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Abstract
Background and Purpose Use of unilateral cochlear implant (UCI) is associated with limited spatial hearing skills. Evidence 
that training these abilities in UCI user is possible remains limited. In this study, we assessed whether a Spatial training based 
on hand-reaching to sounds performed in virtual reality improves spatial hearing abilities in UCI users
Methods Using a crossover randomized clinical trial, we compared the effects of a Spatial training protocol with those of 
a Non-Spatial control training. We tested 17 UCI users in a head-pointing to sound task and in an audio-visual attention 
orienting task, before and after each training. <br>Study is recorded in clinicaltrials.gov (NCT04183348).
Results During the Spatial VR training, sound localization errors in azimuth decreased. Moreover, when comparing head-
pointing to sounds before vs. after training, localization errors decreased after the Spatial more than the control training. No 
training effects emerged in the audio-visual attention orienting task.
Conclusions Our results showed that sound localization in UCI users improves during a Spatial training, with benefits that 
extend also to a non-trained sound localization task (generalization). These findings have potentials for novel rehabilitation 
procedures in clinical contexts.

Keywords Spatial hearing · Cochlear implant · VR training · Virtual reality · Reaching · Active listening · Head movements

Introduction

In case of neurosensory deafness, standard interventions 
often comprise the application of cochlear implants (CI). 
Although this surgery is indicated for people with bilateral 
hearing loss, many patients receive only one CI [1, 2]. Using 
only one CI and listening asymmetrically leads to difficulties 

in sound localization. Sound localization is poorer with uni-
lateral rather than bilateral CI [3]. Similarly, switching-off 
one implant in bilateral CI users (BCI) compromises sound 
localization in the horizontal dimension [4, 5]. Spatial hear-
ing difficulties in unilateral CI users (UCI) have been attrib-
uted to the reduced availability of auditory cues. The CI 
alters auditory cues due to its restricted spectro-temporal 
processing [6]. In addition, it can modify sound intensity 
through automatic gain control (AGC) or alter auditory cues 
through noise reduction strategies or through filters empha-
sizing higher frequencies [10]. Wearing one CI also mini-
mizes binaural inputs, which are crucial to localize sounds 
along the horizontal dimension [10–13]. Even when binaural 
hearing experience is only reduced and not absent, as in the 
case of bimodal stimulation (e.g., a cochlear implant in one 
ear and a contralateral hearing aid in the other), sound local-
ization is perturbed [14]. Binaural cues are distorted and 
compromised by technology difference between device (e.g., 
the device delay mismatch [15]), while monaural spectral 
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pinna cues are poor or not preserved by hearing devices’ 
features (i.e., microphone behind the ear) [16].

In this context of impoverished auditory cues, can CI users 
improve their sound localization skills? In people with nor-
mal hearing listening with one ear plugged, sound localiza-
tion abilities can be trained [17–19]. Pioneering results sug-
gest that this may also be possible in UCI [20] and BCI users 
[21]. Recently, we showed that a multisensory-motor training 
can rapidly change sound localization skills in BCI users [22, 
23]. Taking advantage of virtual reality (VR) technologies, 
we promoted active interactions with sound sources through 
hand-reaching and head movements. We found that such an 
active exploration of the acoustic environment enhanced 
sound localization performance in normal hearing adults 
with one plugged ear [24] as well as BCI users [22]. These 
findings are in line with recent studies, which showed that 
CI users and people with hearing deficits can improve their 
sound localisation ability when head movements are allowed 
[25, 26]. Most importantly, we reported that training-related 
benefits can generalize, extending to a sound localization task 
in which both the response modality and stimulation posi-
tions were novel compared to the trained ones [22, 24].

In the present study, we leveraged such VR training protocol 
based on active interactions with the auditory scene. To test 
the efficacy of this training in 17 UCI users, we contrasted this 
Spatial training with a control procedure that did not entail 
processing of spatial features of the sound (i.e., the Non-Spatial 
training). Crucially, we compared these two VR trainings in 
a crossover experimental design, which allow us to test the 
effect of both training paradigms on each participant. Before 
and after each training paradigm, we tested participants in a 
head-pointing to sound localization task, which entails differ-
ent sound positions and requires localizing sounds using a dif-
ferent effector (head instead of hand). In addition, to probe for 
training benefits when implicit sound localization is required, 
we tested participants in an audio-visual attention orienting 
task, in which they were asked to judge the elevation of a vis-
ual stimulus while listening a sudden sound.

