Skip to main content
Log in

Diagnosis of malignancy in oropharyngeal confocal laser endomicroscopy using GPT 4.0 with vision

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Confocal Laser Endomicroscopy (CLE) is an imaging tool, that has demonstrated potential for intraoperative, real-time, non-invasive, microscopical assessment of surgical margins of oropharyngeal squamous cell carcinoma (OPSCC). However, interpreting CLE images remains challenging. This study investigates the application of OpenAI’s Generative Pretrained Transformer (GPT) 4.0 with Vision capabilities for automated classification of CLE images in OPSCC.

Methods

CLE Images of histological confirmed SCC or healthy mucosa from a database of 12 809 CLE images from 5 patients with OPSCC were retrieved and anonymized. Using a training data set of 16 images, a validation set of 139 images, comprising SCC (83 images, 59.7%) and healthy normal mucosa (56 images, 40.3%) was classified using the application programming interface (API) of GPT4.0. The same set of images was also classified by CLE experts (two surgeons and one pathologist), who were blinded to the histology. Diagnostic metrics, the reliability of GPT and inter-rater reliability were assessed.

Results

Overall accuracy of the GPT model was 71.2%, the intra-rater agreement was κ = 0.837, indicating an almost perfect agreement across the three runs of GPT-generated results. Human experts achieved an accuracy of 88.5% with a substantial level of agreement (κ = 0.773).

Conclusions

Though limited to a specific clinical framework, patient and image set, this study sheds light on some previously unexplored diagnostic capabilities of large language models using few-shot prompting. It suggests the model`s ability to extrapolate information and classify CLE images with minimal example data. Whether future versions of the model can achieve clinically relevant diagnostic accuracy, especially in uncurated data sets, remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available upon reasonable request from the corresponding author.

References

  1. Li J, Zhuo F, Wang X et al (2023) Clinical data, survival, and prognosis of 426 cases of oropharyngeal cancer: a retrospective analysis. Clin Oral Invest 27:6597–6606. https://doi.org/10.1007/s00784-023-05265-y

    Article  Google Scholar 

  2. Nichols AC, Theurer J, Prisman E, Read N, Berthelet E, Tran E, Fung K, de Almeida JR, Bayley A, Goldstein DP, Hier M, Sultanem K, Richardson K, Mlynarek A, Krishnan S, Le H, Yoo J, MacNeil SD, Winquist E, Hammond JA, Venkatesan V, Kuruvilla S, Warner A, Mitchell S, Chen J, Corsten M, Johnson-Obaseki S, Odell M, Parker C, Wehrli B, Kwan K, Palma DA (2022) Randomized trial of radiotherapy versus transoral robotic surgery for oropharyngeal squamous cell carcinoma: long-term results of the ORATOR trial. J Clin Oncol 40(8):866–875. https://doi.org/10.1200/JCO.21.01961. (Epub 2022 Jan 7 PMID: 34995124)

    Article  CAS  PubMed  Google Scholar 

  3. Grégoire V, Nicolai P (2019) Choosing surgery or radiotherapy for oropharyngeal squamous cell carcinoma: is the issue definitely settled? Lancet Oncol 20(10):1328–1329. https://doi.org/10.1016/S1470-2045(19)30495-4. (Epub 2019 Aug 12. PMID: 31416686)

    Article  PubMed  Google Scholar 

  4. Arboleda LPA, de Carvalho GB, Santos-Silva AR, Fernandes GA, Vartanian JG, Conway DI, Virani S, Brennan P, Kowalski LP, Curado MP (2023) Squamous cell carcinoma of the oral cavity, oropharynx, and larynx: a scoping review of treatment guidelines worldwide. Cancers (Basel) 15(17):4405. https://doi.org/10.3390/cancers15174405. (PMID:37686681;PMCID:PMC10486835)

    Article  PubMed  Google Scholar 

  5. Gorphe P, Simon C (2019) A systematic review and meta-analysis of margins in transoral surgery for oropharyngeal carcinoma. Oral Oncol 98:69–77. https://doi.org/10.1016/j.oraloncology.2019.09.017. (Epub 2019 Sep 20 PMID: 31546183)

