Skip to main content

Advertisement

Log in

Aberrant dynamic functional network connectivity in vestibular migraine patients without peripheral vestibular lesion

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate changes in dynamic functional network connectivity (FNC) in patients with vestibular migraine (VM) and explore their relationship with clinical manifestations.

Methods

Resting-state functional magnetic resonance imaging (rs-fMRI) data were scanned from 35 VM patients without peripheral vestibular lesion and 40 age-, sex- and education-matched healthy controls (HC). Independent component analysis (ICA), sliding window (SW) and k-means clustering analysis were performed to explore the difference in FNC and temporal characteristics between two groups. Additionally, Pearson’s partial correlation analysis was adopted to investigate the relationship between clinical manifestations and rs-fMRI results in patients with VM.

Results

Compared with HC, patients with VM showed increased FNC in pairs of extrastriate visual network (eVN)-ventral attention network (VAN), eVN-default mode network (DMN) and eVN-left frontoparietal network (lFPN), and exhibited decreased FNC in pairs of VAN-auditory network (AuN). The altered FNC was correlated with clinical manifestations of patients with VM. Additionally, we found increased mean dwell time and fractional windows in state 2 in VM patients compared with HC. Mean dwell time was positively correlated with headache impact test-6 (HIT-6) scores, fractional windows was positively associated with dizziness handicap inventory (DHI) scores.

Conclusion

Our results indicated that patients with VM showed altered FNC primarily between sensory networks and networks related to cognitive, emotional and attention implementation, with more time spent in a state characterized by positive FNC between sensor cortex system and dorsal attention network (DAN). These findings could help reinforce the understanding on the neural mechanisms of VM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lempert T, Mv B (2019) Vestibular migraine. Neurol Clin 37(4):695–706

    Article  PubMed  Google Scholar 

  2. Stolte B, Holle D, Naegel S, Diener HC, Obermann M (2015) Vestibular migraine. Cephalalgia 35(3):262–270

    Article  PubMed  Google Scholar 

  3. Sohn JH (2016) Recent advances in the understanding of vestibular migraine. Behav Neurol 2016:1801845

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hsu LC, Wang SJ, Fuh JL (2011) Prevalence and impact of migrainous vertigo in mid-life women: a community-based study. Cephalalgia 31(1):77–83

    Article  PubMed  Google Scholar 

  5. Cho SJ, Kim BK, Kim BS, Kim JM, Kim SK, Moon HS et al (2016) Vestibular migraine in multicenter neurology clinics according to the appendix criteria in the third beta edition of the international classification of headache disorders. Cephalalgia 36(5):454–462

    Article  PubMed  Google Scholar 

  6. Wang S, Wang H, Zhao D, Liu X, Yan W, Wang M, Zhao R (2019) Grey matter changes in patients with vestibular Migraine. Clin Radiol 74(11):898.e1-898.e5

    Article  CAS  PubMed  Google Scholar 

  7. Messina R, Rocca MA, Colombo B, Teggi R, Falini A, Comi G, Filippi M (2017) Structural brain abnormalities in patients with vestibular migraine. J Neurol 264(2):295–303

    Article  PubMed  Google Scholar 

  8. Zhe X, Gao J, Chen L, Zhang DS, Tang M, Bai FX et al (2020) Altered structure of the vestibular cortex in patients with vestibular migraine. Brain Behav 10(4):e01572

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhe X, Zhang XL, Chen L, Zhang L, Tang M, Zhang DS et al (2021) Altered gray matter volume and functional connectivity in patients with vestibular migraine. Front Neurosci 15:683802

    Article  PubMed  PubMed Central  Google Scholar 

  10. Russo A, Marcuccio L, Conte F, Conte F, Caiazo G, Giordano A et al (2015) No evidence of microstructural changes in patients with vestibular migraine: a diffusion tensor tract based spatial statistic (TBSS) study. J Headache Pain 16(Suppl 1):A161

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shin JH, Kim YK, Kim HJ, Kim JS (2014) Altered brain metabolism in vestibular migraine: comparison of interictal and ictal findings. Cephalalgia 34(1):58–67

    Article  PubMed  Google Scholar 

  12. Teggi R, Colombo B, Rocca MA, Bondi S, Messina R, Comi G, Filippi M (2016) A review of recent literature on functional MRI and personal experience in two cases of definite vestibular migraine. Neurol Sci 37(9):1399–1402

