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Abstract
Background Rehabilitation of hearing and listening difficulties through neuroplasticity of the auditory nervous system is a 
promising technique. Evidence of enhanced auditory processing in adult musicians is often not based on clinical auditory 
processing tests and is lacking in children with musical education.
Purpose The aim of this study is to investigate the temporal resolution and frequency discrimination elements of auditory 
processing both in adults and children with musical education and to compare them with those without any musical education.
Methods Participants consisted of ten children without musical training and ten children with musical training with mean 
age 11.3 years and range 8–15 years as well as ten adults without musical education and ten adults with musical education 
with mean age 38.1 years and range 30–45 years. All participants were tested with two temporal resolution tests (GIN:Gaps-
In-Noise and RGDT:Random Gap Detection Test), a temporal ordering frequency test (FPT:Frequency Pattern Test), and a 
frequency discrimination test (DLF: Different Limen for Frequency).
Results All test results revealed better performance in both children and adults with musical training for both ears.
Conclusion A positive effect of formal music education for specific auditory processing elements in both children and adults 
is documented. Larger samples, longitudinal studies, as well as groups with impaired hearing and/or auditory processing are 
needed to further substantiate the effect shown.
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Introduction

The ability of the brain to modify, adapt, and form new 
synapses as a result of life experiences is referred to as 
brain plasticity or neuroplasticity and is an active process 

[1]. Music training, as a way to study neuroplasticity, is 
receiving wide interest from the scientific community [2]. 
Differences in brain structure and function between musi-
cians and individuals without music training are reported by 
many correlational studies [3–7]. The differences provide 
the background for a quicker processing of auditory inputs. 
In addition, improved performance of musicians in abilities, 
such as executive function, speech in noise perception, and 
pitch discrimination, is reported [8–10]. A recent systematic 
review and meta-analysis [11] of 62 longitudinal studies of 
healthy individuals shows auditory processing enhancement 
as a result of music training. The type of music training was 
diverse (from music education of different musical instru-
ments to chorus, orchestra, ensemble performances, and 
computer-based music training) with the studies including 
adults as well as children while having a control non-training 
group. Pitch discrimination followed by rhythm discrimina-
tion were the auditory processing elements that showed the 
most improvement with high effect sizes.
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Speech in noise perception is a core element of auditory 
processing and is recently recognized as a tool for assess-
ing auditory function beyond the pure-tone audiogram [12]. 
Auditory neuroplasticity requires intact auditory capacity 
and improves its more central elements, such as speech in 
noise perception, pitch pattern recognition, temporal reso-
lution, and dichotic listening [13]. It may be utilized as a 
foundation for hearing development programs for elderly 
rehabilitation [14]. EEG studies show that music training 
may affect numerous areas of auditory processing, includ-
ing those related to instrumental and pure-tone perception, 
as well as melody and rhythm perception [15, 16]. Addi-
tional research demonstrates that music benefits the transfer 
of cognitive domains in the pediatric [4, 15] population as 
musical training enhances sensitivity to tuning, a particu-
lar fundamental acoustic parameter that is crucial for both 
speech and music prosody. This improves children's capac-
ity to identify tuning changes in both language and music 
[4]. EEG research in children demonstrates neuroplasticity 
effects [17–20] following even a brief music training period 
of 4 weeks [17, 18].

Benefits in auditory abilities are consistent with the 
notion that the auditory system is altered by music train-
ing [21] reporting correlational evidence of advantages in 
abilities, such as rhythm, pitch, and timbre discrimination 
in musicians [22–24]. Research by Herholz and Zatorre 
(2012) indicates that active exposure to music can integrate 
several abilities, contingent on the length of music training, 
including auditory perception, kinesthetic control, visual 
perception, and memory encoding, [21]. To investigate 
various temporal processing capacities, Rammsayer and 
Altenmuller (2006) discovered that musicians outperformed 
non-musicians in terms of temporal discrimination, rhythm 
perception, auditory fusion skills, and tone length perception 
[22]. Mishra et al., (2014) compared classical musicians to 
non-musicians, demonstrating that musicians have enhanced 
sensitivity to detect the presence of a silent temporal gap 
between two spectrally dissimilar markers [25].

