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j Abstract Vulnerability markers for affective dis-
orders have focused on stress hormone regulation and
sleep. Among rapid eye movement (REM) sleep, in-
creased REM pressure and elevated REM density are
promising candidates for vulnerability markers.
Regarding nonREM sleep, a deficit in amount of and
latency until slow wave sleep during the first half of the
night is a characteristic for depression. To further
elucidate whether changes in the microstructure of
sleep may serve as vulnerability markers we investi-
gated the premorbid sleep composition in 21 healthy

high-risk proband (HRPs) with a positive family his-
tory for affective disorders and compared HRPs with a
control group of healthy subjects (HCs) without per-
sonal and family history for psychiatric disorders. The
sleep electroencephalogram (EEG) was conventionally
scored and submitted to a quantitative EEG analysis.
The main difference in sleep characteristics between
HRPs and HCs was an abnormally increased REM
density. Differences in the spectral composition of
sleep EEG were restricted to an increased power in the
sigma frequency range. Since the HRP group com-
prised six unrelated and 15 related subjects we con-
trolled for sibling effects. We could replicate the
increased REM density in the group of HRPs whereas
elevated power in the low sigma frequencies persisted
only with approaching significance. The present study
further supports elevated REM density as putative
vulnerability marker for affective disorders. However,
sleep EEG in our group of HRPs did not show slow wave
sleep abnormalities. Ongoing follow up investigations
of HRPs will clarify whether the observed increase in
sigma EEG activity during nonREM sleep is of clinical
relevance with respect to the likelihood to develop an
affective disorder.

j Key words sleep Æ spectral composition Æ REM
density Æ sleep spindles Æ high risk probands Æ affec-
tive disorder

Introduction

Vulnerability markers are supposed to represent
proximately and specifically an underlying pathology
linked to an increased liability to develop a complex
disease. The validation of vulnerability markers re-
quires the verification of distinct biological abnor-
malities in patients during symptomatic and
asymptomatic states of a disease as well as in their
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healthy first-degree relatives who are at a high-risk to
develop the disease (high risk probands, HRPs). The
search for vulnerability marker for affective disorders
has predominantly focused on stress hormone regu-
lation, brain imaging, and sleep. As to sleep variables
a deficit of slow wave sleep in the first sleep cycle,
decreased sleep continuity, shortened latency to rapid
eye movement (REM) sleep and increased amount of
phasic components of REM sleep have been suggested
as vulnerability markers [30, 37, 41, 47]. In particular,
increased REM density may be a promising candidate
since premorbidly elevated REM density in HRPs was
associated with an increased likelihood to develop an
affective disorder [34]. In addition, persistently in-
creased REM density predicted poor treatment re-
sponse in depressed patients [5, 8, 24, 44]. Unaffected
HRPs also showed a stable reduction of slow wave
sleep in their sleep EEG and on the other hand a slow
wave sleep deficit in depressed patients was shown to
be associated with less favorable outcome of the dis-
ease [24, 29, 33].

Most research on sleep related vulnerability
markers, however, including our own published
findings of the ‘‘Munich Vulnerability Study on
Affective Disorders’’ [30, 33, 34] was based on visual
analysis of the sleep according to the conventional
criteria of Rechtschaffen and Kales [36]. This could
have limited the outcome of the studies because
findings on neuronal mechanism generating EEG
oscillations during sleep emphasized the need for a
quantitative analysis of in particular the amount and
temporal dynamics of sigma and delta frequencies
[13, 42]. It has already been demonstrated in patients
with depression that a decreased delta power during
nonREM sleep episodes is of clinical relevance [6, 35].
In addition, patients with depression showed signs of
a general reduction in the temporal coherence of EEG
oscillations indicating a loss of rhythmic organization
of sleep [2]. Interestingly, a first study in HRPs also
indicated a reduced coherence of sleep EEG fre-
quencies in the beta/delta and theta range [20].