Methods

Participants

Twenty UCI participants were recruited to participate in the 
study. Sample size was based on two previous experiments 
addressing a similar research question with an identical experi-
mental design, but with different populations (normal hearing: 
[24]; bilateral CI users: [22]). Three participants were excluded 
from the analyses (one did not complete the second visit, one 
abandoned after wearing the Head Mounted Display (HMD), 
one did not fully match the inclusion criteria; mean age for the 

included participants was 45.8 years, SD = 16.4; 8 males, 13 
right-handed). Three participants asked to interrupt the Spa-
tial VR training because of fatigue (participants 5, 15 and 20 
performed 104, 104 and 131 trials out of 156, respectively).

All participants were recruited at the ORL department of 
the civil hospital Edouard Herriot (HEH) in Lyon (France), 
and tested in a dedicated room inside the HEH premises. All 
had normal or corrected-to-normal vision and reported no 
movement or vestibular deficit, nor neurological or psychiatric 
history. Anamnestic and clinical data for individual UCI partic-
ipants are provided in Table 1. During the experiment, partici-
pants used their daily sound processor settings (see Table 2 for 
details about CI model, processor strategy and microphone set-
tings) and 10 of them wore hearing aid on the non-implanted 
ear. We let each participant perform the task with or without 
their hearing device in the ear contralateral to the CI, because 
we aimed to test their sound localization ability in the context 
of the acoustic stimulation they usually experience. Accord-
ingly, in Table 2 we reported the pure tone average (PTA) 
threshold in the ear contralateral to the implant, as measured 
in the condition in which participants performed the experi-
ment: i.e., with or without hearing aid. We calculated them 
by computing the average between the thresholds available in 
clinical record for each subject for 250, 500, 1000, 2000, 4000, 
8000 Hz. The study was approved by a national Ethical Com-
mittee (Ile de France X, N° ID RCB 2019-A02293-54) and 
recorded in clinicaltrials.gov (NCT04183348). Before starting 
the experiment, each participant signed an informed consent.

Study design

The entire experiment was conducted inside VR environment. 
Participants wore a HMD (resolution: 1080 × 1200 px, Field 
Of View (FOV): 110°, Refresh rate: 90 Hz) that produced an 
immersive VR experience: participants always saw a reproduc-
tion of the room in which they were located. Importantly, the 
VR also allowed continuous tracking of their head posture and 
movements. All sounds were delivered from a real speaker, 
tracked in 3D space and moved by the experimenter’s hand to 
pre-determined positions within the VR environment (identical 
to the methods adopted in [22–24] for use of this VR approach 
in CI users). Use of an actual sound source in the environment 
was motivated by the difficulty of creating replicable auditory 
virtual sounds for people using CIs or hearing aids (although 
extensive efforts have been made to render virtual acoustic 
scenes also for these hearing assisted populations [28–30]). 
The immersive VR gave full control over the multisensory 
cues of testing environment and sound source position, and 
permitted to provide audio-visual feedback in case of errors.

Participants performed each of the two VR training (Spa-
tial and Non-Spatial) in a within-subject crossover design, 
in two separate experimental sessions (washout interval was 
at least 15 days, training order was counterbalanced across 
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participants; see Fig. 1). Before and after each VR training 
session, participants completed testing phases that com-
prised two different auditory tasks: a head-pointing locali-
zation task and an audio-visual attention orienting task (the 
only task conducted outside VR).

Procedures

Testing phases

Head‑pointing sound localization task  In each trial, a sin-
gle auditory target (3  s white noise burst) was presented 
from 8 possible pre-determined positions (5 repetitions 
each, resulting in 40 trials in each testing phase). The 8 
positions were placed at 55 cm from the center of the sub-
ject’s head and they varied along the azimuth dimension 
(± 22.5° and ± 67.5° with respect to the midsagittal plane) 
and vertical dimension (5° and − 15° with respect to the 
plane passing through the ears). The variation along the ver-
tical dimension was introduce only to increase variability in 
the task, and we did not expect training-related changes in 
this dimension in which sound localization relies on mon-
aural spectra cues. For this reason, we did not analyze per-
formance along the vertical dimension or have hypothesis 
about participants errors along the vertical plane. While 
listening the sound, participants were not informed about 
the pre-determined target positions and were immersed in 
an empty virtual room (identical size to the real room, i.e., 
3.6 m × 3.9 m, height 2.7 m). Participants were instructed to 

point with their head toward the perceived sound position, as 
soon as the sound finished, and validate their response using 
the VR controller they held in their right hand (Fig. 1B). In 
this specific task, the speaker was always invisible in the VR 
environment. Notably, while initial posture was identical 
for all participants and trials, head movements were unre-
strained from target onset to the response. The task lasted 
approximately 15 min.