    Article  PubMed  Google Scholar 

  6. Urken ML, Yun J, Saturno MP, Greenberg LA, Chai RL, Sharif K, Brandwein-Weber M (2023) Frozen section analysis in head and neck surgical pathology: a narrative review of the past, present, and future of intraoperative pathologic consultation. Oral Oncol 143:106445. https://doi.org/10.1016/j.oraloncology.2023.106445. (Epub 2023 Jun 6 PMID: 37285683)

    Article  PubMed  Google Scholar 

  7. Sievert M, Stelzle F, Aubreville M, Mueller SK, Eckstein M, Oetter N, Maier A, Mantsopoulos K, Iro H, Goncalves M (2021) Intraoperative free margins assessment of oropharyngeal squamous cell carcinoma with confocal laser endomicroscopy: a pilot study. Eur Arch Otorhinolaryngol 278(11):4433–4439. https://doi.org/10.1007/s00405-021-06659-y. (Epub 2021 Feb 13. PMID: 33582849; PMCID: PMC8486707)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tan J, Ji HL, Hu YW, Li ZM, Zhuang BX, Deng HJ, Wang YN, Zheng JX, Jiang W, Yan J (2022) Real-time in vivo distal margin selection using confocal laser endomicroscopy in transanal total mesorectal excision for rectal cancer. World J Gastrointest Surg 14(12):1375–1386. https://doi.org/10.4240/wjgs.v14.i12.1375. (PMID:36632126;PMCID:PMC9827574)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sievert M, Oetter N, Aubreville M, Stelzle F, Maier A, Eckstein M, Mantsopoulos K, Gostian AO, Mueller SK, Koch M, Agaimy A, Iro H, Goncalves M (2021) Feasibility of intraoperative assessment of safe surgical margins during laryngectomy with confocal laser endomicroscopy: a pilot study. Auris Nasus Larynx 48(4):764–769. https://doi.org/10.1016/j.anl.2021.01.005. (Epub 2021 Jan 16 PMID: 33468350)

    Article  PubMed  Google Scholar 

  10. Dolak W, Mesteri I, Asari R, Preusser M, Tribl B, Wrba F, Schoppmann SF, Hejna M, Trauner M, Häfner M, Püspök A (2015) A pilot study of the endomicroscopic assessment of tumor extension in Barrett’s esophagus-associated neoplasia before endoscopic resection. Endosc Int Open 3(1):19–28. https://doi.org/10.1055/s-0034-1377935. (Epub 2014 Oct 24. PMID: 26134766; PMCID: PMC4423329)

    Article  Google Scholar 

  11. Wenda N, Fruth K, Fisseler-Eckhoff A, Gosepath J (2023) The multifaceted role of confocal laser endomicroscopy in head and neck surgery: oncologic and functional insights. Diagnostics (Basel) 13(19):3081. https://doi.org/10.3390/diagnostics13193081. (PMID:37835824;PMCID:PMC10572220)

    Article  PubMed  Google Scholar 

  12. Wenda N, Kiesslich R, Gosepath J (2021) Technical note: first use of endonasal confocal laser endomicroscopy—feasibility and proof of concept. Int Arch Otorhinolaryngol 26(3):e396–e400. https://doi.org/10.1055/s-0041-1724091. (PMID:35846802;PMCID:PMC9282955)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sievert M, Oetter N, Mantsopoulos K, Gostian AO, Mueller SK, Koch M, Balk M, Thimsen V, Stelzle F, Eckstein M, Iro H, Goncalves M (2022) Systematic classification of confocal laser endomicroscopy for the diagnosis of oral cavity carcinoma. Oral Oncol 132:105978. https://doi.org/10.1016/j.oraloncology.2022.105978. (Epub 2022 Jun 21 PMID: 35749803)