Therefore, we hypothesized that sleep EEG com-
position is altered also in HRPs for affective disorders.
We compared the EEG power spectrum of HRPs with
that of control subjects without personal and family
history for psychiatric disorders, in particular with
respect to the spectral power in the sigma and delta
frequencies. We investigated the microstructure of
sleep using a whole night spectral analysis. HRPs and
controls were recruited from the ‘‘Munich Vulnera-
bility Study on Affective Disorders’’.

Methods

j Subjects

During two recruitment periods of the ‘‘Munich Vulnerability
Study on Affective Disorders’’ (1988–1992, 1994–1998) n = 740

psychiatric inpatients with a diagnosis of major depression,
bipolar disorder, or ‘‘bipolar II’’ disorder were screened. We
identified patients who had at least one first-degree relative with
an affective disorder or schizophrenia and at least one first-degree
relative with no current or lifetime diagnosis of a psychiatric
disorder who was conceived as high risk proband (HRP). The
psychiatric examinations to verify diagnoses or absence of diag-
noses were done using the Structured Clinical Interview for DSM-
III-R [48]. Further details of the selection procedure are described
elsewhere [25].

The inclusion criteria mentioned were met by 136 patients, and
50 patients of this group agreed to participate in the study (index
patients) providing 101 possible HRPs. Out of these HRPs, a
quantitative analysis of sleep EEG was obtained in 21 subjects
(mean age 27.1 ± 6.1 years, 12m:9f). The study group of 21 HRPs
belonged to 12 families. Thus, our HRP group consisted of six
unrelated (2m:4f) and 15 related subjects (10m:5f) with one family
providing four, one family three, and four families two HRPs. The
corresponding index patients suffered from recurrent major
depression (n = 8) or bipolar I disorder (n = 4).

Polysomnography of these HRPs was compared with the
sleep EEG 13 healthy control subjects (HCs, mean age
27.5 ± 6.0 years, 4m:9f), who were free of personal and family
history of psychiatric disorders. HRPs and HCs did not differ in
age (P = 0.865) or gender distribution (Fisher’s exact test
P = 0.172).

The study protocol was approved by the local ethical commit-
tee. Every proband gave a written informed consent for participa-
tion in the study.

j Procedure

Before entering the study, HRPs and HCs underwent extensive
physical, psychiatric, and laboratory examinations including
hematology, virology, clinical chemistry, endocrinology, electro-
encephalography (EEG), and electrocardiography (ECG) to exclude
acute and chronic disease. Details of the procedure are described
elsewhere [30]. In short, we excluded subjects with medical treat-
ment for at least 3 months prior to the study, personal history of
psychiatric disorders including alcohol and drug abuse, recent
stressful life events, sleep disturbances, shift work or a recent
transmeridian flight. In addition, thorough clinical exploration and
visual inspection of the polysomnographic recordings confirmed
that no subject with sleep disorders including insomnia, sleep ap-
nea, periodic movements in sleep syndrome and restless legs syn-
drome was included. All subjects slept two consecutive nights in
our sleep laboratories. Prior to the investigation intake of caffeine
or alcohol was not allowed.

j Sleep EEG recording

After adaptation to the laboratory setting (first night), sleep was
recorded between 11PM and 7AM of the second night. The poly-
somnographic sleep recordings included two EEGs (C3-A2/C4-A1,
time constant 0.3 s, notch filter at 50 Hz, low pass at 70 Hz), a
vertical and horizontal electrooculogram (EOG), electromyogram
(EMG) and electrocardiogram (ECG). The filtered EOG, EEG, EMG,
and ECG signals were transmitted to a polygraph (Schwartzer, ED
24), digitalized via an eight-bit analog-to-digital converter (sam-
pling rate 100 Hz), and stored on disk. Sleep stages were visually
scored for consecutive 30 s epochs according to standard guide-
lines [36] by experienced raters who were blind to the subjects
study group assignment. Mean REM density index of the total night
or the first REM period was defined as the average ratio of 3-s
miniepochs of REM sleep, including REMs, to the total amount of
3-s miniepochs of REM sleep during the total night or the first REM
period, respectively. The sleep variables including sleep architec-
ture and sleep continuity were computed as described elsewhere
[30].
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The quantitative EEG analysis was performed from the C3-A2/
C4-A1 EEG derivation using a fast Fourier transformation in order
to compute sleep state specific EEG power spectra. State-specific
power were computed using 12 2.56 s epochs which had overlap-
ping to match the 30 s epochs of visual sleep scoring as described
previously [43]. The spectral power of 50 frequency bins at 0.39 Hz
intervals were cumulated across the delta (0.8–3.9 Hz), theta (4.3–
7.8 Hz), alpha (8.2–11.7 Hz), low sigma (LSF 12.1–13.7 Hz), high
sigma (HSF 14.1–16.0 Hz), total sigma (12.1–14.8 Hz) and beta
range (15.2–19.1 Hz)

