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Abstract The D-amino acid oxidase activator (DAOA)

protein regulates the function of D-amino oxidase (DAO),

an enzyme that catalyzes the oxidative deamination of

D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine.

D-DOPA is converted to L-3,4-DOPA, a precursor of

dopamine, whereas D-serine participates in glutamatergic

transmission. We hypothesized that DAOA polymorphisms

are associated with dopamine, serotonin and noradrenaline

turnover in the human brain. Four single-nucleotide

polymorphisms, previously reported to be associated with

schizophrenia, were genotyped. Cerebrospinal fluid (CSF)

samples were drawn by lumbar puncture, and the concen-

trations of the major dopamine metabolite homovanillic

acid (HVA), the major serotonin metabolite 5-hydroxyin-

doleacetic acid (5-HIAA) and the major noradrenaline

metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG)

were measured. Two of the investigated polymorphisms,

rs3918342 and rs1421292, were significantly associated

with CSF HVA concentrations. Rs3918342 was found to be

nominally associated with CSF 5-HIAA concentrations.

None of the polymorphisms were significantly associated

with MHPG concentrations. Our results indicate that

DAOA gene variation affects dopamine turnover in healthy

individuals, suggesting that disturbed dopamine turnover is

a possible mechanism behind the observed associations

between genetic variation in DAOA and behavioral phe-

notypes in humans.
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5-hydroxyindoleacetic acid (5-HIAA) �
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Introduction

The DAOA (D-amino acid oxidase activator gene) is located

on chromosome 13q34 and spans 29 Kb. This region,

spanning 5 Mb, was initially investigated by Chumakov

and colleagues, and two overlapping genes, DAOA (or

G72) and G30, transcribed in opposing directions, were

identified [7]. DAOA gene variation was initially associated

with schizophrenia [7], and during the past decade, this

association has been replicated in many subsequent studies
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(http://www.szgene.org) [2]. DAOA has also been associ-

ated with schizophrenia-related characteristics such as

frontal lobe volume change [16], susceptibility to meth-

amphetamine psychosis [26], response to antipsychotic

treatment [36] and progression of prodromal syndromes to

first episode psychosis [31]. Furthermore, DAOA has been

associated with other psychiatric disorders and phenotypes

such as major depression [40], bipolar disorder [38] and

bipolar disorder severity [8]. An animal study, using DAOA

transgenic mice, showed behavioral phenotypes associated

with psychosis, some of which could be reversed with

haloperidol [34].

The DAOA protein contains 153 amino acids and has

been detected in various parts of the central nervous system

(CNS), including amygdala, nucleus caudatus and spinal

cord [7]. DAOA has also been implicated in the regulation

of mitochondrial function and dendritic branching [28].

The DAOA protein was initially reported to behave as an

activator of porcine D-amino acid oxidase (DAO), whereas

more recent studies showed that DAOA modulates human

DAO function as a negative effector [7, 42].

DAO catalyzes the oxidative deamination of D-amino

acids, such as D-3,4-dihydroxyphenylalanine (D-DOPA)

and D-serine to a-keto acids. Thus, DAO deaminates

D-DOPA to its corresponding a-keto acid, which is then

transaminated to L-DOPA [24, 52]. L-DOPA then enters

the basic biosynthetic pathway to dopamine and homova-

nillic acid (HVA). Dopamine is converted to noradrenaline

by dopamine-beta-hydroxylase, and noradrenaline enters

its basic catabolic pathway and is degraded to 3-methoxy-

4-hydroxyphenylglycol (MHPG). Kinetic data show that

the maximal velocity for the oxidative deamination of

D-DOPA is much higher than for D-serine [24].

D-serine is an allosteric modulator of the N-methyl-D-

aspartate (NMDA)-type glutamate receptors (NMDAR)

[32], which have a modulatory site for D-serine. The

occupation of this site by D-serine is required for glutamate

to stimulate cation flow [19, 32]. Interaction between glu-

tamate and noradrenaline [9] suggests that DAOA may be

associated with noradrenaline via glutamatergic mecha-

nisms (Fig. 1).