In brief, auditory processing enhancement following 
music education and training is found to be present in both 
correlational and longitudinal studies in children and adults. 
It should be noted that the literature includes either cor-
relation comparative studies between musicians and non-
musicians [26] or differences observed as a result of music 
education and training of a given duration in time [11]. In 
both cases, few of those studies regarding adults applied the 
clinically used tests (GIN = Gaps-In-Noise, RGDT = Ran-
dom Gap Detection Test, and FPT = Frequency Pattern 
Test) to evaluate temporal resolution and temporal order-
ing, respectively [26–29]. Comparative evaluation of chil-
dren with and without musical education using the clini-
cally available tests mentioned above is lacking in published 
research to the best of our knowledge. Aim of the present 

study is to compare a group of children with music education 
with a control non-training group as well as a group of adults 
with music education with a control group. Comparison of 
auditory processing will be investigated by the use of clini-
cally available auditory processing tests (GIN, RGDT, and 
FPT) and one regarding frequency discrimination ability 
(DLF = Different Limen of Frequency). This later is added 
to have a more detailed report on frequency discrimination 
that is known to be highly influenced by exposure to music 
education.

Materials and methods

Participants

A total of 40 participants were evaluated. Twenty of them 
were children and twenty were adults. Ten children (mean 
age 11.3 years, range 8–15 years) with music education were 
recruited from a local music conservatory based on more 
than 2 years of formal music education with a frequency 
of two times a week and upon their availability to serve as 
experimental group. Ten children (mean age 11.3 years, 
range 8–15 years) with no formal music education were 
recruited from local schools to serve as controls. It should be 
noted that all children attending elementary and high school 
attend music lessons within the school framework between 
1 and 2 h per week. Ten music-educated adults serving 
as the experimental adult group (mean age 38.1  years, 
range 30–45 years) were recruited from a local conserva-
tory with the inclusion criterion of taking lessons for more 
than 5 years. Ten adults without music training (mean age 
38.1 years, range 30–45 years) were recruited from the fam-
ily and friendship context to serve as controls. These adults 
had not received any formal music training apart from that 
which they received as students in the context of the school. 
We are defining formal music education as one acquired in 
conservatories and the participants in both the adult and the 
children’s group have been in different classes while learning 
different instruments.

All participants were native Greek speakers. Subject 
inclusion criteria were as follows: (1) all individuals had to 
have hearing thresholds less than 20 dB HL at all frequen-
cies tested for children participants and less than 25 dB HL 
for adults’ participants (octave frequencies between 0.25 and 
8 kHz); (2) no documented audiological or neurological dis-
order. Children in the experimental groups had at least 2 
years of music education and adults had more than 5 years 
of music education (Table 1). Control groups for both chil-
dren and adults had no music education. All individuals in 
the study provided informed consent and parents provided 
additional informed consent for their children. The study was 
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approved by the bioethics committee of the authors' affiliated 
Medical School (6.607; 14.06.2022).

Τhe assessment of the participants took place in a quiet 
speech therapy conference room. Τhe assessment of the chil-
dren was done in two different sessions of approximately one 
hour each, while the assessment of the adult participants in 
one session of approximately 2 h. Τhe order in which the 
tests were administered was of decreasing difficulty. At the 
beginning, the two tests of temporal analysis were adminis-
tered (GIN and RGDT), while the next two tests concerned 
pitch and frequency discrimination (FPT and DLF). Between 
tests there was a break of about 10 min where the partici-
pants remained in the evaluation area. The groups of chil-
dren and especially adults with music training were the ones 
that needed the shortest breaks. Verbal reward for following 
instructions was given at regular intervals to maintain higher 
levels of cooperation and attention. In addition, promised 
access to its individual's performance upon completion of 
the evaluation created a strong motivation.

Testing

Frequency Pattern Test Frequency Pattern Test is a psy-
choacoustic test consisting of a series of three tone burst 
patterns at two different frequencies, i.e., 1122 Hz high fre-
quency) and 880 Hz (low frequency). The duration of each 
tone is 200 ms with an inter-stimulus interval of 150 ms and 
a rise–fall time of 10 ms [30, 31]. We administered the test 
at 50 dB HL monaurally—through headphones (Sennheiser 
HD-280 Pro). The test has 60 test items for each ear. The 
first six items are used for practice. The individuals tested 
were asked to label each item of the pattern using the words 
Low (L) and High (H) and repeat the order they were hear-
ing. There were six possible combinations of tones (LLH, 
LHL, LHH, HLH, HLL, and HHL). Based on the partici-
pants' responses, a percentage of the correctly identifies pat-
terns per ear is documented. For the Frequency Pattern Test, 
75% and above are considered to be typical test results for 
individuals aged 11 and over.