    Article  PubMed  Google Scholar 

  14. Aubreville M, Stoeve M, Oetter N, Goncalves M, Knipfer C, Neumann H, Bohr C, Stelzle F, Maier A (2019) Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images. Int J Comput Assist Radiol Surg 14(1):31–42. https://doi.org/10.1007/s11548-018-1836-1. (Epub 2018 Aug 4 PMID: 30078151)

    Article  PubMed  Google Scholar 

  15. Pan Z, Breininger K, Aubreville M, Stelzle F, Oetter N, Maier A, Mantsopoulos K, Iro H, Goncalves M, Sievert M (2023) Defining a baseline identification of artifacts in confocal laser endomicroscopy in head and neck cancer imaging. Am J Otolaryngol 44(2):103779. https://doi.org/10.1016/j.amjoto.2022.103779. (Epub 2022 Dec 28. PMID: 36587604)

    Article  PubMed  Google Scholar 

  16. Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y (2023) Segment anything model for medical image analysis: an experimental study. Med Image Anal 89:102918

    Article  PubMed  Google Scholar 

  17. Temsah R, Altamimi I, Alhasan K, Temsah MH, Jamal A (2023) Healthcare’s new horizon with ChatGPT’s voice and vision capabilities: a leap beyond text. Cureus 15(10):e47469. https://doi.org/10.7759/cureus.47469. (PMID:37873042;PMCID:PMC10590619)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  19. Yu P, Xu H, Hu X, Deng C (2023) Leveraging generative AI and large language models: a comprehensive roadmap for healthcare integration. Healthcare (Basel) 11(20):2776. https://doi.org/10.3390/healthcare11202776. (PMID:37893850;PMCID:PMC10606429)

    Article  PubMed  Google Scholar 

  20. Preiksaitis C, Rose C (2023) Opportunities, challenges, and future directions of generative artificial intelligence in medical education: scoping review. JMIR Med Educ 20(9):e48785. https://doi.org/10.2196/48785. (PMID:37862079;PMCID:PMC10625095)

    Article  Google Scholar 

  21. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Chen W (2021) Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685

  22. Liu H, Tam D, Muqeeth M, Mohta J, Huang T, Bansal M, Raffel CA (2022) Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Adv Neural Inf Process Syst 35:1950–1965

    Google Scholar 

  23. Rao A, Pang M, Kim J, Kamineni M, Lie W, Prasad AK et al (2023) Assessing the utility of ChatGPT throughout the entire clinical workflow. MedRxiv Prepr Serv Heal Sci. https://doi.org/10.1101/2023.02.21.23285886

    Article  Google Scholar 

  24. Chee J, Dawn E, Goh X (2023) “Vertigo, likely peripheral”: the dizzying rise of ChatGPT. Eur Arch Oto-Rhino-Laryngol. https://doi.org/10.1007/s00405-023-08135-1

    Article  Google Scholar 

  25. Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB et al (2023) Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med 183:589–596. https://doi.org/10.1001/jamainternmed.2023.1838

    Article  PubMed  Google Scholar 

  26. Azamfirei R, Kudchadkar SR, Fackler J (2023) Large language models and the perils of their hallucinations. Crit Care 27:120. https://doi.org/10.1186/s13054-023-04393-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Li C, Wu Q, Lee YJ (2023) Visual instruction tuning. Proceedings of NeurIPS 2023

Download references

Funding

This project was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft), Grant Number 3182/2-1, Project Number 439264659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Goncalves.

Ethics declarations

Conflict of interest

None of the authors has any personal conflict of interest to declare.

Ethical approval

All procedures performed in this study involving human participants complied with the ethical standards of the institutional and/or national research committee (approval number 60_14 B) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

No participant consent for publication is necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sievert, M., Aubreville, M., Mueller, S.K. et al. Diagnosis of malignancy in oropharyngeal confocal laser endomicroscopy using GPT 4.0 with vision. Eur Arch Otorhinolaryngol 281, 2115–2122 (2024). https://doi.org/10.1007/s00405-024-08476-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-024-08476-5

Keywords

Navigation