There is also evidence of a bidirectional interaction

between NMDAR and the dopamine system. NMDAR

activation leads to enhanced recruitment of the dopamine

D1 receptor (DRD1) to the plasma membrane [37, 44].

Moreover, there is a direct protein–protein coupling

between DRD1 and NMDAR [10, 29, 37]. It has been

proposed that DRD1 and NMDAR early after their bio-

synthesis form heteromeric complexes, which are then

transported to plasma membrane as preformed units [30].

NMDA antagonists lead to an increase in midbrain dopa-

mine neuron firing rates [11], whereas striatal dopamine

release has been reported increased or decreased in some

studies [1, 39, 49]. A direct association between D-serine

and dopamine release has also been shown, as high doses

of D-serine attenuated amphetamine-induced dopamine

release [46].

Taken together, there are biochemical connections

between DAOA and the catecholamines dopamine and

noradrenaline, via two identified pathways, first via DAO,

D-serine and NMDAR, and secondly via DAO and

D-DOPA (Fig. 1). The concentration of the major seroto-

nin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in

cerebrospinal fluid (CSF) is strongly correlated with the

major dopamine metabolite HVA [13]. This suggests that

DAOA may also be associated with 5-HIAA (Fig. 1).

Given these biochemical and functional connections

between the DAOA protein and the monoamine metabo-

lites and the fact that studies in human twins and other

primates indicate that monoamine metabolite concentra-

tions are partly under genetic influence [17, 18, 35, 41], we

can speculate that the well-established associations

between DAOA and psychiatric phenotypes, described in

the first paragraph, may be mediated by disturbed mono-

amine turnover rates.

In the present study, we aim to investigate whether

DAOA polymorphisms are associated with dopamine,

serotonin and noradrenaline turnover in the human brain.

The concentrations of the major dopamine metabolite

HVA, the major serotonin metabolite 5-HIAA and the

DAO

D-DOPA

L-DOPA

D-serine

NMDAR func�on 

Dopamine

DAOA

HVA

Noradrenaline

5-HIAAMHPG
Abbreviations used: 

D-amino acid oxidase activator (DAOA)                                          
D-amino oxidase (DAO)                                                                    
D-3,4-dihydroxyphenylalanine (D-DOPA)
L-3,4-dihydroxyphenylalanine (L-DOPA)
N-methyl-D-aspartate type glutamate receptor (NMDAR)                
3-methoxy-4-hydroxyphenylglycol (MHPG)
Homovanillic acid (HVA) 5-
hydroxyindoleacetic acid (5-HIAA)

Fig. 1 Biochemical and functional connections between D-amino

acid oxidase activator and cerebrospinal fluid monoamine metabolites
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major noradrenaline metabolite MHPG in CSF were used

as indirect indexes of the monoamine turnover.

Methods

Subjects

Unrelated healthy Caucasians, 78 men and 54 women,

participated in a longitudinal study. At the first interview,

when CSF was sampled, their mean ages ± standard

deviations (SD) were 27 ± 9 years, and all subjects were

found to be healthy. Of the women, 22 used oral contra-

ceptives at lumbar puncture, 29 did not, whereas data

were missing for three female participants. Except for oral

contraceptives, all subjects were drug-free at lumbar

puncture. Eight to twenty years after the first investiga-

tion, all subjects were re-interviewed to re-assess the

psychiatric morbidity as previously described [20, 23]. At

this interview, whole blood was drawn from all partici-

pants. At the second investigation, 43 of the subjects were

found to have experienced various DSM-III-R psychiatric

lifetime diagnoses. The study was conducted in accor-

dance with the Declaration of Helsinki and approved by

the Ethics Committee of the Karolinska University Hos-

pital. Informed consent was obtained from all the partic-

ipating subjects.