Gaps-In-Noise Test Gaps in Noise is a clinical measure 
of temporal resolution administered monaurally [32]. Its 
practice section consists of 10 trials of randomly presented 
gaps with varying duration embedded in white noise. The 
main test has four lists with gap durations ranging from 2 to 
20 ms; embedded in 6 s of white noise. Some trials have no 
gaps. Location of the gaps is varied. The duration of the gaps 
is 2, 3, 4, 5, 6, 8, 10, 12, 15, and 20 ms. Each gap occurs six 
times within each list. The purpose of this test is to deter-
mine the gap detection threshold in msec. The gap detection 
threshold is the smallest interval detected in at least 4 out of 
6 presentations of a given duration [32, 33].

We administered the test at 50 dB HL monaurally—
separately for each ear [34]. GIN consists of a training-
familiarity list and 4 test lists of 32 to 36 trials each. We 
instructed participants to raise their hand each time a gap 
was detected. For analysis, the approximative threshold 
(ATh) was employed. The ATh was found to be the shortest 
gap duration for which at least four out of six identifications 
were accurate (67%) [32]. For gaps that lasted longer, this 
performance level had to be preserved or increased.

Random Gap Detection Test Random Gap Detection 
Test (RGDT) was the second test of temporal resolution 
employed [35]. A number of pairs of pure tones at frequen-
cies of 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz are pre-
sented using the RGDT technique, with the time intervals 
between each stimulus varied at random between 0 and 
40 ms (0, 2, 5, 10, 15, 20, 25, 30, and 40). Inter-trial time 
is set at 4.5 s to provide subjects enough time to reply. The 
stimulus had a duration of 17 ms, a rise and fall time of 1 ms. 
There is a practice tract that has a gradual increase of time 
interval between the two pure tones, starting with zero and 
going up to 40 ms. Τhe test was presented at 50 dB HL at a 
binaural condition via headphones.

Individuals were asked to say whether they heard one or 
two stimuli for each trial. The practice tract is not scored. 
The overall gap detection threshold is computed for a total 
of 36 trials [35]. For each frequency tested, the threshold 
of gap detection is determined as the shortest time interval 
at which the subject reports hearing two tones. The overall 
score is the mean of the four tested frequencies.

Different Limen of Frequency Discrimination tasks are 
an important component of central auditory testing. The 
available clinical tests focus more on pattern recognition 
of specific frequencies than on frequency threshold. Due to 
this, we created an adaptive behavioral DLF test with tone 
stimuli digitally generated using Audacity 3.2.1.

Procedure Τhe test was presented at 50 dB HL in binaural 
condition via headphones. Two stimuli were presented in 
each trial; the base frequency being 1 kHz tone. Based on 
previous study, each tone frequency had a length of 350 ms 
[36]. The gap between the baseline frequency and the test 
frequency was set at 300 ms. Six changes were introduced 

Table 1  Samples’ size and formal music education (in years) of par-
ticipants

N Formal music 
education (in 
years)

Control 10 0 years
Children
 Experimental 10  > 2 years
 Control 10 0 years

Adults
 Experimental 10  > 5 years

TOTAL 40
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into the test stimuli as a percentage geometric progression 
of the fundamental frequency and one no-change stimulus 
was added: 1.56%, 3.12%, 6.24%, 12.48%, 25%, and 50%. 
Stimulus conditions and the step size are listed in Table 2.

Both descending and ascending techniques were used. 
We started using a descending run, with the first pair of 
tones 1500 Hz and 1000 Hz. The individual's response was 
to answer whether the tones are the “same” or “different”. 
When tones were recognized as different in two consecutive 
trials, the stimulus level for the following trial was lowered 
as a percentage geometric progression of the fundamen-
tal frequency (the step size). This process was carried out 
repeatedly until the individual characterized the two tones as 
"the same" (point 1). We continued with an ascending run. 
In the ascending run, presentation was stopped when indi-
viduals characterized the two tones as "different" (point 2). 
Since cross over between hearing and not hearing lies some-
where between the lowest audible level and the highest inau-
dible level, threshold expressed in Hz for each series was 
taken as the average point between crossover of descending 
and ascending run (point 1, point 2).