Audio‑visual cueing task  This task aimed to assess to what 
extent lateralized sound could capture the participant’s 
audio-visual attention. The task was performed outside VR 
in the same room of the sound localization task, with par-
ticipants sat at a desk in front of a computer monitor flanked 
by speakers. In each trial, a visual disk appeared above or 
below eye-level (± 1.15°), on the left or right side (128 tri-
als overall, equiprobable across the four possible positions). 
Participants were instructed to discriminate the vertical 
position of the disk as fast and accurately as possible, using 
up/down arrows keys on the keyboard (Fig. 1B). Each disk 
was paired with a task-irrelevant sound delivered from one 
of two loudspeakers flanking the screen. The sound was 
either delivered on the same side as the visual disk (spa-
tially congruent trials) or from the opposite side (spatially 
incongruent trials), with equal probability. In normal hear-
ing participants, this procedure results in automatic audio-
visual orienting of selective attention, i.e., participants are 
faster and more accurate when responding to visual targets 
appearing on the same side as the preceding sound [31]. All 

Table 1  Anamnestic and clinical characteristics of CI participants

ID Gender Age Etiology of deafness Age at deaf 
diagnosis (y; 
m)

Age at first 
hearing aid 
(y; m)

Age at implanta-
tion (right ear) 
(y; m)

Age at implanta-
tion (left ear) (y; 
m)

Years 
with one 
CI

uCI 01 F 35 Unknown 7 9 33 – 2
uCI 02 M 63 Otosclerosis 24 24 60 – 3
uCI 03 F 61 Unknown 32 32 55 – 6
uCI 04 M 48 Radiotherapy/chemotherapy 37 37 – 44 4
uCI 05 M 60 Aminoglycoside treatment 54 55 56 4
uCI 06 F 46 Unknown 5 5 – 31 15
uCI 07 M 64 Otosclerosis 37 43 58 – 6
uCI 08 F 57 Genetic 6 17 50 – 7
uCI 09 F 24 Genetic 1 1 7 – 17
uCI 11 F 24 Unknown 1 1 4 – 20
uCI 12 F 21 Meningitis 0;3 1 – 12 9
uCI 14 F 32 Unknown 16 16 – 30 2
uCI 15 M 24 Unknown 0;4 1 2 – 22
uCI 16 F 60 Unknown 30 41 – 57 3
uCI 17 M 38 Genetic 1 2 33 – 5
uCI 18 M 56 Neonatal resuscitation 0 50 51 – 5
uCI 20 M 66 Meniere’s disease 51 57 58 – 8
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head movements were restrained by a forehead and chin-
rest. The task lasted approximately 10 min.

VR training tasks

Participants were immersed in the same virtual room as the 
head-pointing sound localization task, but saw 13 virtual 
loudspeakers spanning ± 72° in front space (see Fig. 1C). In 
each trial, a sound was emitted by a real speaker moved by 
the experimenter, as in the head-pointing sound localiza-
tion task (12 repetitions per loudspeakers, total 156 trials). 
Half of the sounds were amplitude modulated at 2 Hz, the 
remaining half at 3 Hz. Hence, irrespective of the VR train-
ing task (Spatial or Non-Spatial), the stimulation changed 
unpredictably in location and amplitude modulation on a 
trial-by-trial basis.

Spatial VR training Participants were instructed to reach 
the speaker emitting the sound using the VR controller 
they held in their right hand. The sound lasted until the par-
ticipant reached and ‘touched’ the correct speaker. If they 
reached the wrong speaker, the correct loudspeaker started 
to display concentric red beams that expanded from the 

correct position to reach, and the sound continued until the 
correct location was finally reached (a video that illustrates 
the training tasks is available in 22, http:// links. lww. com/ 
EANDH/ B44).