Additionally, we compared the shape of the two local maxima
observed within the theta/alpha (7.0–9.0 Hz) and sigma (12.1–14.8)
frequency range between the two groups. We determined the
maximal power (peak) of the individual local maximum, the area
under the curve (AUC, approximated with the trapezoidal rule),
and a second order polynomial indicating the curvature of the local
maximum. A local maximum is described by a negative, a local
minimum by a positive curvature coefficient.

j Statistical analysis

Since the HRP group contained a considerable number of related
subjects (15 out of 21, pairs, triplets or quadruplets of siblings)
while the subjects of the HCs were all unrelated, we had to control
for the effects of an artificial reduction of the within group variance
among HRPs due to an increased similarity of related subjects. In
order to account for this effect, we compared the mean correlation
of n = 13 related pairs of HRP siblings (=four pairs of doublet
siblings, three pairs out of one triplet of siblings, six pairs out of
one quadruplet of siblings, see Fig. 1) across EEG frequency bands
with the mean correlation of all unrelated pairs among the sub-
group of HRP siblings (n = 92, total number of all possible pairs

among HRP siblings
15
2

� �
¼ 105

� �
� n ¼ 13 related pairs of

HRP siblings; mean intraclass correlation, mean calculation after
Fisher-z transformation). Differences between correlation coeffi-
cients were evaluated with z tests (after Fisher-z transformation).

In order to account for the effects of HRP siblings on the group
variance we repeated all analyses after substituting the individual
results of related HRPs by the mean score of the siblings. Thus, the
number of the HRPs was reduced from 21 to 12 with individual

results of 15 related HRP substituted by the mean values of the four
pairs, one triplet and one quadruplet of siblings (six unrelated
HRPs + six means of siblings, see Fig. 1).

Differences in sleep variables and spectral activity between both
groups, HRPs and HCs, were evaluated by t tests for independent
samples. Associations between conventional sleep variables and
spectral activity were evaluated with non-parametric Spearman
rank correlation coefficients. Group differences in the local maxi-
mum of the theta/alpha and sigma frequency range were calculated
non-parametrically by Mann–Whitney U tests due to heteroge-
neous variances between both groups.

Finally, we examined the spectral change over four consecutive
2-h periods of nonREM sleep with respect to the study groups by
multivariate ANOVA for repeated measures

The level of significance was set to P = 0.05 (two-tailed). Dif-
ferences with a significance level of P < 0.10 are reported as trend.
Due to the high intercorrelation between sleep variables and the
exploratory nature of the analysis, we refrained from correcting for
multiple testing. If not otherwise stated, means and standard
deviations are reported.

Results

j Similarity of quantitative sleep EEG between HRP
siblings

As expected, the subgroup of related pairs of HRP
siblings (n = 13 pairs) showed overall higher intra-
class correlation coefficients for both nonREM and
REM sleep EEG compared to all unrelated pairs of the
same subgroup of HRP siblings (n = 92 pairs). These
differences were significant for nonREM sleep total
spectrum as well as for the combined delta–sigma and
sigma–beta frequency range (P < 0.05). In the REM
sleep spectrum significant differences could be de-
tected for the theta and the combined sigma–beta
frequencies (see Table 1).