Statistical analysis

Data were analyzed using SPSS 28. As a first step, distribu-
tion of data was evaluated. In terms of the skewness and 
kurtosis requirement, all data were normally distributed, 
with z values ranging from – 1.96 to + 1.96 [37]. Parametric 
statistics were applied (Student’s T test–Independent sam-
ples t test). The level of significance for statistical tests was 
p < 0.05. Correlation analysis of variables was done using 
the Pearson correlation efficient.

Results

Student’s T test was run for GIN_RE (Right Ear), GIN_LE 
(Left Ear), RGDT, FPT_RE, FPT_LE, and DLF compar-
ing the means across the groups of children and adults for 
temporal resolution, temporal processing, and frequency 

discrimination. The analysis revealed a statistically signifi-
cant better performance in the experimental group for the 
variables of GIN_RE, GIN_LE, FPT_RE, FTP_LE, and 
DLF in comparison to the control group in both children 
and adults. A statistically significant lower threshold was 
documented for the RGDT of the experimental as compared 
to the control group in adults but not in children (Fig. 1A, 
B). In both children and adults (with the exception of RGDT 
in children) performances across temporal resolution, tem-
poral processing and frequency discrimination were better 
for those with a formal music education as opposed to nor-
mal controls.

Temporal resolution (GIN and RGDT)

GIN Results Student’s T test was run for GIN_RE (GIN 
Right Ears) and GIN_LE (GIN Left Ears). The analy-
sis revealed a statistically significant better performance 
(Table 3) in terms of lower gap detection threshold of the 
experimental compared to the control group in both children 
(right ears t = 3.76, p < 0.001, left ears t = 3.76, p < 0.001) 
and adults (right ears t = 4.9, p < 0.001, left ears t = 4.26, 
p < 0.001).

RGDT Results Student’s T test was run for RGDT thresh-
olds. The analysis revealed a statistically significant differ-
ence between the experimental and the control group in 
adults (t = 4.73, p < 0.001). Specifically, adults with music 
education had a lower mean score in the RGDT test (i.e., 
better gap detection threshold) than adults without any music 
education (Table 3, Fig. 1A). No statistically significant dif-
ference was found for children (t = 2.1, p = 0.05).

Pitch discrimination (FPT and DLF)

FPT Results 

Student’s T test was run for FPT_RE (FPT Right Ears) and 
FPT_LE (FPT Left Ears). The analysis revealed statistically 
significant higher mean scores (Table 3) for the experimen-
tal compared to the control group in children (right ears 
t = -3.44, p = 0.003, left ears t = – 4.98, p < 0.001). Addi-
tionally, the analysis revealed statistically significant higher 
mean scores (Table 3) for the experimental compared to the 
control group in adults (right ears t = – 7.44, p < 0.001, left 
ears t = – 6.23, p < 0.001).

DLF Results

Student’s T test was run for DLF. The analysis revealed a 
statistically significant better discrimination performance 
(Table  3) for the experiment compared to the control 
group in both children and adults, respectively (t = 4.54, 
p < 0.001; t = 2.8, p = 0,035). DLF scores are expressed in 

Table 2  Stimulus conditions and step size of the fundamental fre-
quency

Percent change in % Frequency in Hz Frequency in Hz

0 1000 1000
1.56 1000 1015.6
3.12 1000 1031.2
6.24 1000 1062.4
12.48 1000 1124.8
25 1000 1250
50 1000 1500



European Archives of Oto-Rhino-Laryngology 

Hertz, and lower DLF values indicate better discrimination 
performance. Children in the experimental group could 
discriminate between the two tones at a mean of 17.16 Ηz 
(SD = 8.05), whereas children in the control group could 

discriminate between the two tones at a mean of 55.38 Hz 
(SD = 25.32). Adults in the experimental group could 
discriminate between the two tones at a mean of 5.46 Ηz 
(SD = 3.76) whereas adults in the control group could 

Fig. 1  XXX

Table 3  Means, standard 
deviations, and p values of the 
two temporal resolution tests 
in msec (RGDT & GIN), the 
frequency pattern test (FPT) 
in percent correct and the 
frequency discrimination test in 
Hz (DLF) in both control and 
experimental groups in children 
and adults are presented

The values inside the parentheses are the standard deviations of the data distribution
RE right ear, LE left ear