Non‑Spatial VR training Participants were instructed to 
identify the amplitude modulation in the target sound, and 
indicate their discrimination through a reaching movement 
using VR controller. For fast amplitude-modulated sounds, 
participants reached in front of them, aiming to touch the 
invisible virtual button placed above the central speaker. 
For slow amplitude-modulated sounds, participants reached 
instead the invisible virtual button placed below the same 
central speaker. As in the Spatial Training feedback proce-
dure, the sound stopped only when a correct response was 
provided. If they reached the wrong button, a visual feed-
back was displayed and the sound continued until the cor-
rect button was finally touched. In both trainings, the feeling 
of touch was induced by making the controller vibrate as 
soon as it collided with objects (speakers or invisible but-
tons).

Fig. 1  Experimental procedure and setting. A Schematic description 
of the overall crossover design. Each session (Session 1 and Session 
2) comprised two testing phases, separated by a training task: Non-
Spatial VR in blue and Spatial VR in green. B Testing phases. Left: 
schematic representation of the participant wearing the HMD and 
holding the VR controller during the head-pointing sound localiza-
tion task. The grey circles represent the 8 possible positions in which 
the real loudspeaker could be placed (shown here only for illustra-
tion purposes, as no visual cue to sound position was available in 
the VR environment). They were located 55  cm from the center of 
the subject’s head, at different azimuth (± 22.5° and ± 67.5° with 

respect to the midsagittal plane) and vertical positions (5° and − 15° 
with respect to the plane passing through the ears). Note that the real 
speaker was never visible in the VR environment. Right: schematic 
representation of the setting for the audio-visual cueing task (con-
ducted entirely outside VR). C Training phase. Left: close-up of the 
scene as visible inside the HMD from participant’s perspective. The 
virtual scenario comprised a room, 13 speakers and the VR control-
ler held in participants’ hands. Right: schematic representation of the 
participant wearing the HMD and holding the VR controller during 
the training tasks

http://links.lww.com/EANDH/B44
http://links.lww.com/EANDH/B44
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Fig. 2  Sound localization performance. A Absolute error along azi-
muth, as a function of trial in the Spatial training. Linear regression 
(solid line) with 95% confidence intervals (dashed lines). To the left, 
slope for each participant extracted from the LME model used in the 
analysis. B Absolute localization across the four testing sessions of the 
experimental design, separately for participants who completed the 
Spatial training on session 1 (grey) or session 2 (black line). Error bars 
represent standard errors. C Absolute localization error along azimuth 

dimension as a function of training (Spatial: right and Non-Spatial: 
left), phase (Pre: grey and Post: black) and hearing threshold in the 
contralateral ear (x axis). D Onset of the first head movements in sec-
onds as a function of phase (pre-training in black and post-training in 
grey) and trainings. Error bars represent standard errors. In A and C, 
circles represent participants who wore hearing aid in the contralateral 
ear (N = 10) and triangles who did not have hearing aid (N = 7)
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Statistical analysis

Linear mixed-effect modeling was used for all statistical 
analyses. Statistical analyses were run using R (version 
1.0.143). For the linear mixed-effect (LME) model, we 
used the R-packages emmean, lme4, lmerTest in R Studio 
[32, 33]. The R-package car was used to obtain deviance 
tables from the LME models. For further details about 
“Materials and method”, see [22] and Supplementary 
Results for details on each of the analyses described below.

To study head movements, we extracted three dependent 
variables: number of head rotations, head-rotation extent 
and head-rotation bias [18]. All the variables concern head 
rotations around the vertical axis. To calculate the number 
of head movements, we counted all the detected peaks of 
velocity in the head trace expect for movements smaller than 
2°, which were removed to exclude movements which are 
not indicators of spontaneous head intentional movements 
and not related to the task (i.e., micro-postural movements). 
To calculate head-rotation extent, we sum the absolute value 
of the rightward and leftward head rotation around the verti-
cal axis extremity, while to calculated head-rotation bias we 
computed the signed sum of these two values.

Results

VR training

Performance

The spatial discrepancy between the stimulated and the 
reached speaker (i.e., absolute localization error in azimuth, 
calculated as difference in absolute value between speaker 
and response position in azimuth in degrees) was on average 
24.0 degrees (SD = 14.0), with a numerical (but not-signif-
icant) bias toward the side contralateral to the CI (− 2.6°, 
SD = 7.6; t-test against zero: t(16) = − 1.40, p = 0.19). Impor-
tantly, absolute localization errors decreased across trials 
(X2 (1) = 4.37, p = 0.04), proving that participants improved 
localization abilities during the Spatial training (Table S1). 
Figure 2A shows changes in sound localization performance 
during the Spatial VR training across successive trials. The 
left panel depicts the overall change across participants; the 
right panel shows the value of the slope of the regression 
line for each individual participant, grouped as a function 
of whether they used a hearing aid in the ear contralateral 
to the CI or not. For all participants except two the slope 
was negative, i.e., their performance improved across trials.

