Skip to main content

Advertisement

Log in

A comparative analysis of treatment efficacy in intermediate-risk thyroid cancer

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the efficacy of different treatment combinations on patient survival in intermediate-risk differentiated thyroid cancer (DTC).

Methods

The 2004–2017 National Cancer Database was queried for intermediate-risk papillary (PTC), follicular (FTC), or Hurthle cell (HTC) thyroid cancer patients. Four treatments were analyzed using Kaplan Meier and multivariable Cox regression: surgery, surgery with adjuvant radioiodine ablation (S + RAI), surgery with adjuvant thyroid-stimulating hormone suppression therapy (S + THST), and S + RAI + THST. Kaplan–Meier and multivariable Cox proportional-hazards analyses evaluated treatment-associated overall survival (OS).

Results

Of 65,736 patients, 72.2% were female and the average age was 45.4 ± 15.4 years. The 10-year OS rates for PTC, FTC, and HTC were 93.2%, 85.2%, and 78.5%, respectively. S + RAI + THST exhibited higher OS than surgery alone and S + RAI (all p < 0.05). Compared to surgery alone, S + RAI + THST demonstrated reduced mortality in PTC (Hazard Ratio [HR]: 0.628, p < 0.001), FTC (HR: 0.490, p < 0.001), and HTC (HR: 0.520, p = 0.006). Similarly, adjuvant RAI + THST reduced mortality regardless of lymphovascular invasion (HR: 0.490, p < 0.001), N1a (HR: 0.570, p < 0.001) or N1b metastasis (HR: 0.621, p < 0.001), or positive margin status (HR: 0.572, p < 0.001).

Conclusions

Treatment combinations demonstrated varying efficacies in intermediate-risk DTC depending on histology and tumor characteristics, with S + RAI + THST exhibiting the greatest treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

All data analysed during this study are available from the corresponding author on reasonable request.

References

  1. Noone A-M, Cronin KA, Altekruse SF, Howlader N, Lewis DR, Petkov VI, Penberthy L (2017) Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol Biomark Prev a Publ Am Assoc Cancer Res cosponsored by Am Soc Prev Oncol 26:632–641

    Google Scholar 

  2. Powers AE, Marcadis AR, Lee M, Morris LGT, Marti JL (2019) Changes in trends in thyroid cancer incidence in the United States, 1992 to 2016. JAMA 322:2440–2441

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R (2013) Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013:965212

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vini L, Harmer C (2002) Management of thyroid cancer. Lancet Oncol 3:407–414

    Article  PubMed  Google Scholar 

  5. Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  6. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26:1–133

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lamartina L, Durante C, Filetti S, Cooper DS (2015) Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab 100:1748–1761

    Article  CAS  PubMed  Google Scholar 

  8. Chow S-M, Yau S, Kwan C-K, Poon PCM, Law SCK (2006) Local and regional control in patients with papillary thyroid carcinoma: specific indications of external radiotherapy and radioactive iodine according to T and N categories in AJCC 6th edition. Endocr Relat Cancer 13:1159–1172

    Article  PubMed  Google Scholar 

  9. Hovens GC, Stokkel MP, Kievit J, Corssmit EP, Pereira AM, Romijn JA, Smit JWA (2007) Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab 92:2610–2615

    Article  CAS  PubMed  Google Scholar 

  10. McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ (2002) Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med 34:554–564

    Article  CAS  PubMed  Google Scholar 

  11. Sugitani I, Fujimoto Y (2011) Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery 150:1250–1257

    Article  PubMed  Google Scholar 

  12. Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, Wilson PW, Benjamin EJ, D’Agostino RB (1994) Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med 331:1249–1252

    Article  CAS  PubMed  Google Scholar 

  13. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, Sturgeon C (2007) Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 246:374–375

    Article  Google Scholar 

  14. Carhill AA, Litofsky DR, Ross DS et al (2015) Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987–2012. J Clin Endocrinol Metab 100:3270–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA (2015) Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab 100:1529–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ibrahimpasic T, Nixon IJ, Palmer FL, Whitcher MM, Tuttle RM, Shaha A, Patel SG, Shah JP, Ganly I (2012) Undetectable thyroglobulin after total thyroidectomy in patients with low- and intermediate-risk papillary thyroid cancer–is there a need for radioactive iodine therapy? Surgery 152:1096–1105

    Article  PubMed  Google Scholar 

  17. Ballal S, Soundararajan R, Garg A, Chopra S, Bal C (2016) Intermediate-risk differentiated thyroid carcinoma patients who were surgically ablated do not need adjuvant radioiodine therapy: long-term outcome study. Clin Endocrinol (Oxf) 84:408–416