All subsequent group comparisons were performed
with the individual HRP data and after mean substi-
tution of HRP siblings.

j Sleep EEG variables

The variables representing sleep architecture and
continuity were similar between the two groups with

HRP
(n=21)

related

n=6

nonrelated

Healthy controls
(n=13)

Fig. 1 Siblings within the HRPs. The group of HRPs comprised a subgroup of
related HRPs (n = 15). Therefore, the number of the HRPs was reduced from 21
to 12 with individual results of 15 related HRP substituted by the mean values
of the four pairs, one triplet and one quadruplet of siblings (six unrelated HRPs
+ six means of siblings)

Table 1 Similarity in EEG frequencies (intraclass correlation coefficients) in
pairs of HRP siblings compared with all unrelated pairs of HRPs

Intraclass correlation HRP siblings
n = 13 pairs

HRP unrelated
n = 92 pairs

P

Non-REM total 0.418 )0.116 0.046
Non-REM delta–theta 0.283 )0.117 0.110
Non-REM delta–alpha 0.378 )0.099 0.068
Non-REM delta–sigma 0.648 )0.150 0.003
Non-REM sigma–beta 0.542 )0.089 0.018
REM total 0.308 )0.106 0.101
REM delta 0.111 )0.073 0.290
REM theta 0.389 )0.154 0.045
REM alpha 0.353 )0.030 0.116
REM sigma/beta 0.598 )0.107 0.008
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the exception of a significant increased REM density
during the whole night in the HRPs (P < 0.05).
There was also a trend towards higher REM density
(P = 0.074) and shorter REM sleep period
(P = 0.051) during the first sleep cycle in the total
group of HRPs (see Table 2). When correcting for
the siblings effect by mean substitution we failed to
replicate the finding of an increase REM density
during the total night (P = 0.113). However, we still
found a shorter REM period (P = 0.043) and the
trend suggesting higher REM density (P = 0.089) in
the first sleep cycle.

j Quantitative analysis of sleep EEG

NonREM sleep

There were no significant differences in the spectral
composition of nonREM sleep of the whole night
between the groups except of a tendency towards a
higher power in LSF (12.1–13.7 Hz; P = 0.076) and
the total sigma band (12.1–14.8 Hz; P = 0.081). After
correcting for the sibling effects in HRPs by mean
substitution, we could not find significant differences
between controls and HRPs.

In a subsequent analysis we compared the shape
of the two local maxima observed within the theta/
alpha (7.0–9.0 Hz) and sigma (12.1–14.8 Hz) fre-
quency range between the two groups. No group
differences were found for individual maximum
power or for the AUC of the two maxima. However,
we found a significantly more pronounced curvature
in HRPs in the sigma frequency range which is
indicated by a more negative second order polyno-
mial compared with HCs [mean(SD); HRP )0.50
(0.98) vs. HC 0.02 (0.26); Mann–Whitney U test,
P = 0.035]. After correction for siblings we could
confirm the more pronounced local maximum of the
sigma EEG activity among HRPs (Mann–Whitney U
test, P = 0.034, see Fig. 2).

Finally, we examined the spectral change over the
four consecutive 2-h periods with respect to the study
groups by multivariate ANOVA for repeated mea-
sures. We found significant changes at the multivar-
iate level (P < 0.001) as well as for all wave bands at
the univariate level (P < .05, Greenhouse–Geisser
corrected) except for sigma (P = 0.289) and high beta
frequency range (P = 0.253). However, no main ef-
fects of study group or interactions between change
and study group were found. Significant changes
during the 2-h periods were also found for the sigma
range maximum (P = 0.005), but no interactions with

Table 2 Parameters of sleep architecture and continuity

HRPs
(n = 21)

Controls
(n = 13)

T test

Mean SD Mean SD T (df = 32) P

Sleep period time (min.) 459.71 18.98 462.00 15.39 0.37 0.717
Sleep efficiency index (%) 91.70 8.02 90.91 4.32 )0.33 0.745
Sleep onset latency (min.) 15.21 16.04 14.27 8.35 )0.20 0.846
Latency until slow wave

sleep (min.)
18.70 12.74 13.54 4.48 )1.40 0.172

Wake time after sleep
onset (min.)