We analyzed the influence of hearing asymmetries 
in hearing thresholds (PTA) between the implanted and 

non-implanted ear on errors during the Spatial training. 
We found that the larger the asymmetry (i.e., the higher 
hearing thresholds in the contralateral ear), the larger the 
localization error (X2 (1) = 75.55, p < 0.001). Moreover, 
the bias toward the contralateral ear emerged as a function 
of hearing asymmetry (X2 (1) = 4.26, p = 0.04). Yet, indi-
vidual asymmetries in hearing thresholds did not modulate 
the amount of improvement across time during the Spatial 
training (all ps > 0.11; see Table S2).

Performance in the Non-Spatial training was near ceil-
ing for all participants (mean number of errors = 1.5%). 
During the Non-Spatial training, participants were also 
faster in completing the trial compared to the Spatial train-
ing (Non-Spatial: mean ± SD = 2.5 ± 2.1 s; Spatial train-
ing: mean ± SD = 16.1 ± 10.2 s; t (16) = 11.41, p < 0.001 
on paired t-test).

Head movements

Head rotations were overall more frequent in the Spatial 
(6.51 ± 3.15) compared to the Non-Spatial VR training 
(1.5 ± 1.0, W = 152, p < 0.001 on Wilcoxon signed rank 
test). Likewise, the extent of head rotation movements 
was larger during the Spatial (123.9° ± 64.0°) compared 
to the Non-Spatial VR training (15.2° ± 45.2°, W = 153, 
p < 0.001 on Wilcoxon signed rank test). Finally, head 
rotations were more biased toward the side contralateral 
to the CI during the Spatial (− 27.5° ± 35.8°) compared to 
the Non-Spatial training (− 0.8° ± 7.8°, W = 17, p = 0.003 
on Wilcoxon signed rank test).

During the Spatial VR training, we observed that UCI 
users adapted their spontaneous head movements as a 
function of sound eccentricity as training trials progressed. 
Specifically, number of head rotations (X2 (1) = 6.22, 
p = 0.01) and head rotation extent (X2 (1) = 10.06, 
p = 0.002) diminished as a function of trial repetition, 
specifically when sounds were emitted by central sources 
(shown in grey in Fig. 3). This is compatible with partici-
pants requiring progressively fewer head movements and 
smaller extent of head rotation to identify central targets 
over time. We also observed that participants head-rota-
tion bias changed as a function of sound side (ipsilateral 
vs. contralateral with respect to the CI, X2 (2) = 1125.33, 
p < 0.001). When the sound was delivered on the same 
side as the CI, head rotations were markedly biased toward 
the non-implanted side (− 46.7° ± 32.6°), as if participants 
aimed to exposed their CI to the sound energy. By con-
trast, this biased exploration was not evident for sounds 
delivered on the side opposite to the CI (− 4.2° ± 38.2°) 
(see Tables S3 and S4).
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Effects beyond the trained task

Head‑pointing to sounds

Performance The Spatial VR training improved perfor-
mance (i.e., decreased absolute error in azimuth) more 
than the Non-Spatial training, irrespective of the session in 
which it was completed (Spatial—pre: 52.6° ± 26.2°; post: 
39.3° ± 23.5°; Non-Spatial training—pre: 43.8° ± 27.4°; 
post: 42.0° ± 27.6°, X2 (1) = 23.36, p < 0.001; see Fig. 2B). 
Interestingly, participants who performed the Spatial VR 
training in the first session (N = 9) maintained the improve-
ment after the 2-week washout: errors in the pre-training 
phase were smaller on session 2 compared to session 1 (X2 
(1) = 94.86, p < 0.001).

As documented above, individual asymmetries in hear-
ing thresholds between the implanted and non-implanted 
ear influenced performance: the higher the threshold in 
the contralateral ear, the higher the error (X2 (1) = 462.29, 
p < 0.001). The effect of Spatial training was higher for par-
ticipants who had higher threshold, as shown in Fig. 2C (X2 
(1) = 59.30, p < 0.001) (see Table S5). Participants who wore 
a hearing aid at ear contralateral to the CI are indicated by 
circles in Fig. 2.