    Article  PubMed  Google Scholar 

  13. Russo A, Marcelli V, Esposito F, Corvino V, Marcuccio L, Giannone A et al (2014) Abnormal thalamic function in patients with vestibular migraine. Neurology 82(23):2120–2126

    Article  PubMed  Google Scholar 

  14. Zhe Z, Chen L, Zhang DS, Tang M, Gao J, Ai K et al (2021) Cortical areas associated with multisensory integration showing altered morphology and functional connectivity in relation to reduced life quality in vestibular migraine. Front Hum Neurosci 15:717130

    Article  PubMed  PubMed Central  Google Scholar 

  15. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li ZY, Si LH, Shen B, Yang X (2022) Altered brain network functional connectivity patterns in patients with vestibular migraine diagnosed according to the diagnostic criteria of the Bárány Society and the International Headache Society. J Neurol 269(6):3026–3036

    Article  PubMed  Google Scholar 

  17. Hutchison RM, Womelsdorf T, Allen EA, Bandettinim PA, Calhoun VD, Corbetta M et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Article  PubMed  Google Scholar 

  18. Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, Kheilholz S et al (2020) Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw Neurosci 4(1):30–69

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li FF, Lu LY, Shang SA, Chen HY, Wang P, Muthaiah VP et al (2021) Altered static and dynamic functional network connectivity in post-traumatic headache. J Headache Pain 22(1):137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fu ZN, Caprihan A, Chen JY, Du YH, Adair JC et al (2019) Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 40(11):3203–3221

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bonkhoff AK, Espinoza FA, Gazula H, Vergara VM, Hensel L, Michely J et al (2020) Acute ischaemic stroke alters the brain’s preference for distinct dynamic connectivity states. Brain 143(5):1525–1540

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tu YH, Fu ZN, Zeng F, Maleki N, Lan L, Li ZJ et al (2019) Abnormal thalamocortical network dynamics in migraine. Neurology 92(23):e2706–e2716

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zou Y, Tang W, Qiao X, Li J (2021) Aberrant modulations of static functional connectivity and dynamic functional network connectivity in chronic migraine. Quant Imaging Med Surg 11(6):2253–2264

    Article  PubMed  PubMed Central  Google Scholar 

  24. Headache Classification Committee of the International Headache Society (2018) The international classification of headache disorders, 3rd edition. Cephalalgia 38(1):1–211

    Article  Google Scholar 

  25. Di X, Biswal BB (2015) Dynamic brain functional connectivity modulated by resting-state networks. Brain Struct Funct 220(1):37–46

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bridge H, Bell AH, Ainsworth M, Sallet J, premereur E, Ahmed B et al (2019) Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. Elife 8:e42325

    Article  PubMed  PubMed Central  Google Scholar 

  27. Faragó P, Tóth E, Kocsis K, Kincses B, Veréb D, Király A et al (2019) Altered resting state functional activity and microstructure of the white matter in migraine with aura. Front Neurol 10:1039

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Su J, Wang M, Zhao Y, Zhang QT, Yao Q et al (2017) The posterior insula shows disrupted brain functional connectivity in female migraineurs without aura based on brainnetome atlas. Sci Rep 7(1):16868

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang SQ, Wang HP, Liu XJ, Yan WJ, Wang MH, Zhao RL (2021) A resting-state functional MRI study in patients with vestibular migraine during interictal period. Acta Neurol Belg. https://doi.org/10.1007/s13760-021-01639-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447

    Article  CAS  PubMed  Google Scholar 

  32. Buckner RL, Andrews-Hanna EJR, Schacter DL (2008) The brain’s default network. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  33. Chou KH, Kuo CY, Liang CS, Lee PL, Tsai CK, Tsai CL et al (2021) Shared patterns of brain functional connectivity for the comorbidity between migraine and insomnia. Biomedicines 9(10):1420

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li KZ, Si LH, Cui B, Ling X, Shen B, Yang X (2020) Altered intra- and inter-network functional connectivity in patients with persistent postural-perceptual dizziness. Neuroimage Clin 26:102216

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klingner GM, Volk GF, Brodoehl S, Witte OW, Guntinas-Lichius O (2014) Disrupted functional connectivity of the default mode network due to acute vestibular deficit. Neuroimage Clin 6:109–114

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huber J, Flanagin VL, Popp P, Zu Eulenburg P, Dieterich M (2020) Network changes in patients with phobic postural vertigo. Brain Behav 10(6):e01622

