Skip to main content
Log in

Gut microbiota and chronic rhinosinusitis: a two-sample Mendelian randomization study

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

The nasal cavity and gut are interconnected, both housing a rich natural microbiome. Gut microbiota may interact with nasal microbiota and contribute to the development of chronic rhinosinusitis (CRS). However, the specific role of gut microbiota in CRS has not been fully investigated. Therefore, we conducted a two-sample Mendelian randomization study to reveal the potential genetic causal effect of gut microbiota on CRS.

Methods

We performed a two-sample Mendelian Randomization (MR) analysis using aggregated data from genome-wide association studies (GWAS) on gut microbiota and CRS. The primary method used to assess the causal relationship between gut microbiota and CRS was the inverse variance weighting (IVW) method. In addition, sensitivity analyses were conducted to evaluate the robustness of the MR results, including heterogeneity, pleiotropy, and leave-one-out tests.

Results

Genetically predicted twelve gut microbiota, including class Coriobacteriia, class Methanobacteria, family Coriobacteriaceae, family Methanobacteriaceae, family Pasteurellaceae, genus Haemophilus, genus Ruminococcus torques group, genus Subdoligranulum, order Coriobacteriales, order Methanobacteriales, order Pasteurellales, and phylum Proteobacteria, demonstrated a potential inhibitory effect on CRS risk (P < 0.05). In addition, four gut microbiota, including family Streptococcaceae, genus Clostridium innocuum group, genus Oscillospira, and genus Ruminococcaceae NK4A214 group, exhibited a causal role in increasing CRS risk (P < 0.05). Sensitivity analyses showed no evidence of heterogeneity or pleiotropy (P > 0.05).

Conclusions

This study reveals the causal relationship between specific gut microbiota and CRS, which provides a new direction and theoretical foundation for the future development of interventions and prevention and treatment strategies for CRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Publicly available data sets were analyzed in this study. The data of gut microbiota and CRS (ID: ebi-a-GCST90018823) can be obtained from https://gwas.mrcieu.ac.uk/.

References

  1. Fokkens WJ et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464

    PubMed  Google Scholar 

  2. Van Crombruggen K et al (2011) Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol 128(4):728–732

    Article  PubMed  Google Scholar 

  3. McLean MH et al (2015) Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut 64(2):332–341

    Article  CAS  PubMed  Google Scholar 

  4. Al Bander Z et al (2020) The gut microbiota and inflammation: an overview. Int J Environ Res Public Health 17(20):7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang J et al (2020) Analysis of intestinal flora in patients with chronic rhinosinusitis based on highthroughput sequencing. Nan Fang Yi Ke Da Xue Xue Bao 40(9):1319–1324

    CAS  PubMed  Google Scholar 

  6. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:601

    Article  Google Scholar 

  7. Swanson SA et al (2017) Nature as a trialist? Deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology 28(5):653–659

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sekula P et al (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurilshikov A et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53(2):156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sakaue S et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 53(10):1415–1424

    Article  CAS  PubMed  Google Scholar 

  11. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bowden J et al (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hemani G et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nishio J, Honda K (2012) Immunoregulation by the gut microbiota. Cell Mol Life Sci 69(21):3635–3650

    Article  CAS  PubMed  Google Scholar 

  16. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215

    Article  CAS  PubMed  Google Scholar 

  17. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146(6):1489–1499

    Article  CAS  PubMed  Google Scholar 

  18. Huang R et al (2022) Effects of intestinal microbes on rheumatic diseases: a bibliometric analysis. Front Microbiol 13:1074003

    Article  PubMed  Google Scholar 

  19. Gurung M et al (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Vos WM et al (2022) Gut microbiome and health: mechanistic insights. Gut 71(5):1020–1032

    Article  PubMed  Google Scholar 

  21. Bassis CM et al (2014) The nasal cavity microbiota of healthy adults. Microbiome 2:27

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abbas EE et al (2021) Distinct clinical pathology and microbiota in chronic rhinosinusitis with nasal polyps endotypes. Laryngoscope 131(1):E34-e44

    Article  CAS  PubMed  Google Scholar 

  23. Binda C et al (2018) Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 50(5):421–428

    Article  PubMed  Google Scholar 

  24. Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76(1):66–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarveswari HB, Solomon AP (2019) Profile of the Intervention potential of the phylum Actinobacteria toward quorum sensing and other microbial virulence strategies. Front Microbiol 10:2073

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi J et al (2021) Sex-specific associations between gut microbiome and non-alcoholic fatty liver disease among urban Chinese adults. Microorganisms 9(10):2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    Article  CAS  PubMed  Google Scholar 

  28. Schirmer M et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167(4):1125-1136.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorrestein PC, Mazmanian SK, Knight R (2014) Finding the missing links among metabolites, microbes, and the host. Immunity 40(6):824–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavaglieri CR et al (2003) Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 73(13):1683–1690

    Article  CAS  PubMed  Google Scholar 

  31. Klampfer L et al (2003) Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 1(11):855–862

    CAS  PubMed  Google Scholar 

  32. Smith LD, King E (1962) Clostridium innocuum, sp. n., a sporeforming anaerobe isolated from human infections. J Bacteriol 83(4):938–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cherny KE et al (2021) Clostridium innocuum: microbiological and clinical characteristics of a potential emerging pathogen. Anaerobe 71:102418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the genetics consortiums for making the GWAS summary data publicly available.

Funding

This work was supported by the Natural Science Foundation of Sichuan Province (Grant Number 2023NSFSC0621) and Chengdu Medical Research Project (Grant Number 2022013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanhai Liu or Jianhui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent

This study only used publicly available GWAS summary data, so ethical approval is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3289 KB)

Supplementary file2 (XLSX 174 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Cai, B., Luo, J. et al. Gut microbiota and chronic rhinosinusitis: a two-sample Mendelian randomization study. Eur Arch Otorhinolaryngol 281, 3025–3030 (2024). https://doi.org/10.1007/s00405-024-08468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-024-08468-5

Keywords

Navigation