Trainings also influenced the response bias in sound 
localization (i.e., the signed error). In the pre-training ses-
sion, no overall bias toward the side contralateral to the 
CI was measured (− 1.1°, SD = 39.2; t-test against zero: 
t(16) = 0.12, p = 0.91). Yet, when the response bias was stud-
ied as a function of hearing asymmetry we found that, after 
each of the training, the participants’ responses changed. 
The Non-Spatial training increased the bias toward the side 
of the CI, especially for participants with higher hearing 

asymmetry (X2 (1) = 4.18, p = 0.04). Conversely, the Spatial 
training decreased the bias for all participants, especially 
for participants with higher level of hearing asymmetry (X2 
(1) = 24.97, p < 0.001, see Table S6 for further details about 
the analysis).

To further examine the effect of training on head-point-
ing to sounds, we analyzed the direction of the first head-
rotation in each trial. This measure captures the immediate 
orienting response toward the sound. We found that partici-
pants discriminated the side of sounds source (ipsilateral: 
24.09 ± 39.42; contralateral; − 17.18 ± 47.19, X2 (1) = 58.84, 
p < 0.001). Their accuracy in discriminating sources’ side 
increased selectively after the Spatial training as compared 
to the Non-Spatial one (X2 (1) = 3.09, p = 0.05). Another 
head-movement variable worth considering is the onset of 
the first head movement of correct responses, which has 
been used as indicator of the ability to discriminate the side 
of the sound direction [22, 34]. Irrespective of VR train-
ing type, onset of the first head movement decreased after 
training (X2 (1) = 7.00, p = 0.008). Yet, this reduction was 
more pronounced after the Spatial (before: 1.16 ± 0.46; 
after: 0.98 ± 0.35; t = 7.36, p < 0.001), as compared to the 
Non-Spatial training (before: 1.04 ± 0.41; after: 0.98 ± 0.35; 
t = 2.65, p = 0.008; X2 (1) = 11.92, p < 0.001). This reduc-
tion was more pronounced for participants who have 
higher asymmetry (X2 (1) = 22.08, p < 0.001) (Fig. 2D, see 
Table S7).

Head movements In order to describe changes in head 
movement after training, we measured number of head rota-
tions, head-rotation extent, head-rotation bias and direction 
of the first head movements during the sound (see Analy-
sis for a description of these variables). We report here the 

Fig. 3  Head rotation during the 
Spatial training. A Number of 
head movements across trial 
repetition as a function of sound 
eccentricity (central positions in 
grey and peripherical positions 
in black). B Extent of head 
rotation across trial repetition as 
a function of sound eccentricity 
(central positions in grey and 
peripherical positions in black)
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main findings, but see Supplementary Materials for further 
details (Table S8).

Participants changed their head-related behavior after 
each of the training. In the post-training session, they 
increased the number of movements (Pre: 1.90 ± 0.65; Post: 
2.06 ± 0.52, X2 (1) = 5.16, p = 0.02) and increased head-
rotation extent (Pre: 99.21 ± 48.77; Post: 101.35 ± 48.39, X2 
(1) = 3.78, p = 0.05). Importantly, only after the VR Spatial 
training they turned their heads toward the contralateral side 
of the implant to bring the implanted ear toward the sounds: 
head-bias toward the contralateral space increased more 
after the Spatial (Pre: − 8.84 ± 50.54; Post: − 30.11 ± 51.05, 
t = 5.42, p < 0.001) compared to the Non-Spatial train-
ing (Pre: − 15.07 ± 51.05; Post: − 18.35 ± 54.20, t = 0.84, 
p = 0.40, X2 (1) = 10.48, p = 0.001) (Fig. 4).

Head movements also changed as a function of hearing 
asymmetry. Participants with greater hearing asymmetry 
increased their head-rotation extent after the Spatial com-
pared to Non-Spatial VR training more than participants 
with less hearing asymmetry (X2 (1) = 18.03, p < 0.001). 
Likewise, they directed their first head movement toward 
the contralateral space after the Spatial, but not after the 
Non-Spatial VR training (X2 (1) = 15.35, p < 0.001).

Audio‑visual attention orienting task When people with 
normal hearing are asked to make a visual discrimination 
(here on the elevation of the visual target, up vs. down), 
they are faster when the visual target is preceded by a sound 
located in the same (congruent) vs. opposite side of the 
space (incongruent) [35, 36]. This well-documented behav-
ioral effect reveals to what extent a sound can capture audi-
tory and visual attention to its location in space, resulting 
in perceptual processing benefits across sensory modalities. 