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trofimova A, Smith JL, Ahluwalia V, Hurtado J, Gore RK, Allen JW (2021) Alterations in resting-state functional brain connectivity and correlations with vestibular/ocular-motor screening measures in postconcussion vestibular dysfunction. J Neuroimaging 31(2):277–286

    Article  PubMed  Google Scholar 

  38. Boegle R, Stephan T, Ertl M, Glasauer S, Dieterich M (2016) Magnetic vestibular stimulation modulates default mode network fluctuations. Neuroimage 127:409–421

    Article  PubMed  Google Scholar 

  39. Amin FM, Hougaard A, Magon S, Asghar MS, Ahmad NN, Rostrup E et al (2016) Change in brain network connectivity during PACAP38-induced migraine attacks: a resting-state functional MRI study. Neurology 86(2):180–187

    Article  PubMed  Google Scholar 

  40. Coppola G, Renzo AD, Tinelli E, Lorenzo C, Lorenzo GD, Parisi V et al (2016) Thalamo-cortical network activity during spontaneous migraine attacks. Neurology 87(20):2154–2160

    Article  PubMed  Google Scholar 

  41. Shen W, Tu Y, Gollub RL, Ortiz A, Napadow V, Yu S et al (2019) Visual network alterations in brain functional connectivity in chronic low back pain: a resting state functional connectivity and machine learning study. Neuroimage Clin 22:101775

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hauck M, Metzner S, Rohlffs F, Lorenz J, Engel AK (2013) The influence of music and music therapy on pain-induced neuronal oscillations measured by magnetencephalography. Pain 154(4):539–547

    Article  PubMed  Google Scholar 

  43. Ahrens MM, Veniero D, Freund IM, Harvey M, Thut G (2019) Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex 117:168–181

    Article  PubMed  Google Scholar 

  44. Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20(2):150–159

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coppola G, DiRenzo A, Tinelli E, Lepre C, DiLorenzo C, DiLorenzo G et al (2016) Thalamo-cortical network activity between migraine attacks: insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 17(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mickleborough MJS, Ekstrand C, Gould L, Lorentz EJ, Ellchuk T, Babyn P, Boroesky R (2016) Attentional network differences between migraineurs and non-migraine controls: fMRI evidence. Brain Topogr 29(3):419–428

    Article  PubMed  Google Scholar 

  47. Wei HL, Chen YC, Yu YS, Guo X, Zhou GP, Zhou QQ et al (2021) Aberrant activity within auditory network is associated with psychiatric comorbidities in interictal migraineurs without aura. Brain Imaging Behav 15(5):2464–2471

    Article  PubMed  Google Scholar 

  48. Oh SY, Boegle R, Ertl M, Stephan T, Dieterich M (2018) Multisensory vestibular, vestibular-auditory, and auditory network effects revealed by parametric sound pressure stimulation. Neuroimage 176:354–363

    Article  PubMed  Google Scholar 

  49. Witt ST, van Ettinger-Veenstra H, Salo T, Riedel MC, Laird AR (2021) What executive function network is that? an image-based meta-analysis of network labels. Brain Topogr 34(5):598–607

    Article  PubMed  Google Scholar 

  50. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506

    Article  PubMed  Google Scholar 

  51. Li ZJ, Lan L, Zeng F, Makris N, Hwang J, Guo TP et al (2017) The altered right frontoparietal network functional connectivity in migraine and the modulation effect of treatment. Cephalalgia 37(2):161–176

    Article  PubMed  Google Scholar 

  52. Androulakis XM, Krebs KA, Jenkins C, Maleki N, Finkel AG, Rorden C, Newman R (2018) Central executive and default mode network intranet work functional connectivity patterns in chronic migraine. J Neurol Disord 6(5):393

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fiorenzato E, Strafella AP, Kim J, Schifano R, Weis L, Antonini A, Biundo R (2019) Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142(9):2860–2872

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by grants from the Xuzhou Municipal Health Commission (No. XWKYHT20200010) and Xuzhou Science and Technology Bureau (No. KC20077; No. KC18161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijie Xiao or Liangqun Rong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, H., Wei, Xe. et al. Aberrant dynamic functional network connectivity in vestibular migraine patients without peripheral vestibular lesion. Eur Arch Otorhinolaryngol 280, 2993–3003 (2023). https://doi.org/10.1007/s00405-023-07847-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07847-8

Keywords

Navigation