CSF monoamine metabolite concentrations

CSF samples (12.5 ml) were obtained by lumbar puncture

and analyzed as previously described [22, 45, 47]. Briefly,

the samples were drawn between 8 and 9 a.m. with the

subjects in the sitting or recumbent position, after at least

8 h of bed rest and absence of food intake or smoking.

5-HIAA, HVA and MHPG concentrations were measured

by mass fragmentography with deuterium-labeled stan-

dards. Back-length was defined as the distance between the

external occipital protuberance and the point of needle

insertion.

DNA analysis

Genomic DNA was extracted from whole blood [12]. Four

DAOA SNPs (rs2391191 or M15, rs778294 or M19,

rs3918342 or M23, rs1421292 or M24), previously repor-

ted to be associated with schizophrenia, were selected and

genotyped at the SNP Technology Platform at Uppsala

University and Uppsala University Hospital, Sweden

(http://www.genotyping.se), using the Illumina BeadSta-

tion 500GX and the 1536-plex Illumina Golden Gate assay

(Illumina Inc., San Diego, CA, USA) as previously

described [21].

Statistical analysis

Hardy–Weinberg (HW) equilibrium was tested using

Fisher’s exact test as implemented in PEDSTATS [51].

Linkage disequilibrium (D0 and r2) between SNP pairs was

determined with Haploview 4.0 [3]. Allele association

between DAOA SNPs and CSF monoamine metabolite

concentrations was tested with a general linear model (Proc

GLM, SAS/STAT� software, version 9.1.3, SAS institute

Inc., Cary, NC, USA), where concentration was modeled as

a linear function of the allele count (of each SNP

separately) and one or more covariates (single-marker

association).

Covariates were selected by preliminary analysis

excluding genetic markers. That is, the effect of potentially

important confounders (back-length, weight, gender, age at

lumbar puncture and presence of a lifetime psychiatric

diagnosis) on CSF monoamine metabolite concentrations

was evaluated by forward stepwise selection, as previously

described [20]. Confounders that explained a significant

part of systematic variation in CSF concentrations

(P \ 0.1) were included as covariates in the genetic asso-

ciation analysis. Thus, back-length and presence of a life-

time psychiatric diagnosis were used as covariates in the

analysis of 5-HIAA and HVA concentrations, whereas

back-length and gender were included in the analyses of

MHPG. We tested the normal distribution of residuals with

the Anderson–Darling test, and residuals were approxi-

mately normally distributed after square root (5-HIAA,

HVA) and logarithmic (MHPG) transformations. Correc-

tion for multiple testing was performed through random

permutation of the four marker genotypes among individ-

uals and recalculation of the P values for the 12 tests for

each permuted data set (1,000 permuted data sets). The

corrected P value was then calculated as the fraction of

permutated data sets where the minimum P value from the

12 tests was equal to, or smaller than, the observed P value.

Moreover, rs3918342, showing the strongest association

with HVA, was selected for further analysis, applying a

dominant model of segregation.

Results

The mean (SD) concentrations of the three monoamine

metabolites were: HVA, 170.2 (72.3) nmol/L; 5-HIAA,

91.7 (37.4) nmol/L; MHPG, 41.6 (8.2) nmol/L. Two of the

investigated polymorphisms, rs3918342 (Fig. 2) and

rs1421292, were found to be significantly associated with

CSF HVA concentrations with corrected P values 0.013

and 0.043, respectively (Table 1). Rs3918342 was nomi-

nally associated with CSF 5-HIAA concentration, but this

association was not statistically significant when
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accounting for the number of tests conducted. No poly-

morphisms were associated with MHPG concentrations.