GIN_RE GIN_LE RGDT FPT_RE FPT_LE DLF

Mean (SD)
Children
 Control 4.8 (0.79) 4.8 (0.79) 10.25 (2.48) 76.59 (4.15) 76.25 (4.28) 55.38 (25.32)
 Experimental 3.7 (0.48) 3.7 (0.48) 8.25 (1.68) 84.24 (5.67) 85.91 (4.38) 17.16 (8.05)

Student’s t test p 0.001 0.001 0.05  < 0.05  < 0.001  < 0.001
Mean (SD)
Adults
 Control 5.9 (1.28) 5.9 (1.28) 10.5 (2.22) 79.92 (5.2) 78.92 (6.66) 10.92 (6.57)
 Experimental 3.7 (0.67) 3.9 (0.74) 6.72 (1.19) 93.24 (2.22) 93.07 (2.65) 5.46 (3.76)

Student’s t test p  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.05
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discriminate between the two tones at a mean of 10.92 Hz 
(SD = 6.57).

Correlations between FPT AND DLF values

Pearson test was run for DLF and FPT_RE (FPT Right Ear) 
and FPT_LE (FPT Left Ear) in children and adults. The 
analysis revealed a statistically significant negative correla-
tion for children (r =  − 0.621, p < 0.01; r =  − 0.717, p < 0.01 
between DLF and FPT_RE; DLF and FPT_LE, respectively; 
see Table 4). Analysis of adults' results showed a statisti-
cally significant negative correlation (r =  − 0.528, p < 0.01; 
r =  − 0.571, p < 0.01 between DLF and FPT_RE; DLF and 
FPT_LE, respectively; Table 4). A total correlation analy-
sis of all participants, adults and children, revealed an even 
stronger correlation (r =  − 0.584, p < 0.001; r =  − 0.579, 
p < 0.001 between DLF and FPT_RE; DLF and FPT_LE, 
respectively; Table 4). Lower thresholds on DLF tend to 
coincide with high scores on FPT, and vice versa.

Discussion

Aim of the present study was to compare a group of children 
with music education with a control non-training group as 
well as a group of adults with music education with a con-
trol group. Both experimental groups performed better in 
temporal resolution when compared to the respective control 
group with the exception of children's RGDT. The later had 
a p value equal to 0.05, very close to reaching statistical 

significance between groups. This documentation of higher 
temporal resolution in individuals with music education is 
consistent with earlier research indicating that musicians 
have better performance [14, 25]. In our study, the mean 
gap detection threshold was 3.7 ms for the right ears and 
3.9 ms for the left ears for the experimental group of adults 
with a 2.2 ms and 2 ms difference, respectively, compared 
to the control group. Our findings agree with other research-
ers’ findings [38] that musicians have an average of 2 ms 
shorter gap detection thresholds on the GIN test (raw values 
3.5 ms both for right and left ears) than their non-musician 
counterparts. Research showing the same effect in children 
is scarce. Sangamanatha et al. (2012) reported that children 
with music training performed at par with adults without 
music training, and better than children with no music train-
ing on temporal resolution [39].

Our novel findings for gap detection thresholds evaluated 
by the GIN test documented that children with music educa-
tion performed better than adults without music education 
(3.7 ms vs 5.9 ms). They had more efficient temporal reso-
lution than the children in the control group. The raw score 
of the temporal resolution measured by the clinical tool of 
GIN is very close to the 3.13 ms threshold documented by 
Sangamanatha et al. [39] using an experimental procedure 
for gaps in noise identification in children. This indicates 
consistency beyond the type of test used (clinical vs experi-
mental). To the best of our knowledge, there is a lack of 
literature for mean values in children with music education 
evaluated by RDGT. Our findings for adults agree with the 
results by Kahraman et al. (2021) [27] and demonstrate that 
musicians had a statistically significant lower threshold of 
gap identification than non-musicians.

