivity, with 
data derived from the first sham-controlled study of iTBS 
for PTSD. We showed that an SVM classifier, trained on 
functional connectivity extracted from a sparse EEG array 
(i.e., 8 lead, dry electrode system), successfully identified 
patients who had received a course of TBS for symptoms 
of PTSD. The most significant contributors to the classifier 
involved coherence in the Delta band, at or near the site of 
stimulation, as well as coherence between that region and 

midline central-occipital sites. We also observed a statistical 
trend, also in the delta band, towards identifying patients 
most likely to respond to active iTBS. Our findings raise 
the possibility that EEG and machine learning could be 
combined inexpensively in the treatment clinic setting for 
ongoing therapeutic monitoring. Also, this approach can 
provide a window into mechanisms of action of TMS, which 
could inform the development of individualized treatment 
methods.

Our findings related to the Delta band raise important 
questions. To date, the majority of EEG studies of TMS have 
primarily focused on major depressive disorder with lim-
ited success (e.g., [27,28]. However, there is some indication 
EEG signals can be used to develop new TMS approaches 
(e.g., [11] and predict response to devices synchronized to 
the EEG signal (e.g., [22]. The comparable literature in EEG 
and brain stimulation for PTSD is much more limited. EEG 

Higher coherence 
post-treatment
Lower coherence 
post-treatment

0

2

4

6

Pre-treatment Active
Post-treatment Sham
Post-treatment Active

-0.2 -0.1 0 0.1 0.2 0.3 0.4

Classifier Score

0

2

4

6

8

10

N
um

be
r o

f C
as

es

Classification line

a

c

b
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fier performance. The figure depicts the weights of functional con-
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respectively (red means that functional connectivity increased, blue 
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come of the classifier before thresholding) and decision boundary. 
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tive with sham. Panel c shows how the classifier assigned pretreat-
ment recordings. Note that 19 out of 28 cases of pretreatment were 
assigned to the “sham” group
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studies to date have primarily focused on comparing patients 
with healthy controls (reviewed in [2], and integration of 
EEG into TMS studies is in its earliest stages [18]. Thus, 
prospective replication of our results will be required before 
they can be implemented more broadly.

However, our findings are consistent with the consensus 
that neural mechanisms underlying TMS involve changes in 
plasticity in cortical networks [8,19]. Our finding confirms 
that TBS treatment is associated with changes in functional 
connectivity that employs neural plasticity and induces 
changes measurable by a sparse EEG array. This is also in 
line with our previous finding that used the same approach 
in patients who received TMS treatment for comorbid PTSD 
and depression [29]. In that study, we found the utility of 
classifiers used across frequency domains, yet with the nota-
ble limitation that that prior study was not sham-controlled, 
making it difficult to determine whether observed findings 
were related to verum or non-specific (e.g., placebo) effects.

We also reported a negative correlation between theta 
band coherence among electrodes in the right frontal lobe 

and clinical improvement; patients who had lower post-
treatment coherence in the right frontal were those who had 
a better clinical outcome. Though significant, we interpret 
this finding with caution. Clinical improvement is, by nature, 
subjective, and thus a noisy measure. As a result of this, a 
significantly higher sample size is needed to make an accu-
rate statement about treatment outcome and its association 
with iTBS emergent EEG changes. This is in contrast to 
verum vs. sham dichotomy, where there is a binary and clear 
grouping, and thus a machine-learning algorithm can per-
form well with our level of sample size.

The study is unique due to the methods used. We used a 
powerful machine-learning algorithm (i.e., support vector 
machine), paired with L1 regularization, which limits the 
model complexity and the number of features (here, func-
tional connections) used to distinguish the sham from the 
active group. We also took multiple steps to ensure that the 
data presented here is not due to over-fitting (meaning that 
the classifier just learned the pattern in the particular data-
set and was not generalizable. We assessed the model using 

Fig. 4   Changes in symptoms 
vs. post-treatment EEG coher-
ence. We have plotted changes 
in symptoms, as quantified by 
the percent change in IDS-
SR and PCL-5 vs. Z-scored 
post-treatment coherence in 
the two connections that had a 
non-zero weight in Fig. 3. Note 
that a higher change in IDS-SR 
depicts more improvement in 
depressive symptoms and a 
positive change in PCL-5 score 
representants improvement in 
PTSD symptoms. In both cases, 
a negative number depicts the 
worsening of symptoms
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cross-validation and confirmed results using a permutation 
analysis (which assesses the ability to learn meaningless 
noise) and also did an out of sample validation (i.e., assessed 
the ability to classify pretreatment data that it had not been 
trained on). Machine learning tools are powerful, yet using 
them requires extra layers of vigor and validation for the 
results to be generalizable. We would like to propose our 
multi-level validation approach as a blueprint for the use of 
such methodology.

While the strengths of this study include its sham-con-
trolled design and multiple levels of validation, there are 
several important limitations. Of note, like our earlier study, 
we used EEG coherence, calculated on a nearest-neighbor 
bipolar montage. This would mitigate many issues that affect 
coherence estimates of functional connectivity, such as com-
mon-noise from shared reference and issues related to vol-
ume conductance. This approach, however, can miss dipoles 
with certain locations and tangential orientations [9,30]. The 
study also used a modest sample size, although it remains the 
largest controlled study of its kind. It was also limited by the 
electrode montage, namely a dry, 8-electrode system. Such 
an approach is useful and practical, but having a richer elec-
trode montage would help us make a better determination on 
the mechanism and specific networks affected by iTBS. Like 
many machine-learning studies, our results could have been 
affected by over-fitting, i.e., the results presented here might 
closely correspond to our dataset and are not generalizable. 
This is particularly an issue as the data was recorded in a 
single study site. We, however, took multiple steps to miti-
gate this issue (use of cross-validation, permutation analysis, 
and out of sample validation). The results, however, require 
validation in a larger, multi-site study. Because only one 
intervention (iTBS) was provided, we are not able to infer 
whether this biomarker is unique to stimulation (as opposed 
to a marker of non-specific response). As results were related 
to active stimulation and not sham, one can be reasonably 
confident our results can thus be attributable to a verum 
process that can be evaluated in future studies.

In conclusion, we applied EEG and machine learning to 
iTBS for PTSD in a proof-of-concept study, and obtained 
results indicating these methods represent viable tools to 
study cortical networks and potentially guide treatment. 
The algorithms chosen can elucidate neural mechanisms 
and allow us to constrain the inherent complexity of the 
data select electrophysiological features of relevance to 
therapy-induced changes. When expanded, this approach 
holds promise in designing treatment regimens, devices, and 
measurements to make screening and personalizing treat-
ment possible in the office setting.
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