Notably, UCI participants tested in the present study did 
not benefit of the congruency between the sound and the 
visual target, as revealed by the absence of a congruency 
effect (X2 (1) = 1.03, p = 0.31), nor this effect emerged after 
training (X2 (1) = 0.41, p = 0.52). The only change between 
pre- and post-training session was in the overall speed of 
the response, irrespective of the congruency between the 
sound and the visual target (X2 (1) = 9.73, p = 0.002), which 
is compatible with a practice effect. Intriguingly, the dif-
ference in reaction time between congruent and incongru-
ent conditions (often termed audio-visual cueing, [35, 36]) 
changed as a function of hearing asymmetry: the lower 
the asymmetry, the higher is the cueing effect. After both 
training paradigms, audio-visual cueing increased specifi-
cally for people who had higher asymmetry (X2 (1) = 4.49, 
p = 0.03, see Table S9).

Discussion

We observed that UCI users can improve their sound locali-
zation abilities, despite the substantial impoverishment of 
the available auditory cues. Thus, acoustic space perception 
improvement is possible also for people using a single CI, at 
least in the experimental context we have examined. Specifi-
cally, we showed that sound localization of UCI users can 
improve across trials while engaged in a Spatial VR train-
ing and that error reduction extended beyond the trained 
task. Localization errors decreased after training, as com-
pared to before training, and this decrement (about 13°) was 
greater after the Spatial compared to the Non-Spatial VR 
training. Further analyses revealed that hearing asymmetry 
(as described by PTA at the non-implanted ear) modulated 
training benefit. Generalization effect of Spatial training was 
more pronounced for participants with higher hearing asym-
metry (i.e., higher hearing threshold at the contralateral ear). 
Finally, the Spatial VR training had no impact on the audio-
visual orienting task, which involves the ability to localize 
sounds sources indirectly. A possible explanation for the lack 
of this effect is that active listening was prevented during 
this task as, for experimental reasons, it was performed using 
a chin-rest. Although this test represents a firm attempt to 
test the generalization effect, further studies are needed to 
investigate the transferability of training effects to tasks in 
which the ability to localize sounds is implicitly involved.

A previous study by Luntz and colleagues already sug-
gested that training UCI spatial hearing skill is possible, but 
this early report suffered from methodological limitations. 
They tested only few participants (N = 9) and the spatial 
positions of targets did not vary between the test and training 
situations [20]. The present study represents a step forward 
compared to previous literature because a larger number of 
UCI users were involved and, most importantly, we tested 

Fig. 4  Head-rotation bias during the Head-pointing to sounds task, as 
a function of training (Spatial Training and Non-Spatial training) and 
Phase (Before training in black and post-training in grey). Error bars 
represent standard errors
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the effects of training also in a different sound localization 
task to assess generalization. Furthermore, in the present 
study we adopted a within-subject experimental design, 
which gave us the opportunity to directly compare the effects 
of the experimental training with that of the control training 
in the exact same participants. We also demonstrated the 
possibility of improvement using a training of only 156 tri-
als, with is considerably shorter compared to previous stud-
ies (four to eight training sessions over a period of 6.5 weeks 
in [20]; or 8 sessions spanning over 4 weeks as in [23]).

Interestingly, our short training produced effects also in a 
sound localization task entailing different sound positions, 
a different response method (i.e., use of the head as pointer 
instead of reaching sound sources using the hand), and less 
visual cues available (i.e., potential sounds sources invisible 
during the test). The difference between the trained task and 
the test task (i.e., head-pointing to sound) is clearly evident 
also in the different performance achieved by the partici-
pants in the two sound localization procedures. While in the 
trained task, the absolute error for participants in the Spatial 
training group was 24° on average, in the test task, they 
started from an average absolute error of 52.6° to achieve a 
performance of 39.3° at the end of training. This difference 
is likely the consequence of the different priors about sound 
position in the two procedures: during training, all possible 
sound positions were visually identified, whereas during test, 
no visual cue helps participants to locate the sound sources.