Music training appears to improve pitch perception [40, 
41]. Frequency discrimination evaluated with two tests in 
our study (FPT & DLF) was found to be statistically sig-
nificant better in both children and adults. FPT reports on 
temporal ordering as well. To the best of our knowledge, 
these results of the present study for children are novel. 
The findings of our research for adults are confirmed 
by previous studies [27, 42]. Nascimento et al. (2010) 
administered the FPT on 20 violinists and 20 non-musi-
cians and found statistically better performance on FPT 
in musicians [45]. In a recent study by Kahraman et al. 
(2021) musicians between 20 and 40 years had 88.83% 
correct answers for right ear and 89.33% for left ear on 
FPT and they performed statistically better in comparison 
to no musicians group [27]. Their findings are slightly 
lower than our results for adults with music education. 
Majak et al. (2016) compare the performance of FPT in 
normal hearing musicians and non-musicians. In contrast 
to our findings, they found that musicians had an excellent 
performance on FPT with 100% correct answers in both 
ears [28]. The mean age of the musicians group in their 

Table 4  Correlation analysis of children; adults; children and adults 
(DLF: Different Limen of Frequency, FPT_RE: Frequency Pattern 
Test Right Ear, FPT_LE: Frequency Pattern Test Left Ear)

Variables DLF FPT_RE FPR_LE

Correlation analysis of children
 1. DLF – 0.621** – 0.717**
 2. FPT_RE – 0.621** 0.920**
 3. FPT_LE – 0.717** 0.920**

**p < 0.01; N = 20
Correlation analysis of adults
 1. DLF – 0.528** – 0.571**
 2. FPT_RE – 0.528** 0.946**
 3. FPT_LE – 0.571** 0.946**

**p < 0.01; N = 20
Correlation analysis of children and adults
 1. DLF – 0.584*** – 0.579***
 2. FPT_RE – 0.584*** 0.939***
 3. FPT_LE – 0.579*** 0.939***

p < 0.001; N = 40
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study was 21.4 years, in contrast to our study that was 
38.1 years and that is a parameter that may explain the 
excellent values of the youngest participants. Karimi et al. 
(2018) compared the performance of adults with 8 years of 
music education vs adults without music education (ages 
between 21 and 44 years) on FPT. The results revealed that 
the FPT score in both ears differed significantly between 
the two groups. Musicians performed significantly better 
than non-musicians [43].

DLF was used in our study along with FPT as a more 
true evaluation of frequency discrimination compared to 
the FPT having added aspects of temporal processing in 
terms of pattern recognition. Both tests were able to docu-
ment better performance with music education across the 
life span. Our findings are in accordance with the results of 
Kishon-Rabin et al. (2001) [44] who found that mean fre-
quency discrimination thresholds for adult musicians were 
approximately half the values of the non-musicians and by 
other studies that shows musicians are able to discriminate 
at much lower thresholds than non-musicians [10, 45, 46]. 
Kishon-Rabin et al. (2001) [44] state immediate frequency 
discrimination threshold improvement for both musicians 
and non-musicians following relatively brief training, indi-
cating that the frequency discrimination task is trainable. 
Additionally, vocal musicians performed significantly 
better compared with non-musicians on frequency dis-
crimination thresholds [47]. Eight-year-old children with 
music education have higher auditory temporal-interval 
discrimination as well as frequency discrimination, which 
is correlated with reading skills [48].

Correlation between DLF (frequency discrimination 
threshold) and FPT (frequency discrimination & tempo-
ral processing) was statistically significant and revealed 
that FPT has a strong frequency discrimination compo-
nent. DLF and FPT were correlated for children and adults 
(p < 0.01), with correlation being stronger (p < 0.001) 
when the analysis was done for all 40 individuals across 
the life span. This might indicate that both tests have much 
more in common, even though they clearly have meth-
odological differences in terms of being adaptive or not, 
being forced or not and having different stimuli configura-
tions. Our findings are not in full agreement with Flagge 
et al. (2020) who found a moderate correlation between the 
DLF and FPT values for children 6;11–11;3 years old [49]. 
The stronger correlation of the present study might be the 
result of the different standard frequency used by Flagge 
et al., 220 Hz as opposed to the use of 1 kHz in our study.

This study’s results show a positive effect of formal 
music education for specific auditory processing elements 
in both children and adults. Larger samples as well as lon-
gitudinal studies are needed to further substantiate the 
effect shown.

Conclusion

In conclusion, results of this study suggest that music edu-
cation provides a significant benefit in auditory processing 
across the life span. The benefits documented are in tem-
poral resolution and pitch discrimination. Larger samples 
of children with music education as well as groups with 
impaired hearing and/or auditory processing are needed to 
verify that music education may be used as a rehabilitation 
tool for hearing difficulties to improve auditory processing.
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