22.52 27.11 27.38 20.62 0.55 0.584

Sleep stage 1
(% of sleep period)

6.27 5.70 5.00 2.11 )0.77 0.448

Sleep stage 2
(% of sleep period)

53.47 7.37 52.08 5.27 )0.59 0.559

Slow wave sleep
(% of sleep period)

14.57 7.62 15.69 4.86 0.47 0.640

REM sleep
(% of sleep period)

19.40 3.66 19.87 3.39 0.37 0.715

Latency until REM sleep
(min.)

70.67 32.24 77.19 18.98 0.66 0.514

REM density index 2.30 0.89 1.71 0.59 )2.11 0.043
First sleep cycle
REM period (min.) 10.71 7.08 17.04 11.13 2.03 0.051
Wake time

(% of non REM)
6.38 12.73 3.52 4.48 )0.78 0.443

Slow wave sleep
(% of non REM)

39.35 21.59 39.98 19.80 0.09 0.932

REM density index 1.50 1.05 0.89 0.70 )1.84 0.074

1000
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p = 0.034

NonREM sleep 23:00-7:00h
(corrected for HRP-siblings)

16 18
[Hz]

Fig. 2 Spectral composition of nonREM sleep. The
spectral power (±SEM) of nonREM sleep in the group of
HRPs (black line) showed a significantly pronounced
local maximum in the sigma frequency range (Mann–
Whitney U test, P = 0.034) when compared to the
group of control subjects (grey line)
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the study groups (P = 0.540). The main effect of a
more pronounced curvature of the local maximum in
the sigma frequency range among HRPs was con-
firmed with approaching significance (P = 0.095).

REM sleep

We did not find significant differences in the spectral
composition of REM sleep between HRPs and HCs,
neither before nor after correction for the sibling ef-
fects.

Discussion

We investigated the microstructure of sleep in subjects
who are at a high risk for developing affective disorder
(HRPs) and compared the sleep characteristics between
HRPs and a healthy control group without personal and
family history for psychiatric disorders (HCs). Besides
conventional scoring of parameters an all-night spec-
tral analysis was conducted to obtain an EEG power
spectrum. The subgroup of HRPs in the present study
showed a significant increase of their REM density
which is in accordance with the results of complete
sample of HRPs from the ‘‘Munich Vulnerability Study
on Affective Disorders’’ [33, 34]. As to the first sleep
cycle a trend towards an elevated REM density was still
present after correcting for sibling effects within HRPs.
Since increased REM density is a typical abnormality of
sleep in depression [30, 33, 41, 47] this parameter is a
promising candidate for vulnerability marker [33, 34].
Other studies suggested a shortened REM sleep latency
as possible vulnerability marker [22, 23], which could
not be confirmed with the sample of HRPs from the
present study. However, we observed in another sub-
group of HRPs that a cholinergic stimulation test de-
masked REM sleep dysregulation that were not overt
during baseline conditions. In addition, the shortening
in REM sleep latency induced by RS 86 appeared to
predict the later onset of major depressive and bipolar
disorders in those HRPs with a strong family history for
affective disorders [31].

The analysis of quantitative EEG data showed a
marginal-significant increase in sigma power during
nonREM sleep in particular with respect to LSF.
When comparing the curvature of the local maxima in
the EEG power spectrum this result turned out to be
significant. After correction for siblings within the
HRPs there was still a significantly more pronounced
shape of the local maximum in sigma EEG activity
when compared to healthy controls. We could not
observe significant differences in all other frequency
bands between the groups, in particular there was no
reduction in slow wave activity during nonREM sleep
in our group of HRPs when compared to the control
group. Also the spectral pattern of REM sleep did not
differ between HRPs and control subjects.