This result highlights the importance of assessing gen-
eralization effect when testing the efficacy of training pro-
tocols (see also [37]). In addition, it encourages to pursue 
testing objectives which deviate even more from the training 
task, in order to fully examine the potentials of the gener-
alization processes (e.g., using words or syllables as stim-
uli, see [23]). Notably, our crossover experimental design 
provides initial evidence of relatively long-lasting effects. 
Participants who performed the Spatial VR training in the 
first session maintained the improvement after the 2-week 
washout. This finding corroborate recent evidence in BCI 
users that also documented a persistent effect after 2 weeks 
[22], and prompts the implement longitudinal experimen-
tal designs to test this aspect thoroughly in future studies. 
Despite these encouraging results, it is important to note 
that the uCI users we tested still showed a limited sound 
localization ability (their errors are still around 40° after 
the training). Hence, it should be considered as a further 
opportunity for improvement, but not an alternative to other 
solutions that could improve spatial hearing (e.g., bilateral 
implantation).

Given the large interindividual variability in terms of 
hearing experience, we investigated if hearing asymmetry 
influenced sound localization performance and training 
effects. We observed an increase in the effectiveness of the 
Spatial training for UCI users with higher levels of hearing 

asymmetry. This finding supports the idea that it is possible 
to improve localization of sounds even when auditory cues 
available are primarily monaural intensity cues, and opens 
the possibility to offer a similar training to people with uni-
lateral hearing loss. Since the larger training effectiveness 
was documented in individuals who primarily listen mon-
aurally using their CI, rather than individuals with bimodal 
experience providing binaural cues, this finding suggest that 
our training primarily changed the way in which participants 
exploited the available intensity monaural cues (but see [22] 
for evidence showing the efficacy of the Spatial training BCI 
users). In the present study, however, the analyses that exam-
ined the role of hearing asymmetry were exploratory. The 
recruitment of participants was not conducted taking this 
aspect into account, as it was not included in our original 
research questions, hence we could not fully control this 
dependent variable (i.e., hearing asymmetry level). For this 
reason, we investigated asymmetry along a continuum, con-
sidering for each participant the hearing threshold at the ear 
contralateral to the CI. Future studies should address this 
aspect more systematically, for instance by manipulating 
the degree of asymmetry of the participants’ hearing or by 
considering separately patients with effective bimodal expe-
rience (i.e., CI plus an effective hearing aid) and patients 
with a clear unilateral hearing loss using a CI. Furthermore, 
even if it was beyond the scope of the present work, a fur-
ther element which may play a role when training acoustic 
space perception is deafness onset. Investigating this aspect 
remains a key question for future research.

A further contribution of the present work concerns the 
study of head movements’ behavior. First, during training, 
participants requiring progressively fewer head movements 
to perform the task and reduced the extent of their head 
rotation when responding to central targets. This corrobo-
rates the observation of a trial-by-trial improvement, that we 
described above in terms of progressive reduction of per-
formance errors. Second, after training, head movements 
changed between the pre- and post-training measurements. 
When we focused on the first head-movement onset dur-
ing the head-pointing to sounds test, we observed that the 
correct direction of the sound was identified faster after the 
Spatial compared to the Non-Spatial VR training. Third, 
participants also started to spontaneously implement novel 
head-movement behaviors after the training. Specifically, 
they increased the number of movements and explored a 
larger portion of space with the head. This was particularly 
evident after the Spatial VR training, hinting at the possi-
bility that they moved the head strategically to bring their 
CI toward the sounds. This strategy might have favored the 
extraction and use of monaural intensity variation at the 
CI—pointing again to an advantage of the Spatial training 
mostly related to the use of monaural cues available at the 
unilateral CI. This strategy has been already documented in 
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previous studies testing people with normal hearing in mon-
aural listening conditions [18, 24]. These findings highlight 
the importance of moving the head and engaging in active 
and exploratory listening behavior when aiming to improve 
sound localization abilities [25, 26, 38, 39] and to foster 
relearning processes [24]. They also point to the importance 
of measuring head movements when assessing sound locali-
zation skills, and the notion that promoting head-orienting 
strategies may play a key role in protocols aimed at training 
sound localization.

Conclusion

Using a novel VR training based on reaching to sounds, 
audio-visual feedback and free head movements during 
listening, we documented that training sound localization 
ability in UCI users is possible. While these observations 
emerged in laboratory setting, they have direct translational 
implications for the clinical context because the observed 
improvements did not result from changes in hearing set-
tings and hearing thresholds of the participants. Instead, 
they were likely the result of recalibration processes and 
self-regulatory behavior, triggered by a combination of mul-
tisensory feedback and actions directed to sounds (with the 
hand and the head). In turn, these allowed participants to 
better exploit the residual auditory cues when processing 
auditory space.
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