The two SNPs associated with HVA concentrations,

rs3918342 and rs1421292, are in strong linkage disequi-

librium (LD; r2 = 0.80) in Caucasians (HapMap, release

24). In the Scandinavian population, the two markers are in

almost complete LD (r2 = 0.99) [21], and thus, they cap-

tured the same association signal in this study. Conse-

quently, rs1421292 explained no additional variation in

HVA concentration (P = 0.95) on top of that explained by

rs3918342.

Carriers of the rs3918342 T allele (both C/T and T/T) had

50 nmol/l lower HVA mean concentrations compared with

C homozygotes; no difference in HVA mean concentrations

was found between C/T and T/T (Fig. 2). This pattern is

consistent with a dominant model of segregation (T allele

dominant), and as expected, this model resulted in a sub-

stantial decrease in the uncorrected P value for the associ-

ation between rs3918342 and HVA (from 0.0016 to 0.0001).

Discussion

In the present study, two DAOA polymorphisms,

rs3918342 and rs1421292, were significantly associated

with CSF HVA concentrations. Rs3918342 and rs1421292

are located 42 and 55 kbp from the 30 end of DAOA,

respectively, and are in strong linkage disequilibrium.

Rs3918342 and rs1421292 have not been ascribed any

functionality and were not found to be associated in strong

LD (r2 [ 0.6) with any SNP within the DAOA borders.

However, both were in strong LD with some intergenic

SNPs within 500 kbp from rs3918342 (HapMap release

24). The associated intergenic SNPs lack currently known

function or association with mental disorders.

During the past decades, a large number of CSF can-

didate markers, including the monoamine metabolite HVA,

have been investigated with regard to their relevance to

schizophrenia [48]. HVA concentrations have been repor-

ted to be significantly lower in drug-free schizophrenic

patients compared with controls [6, 50]. Both quetiapine

and olanzapine administrations have been associated with a

significant increase in CSF HVA [33, 43], whereas halo-

peridol withdrawal resulted in a significant decrease in CSF

HVA [5]. Thus, decreased HVA concentration appears to

be related to schizophrenia.

There are several studies suggesting that a locus located

near the 30 end of DAOA is associated with phenotypes

characteristic of schizophrenia or the progression of the

disease. For example, both rs3918342 and rs1421292 have

been associated with attention and memory impairments in

schizophrenic individuals [14]. Rs3918342 has been asso-

ciated with decreased hippocampal activation and

increased prefrontal activation in subjects at high genetic

risk of schizophrenia [15], as well as temporal lobe and

amygdala gray matter reduction [53]. Furthermore,

rs1421292 has been associated with brain activation in the

right middle temporal gyrus and the right precuneus in

healthy individuals [27]. Rs3918342 has been significantly

associated with schizophrenia in independent studies [4, 7,

25]. However, meta-analysis of rs3918342 suggests that the

association is restricted to populations of Caucasian origin

and that the effect size is small (odds ratio = 1.03, non-

significant; http://www.szgene.org) [2].

We found the TT genotype of rs3918342 to be strongly

associated with decreased HVA concentrations, and we

note that it is also this genotype that has been associated

with attention and memory impairments in schizophrenic

individuals [14], decreased hippocampal activation and

increased prefrontal activation in subjects at high genetic

risk of schizophrenia [15] as well as temporal lobe and

amygdala gray matter reduction in bipolar patients [53].

Thus, it is possible that a disturbed dopamine turnover,

reflected by decreased HVA levels, may be a mechanism

behind one or several of the cognitive, neurological and

brain morphological phenotypes previously associated with

the rs3918342 TT genotype.

In conclusion, our results suggest that DAOA gene

variation significantly affects dopamine turnover in CNS of

healthy controls. Further research is needed in order

to replicate our findings in healthy controls and, moreover,

to find out whether the present associations can also be

observed in schizophrenia and other psychiatric disorders.

Fig. 2 Cerebrospinal fluid (CSF) homovanillic acid (HVA) concen-

tration in healthy subjects as a function of the number of rs3918342

T-alleles (corrected P value = 0.013). Least square means and

standard errors are given
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