Dynamics of the spectral power in the sigma fre-
quency range reliably indicate sleep spindle activity
[12]. There is good evidence that there are two types
of sleep spindles: (1) low frequency sleep spindles
predominate in the frontotemporal regions and
underlie a strong ontogenetic variation. Low fre-
quency sleep spindles are established in the first
months of life, show a second maximum during
puberty and usually decrease thereafter. In up to 40%
of the general population low frequency sleep spindles
persist after puberty [21, 32, 39, 40, 46]. (2) High
frequency sleep spindles (14 Hz) with low amplitude
are strongly related to the occurrence of slow oscil-
lations and typically occur in centroparietal brain
areas [27, 38, 46, 49]. The function of sleep spindles in
general and the existence of two types of sleep spin-
dles are still unclear. Different regulatory mechanisms
for low and high frequency spindles have been sug-
gested [18, 19, 27, 28]. Interestingly, low and high
sleep spindles differ in their occurrence within sleep
cycles and throughout the night [1, 14, 43]. The
increase in LSF across sleep episodes is thought to
maintain sleep in the second part of the night when
delta power is already at a low level [14]. Therefore, it
may be speculated that the observed increase in par-
ticular of LSF in HRPs may indicate an early sign of
nonREM sleep dysregulation where the generation of
delta sleep is still intact. In addition, in view of the
mentioned differences in developmental characteris-
tics of the two kinds of sleep spindles the increased
power in LFS may reflect abnormalities in thalamo-
cortical pathway maturation in our group of HRPs.

It has been repeatedly demonstrated that individual
sleep spindle characteristics are established very early
in life and stable thereafter [32, 39, 40]. The trait-like
character of spindle characteristics promoted hypoth-
esis on a strong genetic influence on this sleep EEG
pattern [10]. In addition, recent studies using elaborate
EEG analysis and study designs demonstrated also the
strong trait-like character of delta waves [4, 45]. By
means of cluster analysis the largest between-subject
differences in spectral power were identified in fre-
quencies below 15 Hz and in particular with respect to
the delta activity [4]. We observed a significantly higher
correlation of delta–sigma frequencies during nonREM
sleep in pairs of related HRPs when compared to pairs
of HRP siblings who were not related with each other.
Therefore, our data further support a genetic influence
on the spectral composition of nonREM sleep in par-
ticular with respect to the combined occurrence of slow
waves and spindles. This is of interest, since more re-
cent studies point to a relation of sleep spindles to
memory processes [9, 16] and to general mental abili-
ties, respectively [3].

Various other factors, however, are known to af-
fect spectral composition of nonREM sleep and have
to be considered when interpreting the observed
differences between HRPs and control subjects.
Though sex distribution between the groups did not
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differ there were three times more men in the HRP
than in the control group. Studies on gender effects
point to an increase in sleep spindles in women [7,
26]. Therefore, it is unlikely that gender proportion
has influenced the observed findings. In addition, the
phase of menstrual cycle was shown to affect non-
REM sleep that is characterized by an increased EEG
activity in the 14–15-Hz range in the luteal phase
accompanying an increase in core body temperature
[15]. Since our recordings in female participants
were not controlled for the phase of the menstrual
cycle it cannot be ruled out that this effect may have
biased our findings.

It has to be mentioned, however, that changes in
sleep spindle characteristics are not typically associ-
ated with depression. Up to now, there was only one
study demonstrating a significant abnormality of
sleep spindles in patients with depression where the
authors observed a reduced number and density of
sleep spindles when compared with healthy controls
[11]. Interestingly, a recent study using a 256-elec-
trode high-density EEG during sleep also observed a
spindle deficit in patients with schizophrenia when
compared to patients with depression and healthy
control subjects [17]. However, it is difficult to rule
out subtle drug-induced effects on EEG composition
in patients under ongoing psychotropic medication.
Therefore, future studies using elaborate techniques
to assess EEG composition during sleep have to clarify
whether the finding of the present study is of clinical
relevance with respect to the likelihood to develop
affective disorders.

In summary, the present study confirmed an in-
creased REM density among HRPs, which has been
suggested as a possible vulnerability marker for
affective disorders. The spectral composition of the
sleep in HRPs was characterized by a pronounced
local maximum in the low sigma frequency range
which may indicate a subtle dysregulation of nonREM
sleep.
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