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Cai Y, Zheng L, Zhang Z, Jiang N (2017) Postoperative radioactive iodine-131 ablation is not necessary among patients with intermediate-risk differentiated thyroid carcinoma: a population-based study. Hell J Nucl Med 20:3–10

    PubMed  Google Scholar 

  19. Klubo-Gwiezdzinska J, Auh S, Gershengorn M et al (2019) Association of thyrotropin suppression with survival outcomes in patients with intermediate- and high-risk differentiated thyroid cancer. JAMA Netw open 2:e187754

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brabant G (2008) Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metab 93:1167–1169

    Article  CAS  PubMed  Google Scholar 

  21. Thomas CGJ (1991) Role of thyroid stimulating hormone suppression in the management of thyroid cancer. Semin Surg Oncol 7:115–119

    Article  PubMed  Google Scholar 

  22. Mazzaferri EL (1987) Papillary thyroid carcinoma: factors influencing prognosis and current therapy. Semin Oncol 14:315–332

    CAS  PubMed  Google Scholar 

  23. Lamartina L, Montesano T, Falcone R et al (2019) Is it worth suppressing TSH in low- and intermediate-risk papillary thyroid cancer patietns before the first disease assessment? Endocr Pract 25:165–169

    Article  PubMed  Google Scholar 

  24. Taïeb D, Sebag F, Farman-Ara B et al (2010) Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J Clin Endocrinol Metab 95:3283–3290

    Article  PubMed  Google Scholar 

  25. Rosario PW, Furtado MS, Mineiro Filho AFC, Lacerda RX, Calsolari MR (2012) Value of repeat stimulated thyroglobulin testing in patients with differentiated thyroid carcinoma considered to be free of disease in the first year after ablation. Thyroid 22:482–486

    Article  CAS  PubMed  Google Scholar 

  26. Haigh PI, Urbach DR (2005) The treatment and prognosis of Hürthle cell follicular thyroid carcinoma compared with its non-Hürthle cell counterpart. Surgery 138:1152–1158

    Article  PubMed  Google Scholar 

  27. Kure S, Ohashi R (2020) Thyroid Hürthle cell carcinoma: clinical, pathological, and molecular features. Cancers (Basel). https://doi.org/10.3390/cancers13010026

    Article  PubMed  Google Scholar 

  28. Mai KT, Thomas J, Yazdi HM, Commons AS, Lamba M, Stinson AW (2004) Pathologic study and clinical significance of Hürthle cell papillary thyroid carcinoma. Appl Immunohistochem Mol Morphol AIMM 12:329–337

    Article  PubMed  Google Scholar 

  29. Besic N, Vidergar-Kralj B, Frkovic-Grazio S, Movrin-Stanovnik T, Auersperg M (2003) The role of radioactive iodine in the treatment of Hürthle cell carcinoma of the thyroid. Thyroid 13:577–584

    Article  CAS  PubMed  Google Scholar 

  30. Wenter V, Jellinek A, Unterrainer M et al (2019) Long-term outcome of rare oncocytic papillary (Hürthle cell) thyroid carcinoma following (adjuvant) initial radioiodine therapy. Eur J Nucl Med Mol Imaging 46:2526–2535

    Article  CAS  PubMed  Google Scholar 

  31. Ros P, Rossi DL, Acebrón A, Santisteban P (1999) Thyroid-specific gene expression in the multi-step process of thyroid carcinogenesis. Biochimie 81:389–396

    Article  CAS  PubMed  Google Scholar 

  32. Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G (1994) Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res 54:4744–4749

    CAS  PubMed  Google Scholar 

  33. Barzon L, Boscaro M, Pacenti M, Taccaliti A, Palù G (2004) Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse. Int J Cancer 110:914–920

    Article  CAS  PubMed  Google Scholar 

  34. Momesso DP, Vaisman F, Yang SP, Bulzico DA, Corbo R, Vaisman M, Tuttle RM (2016) Dynamic risk stratification in patients with differentiated thyroid cancer treated without radioactive iodine. J Clin Endocrinol Metab 101:2692–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Qahtani KH, Al Asiri M, Tunio MA, Aljohani NJ, Bayoumi Y, Fatani H, AlHadab A (2015) Adjuvant Radioactive iodine 131 ablation in papillary microcarcinoma of thyroid: Saudi Arabian experience [corrected]. J Otolaryngol Head Neck Surg Le J d’oto-rhino-laryngologie Chir cervico-faciale 44:51

    Google Scholar 

  36. Wang LY, Ganly I (2016) Nodal metastases in thyroid cancer: prognostic implications and management. Future Oncol 12:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nam SH, Bae MR, Roh J-L, Gong G, Cho K-J, Choi S-H, Nam SY, Kim SY (2018) A comparison of the 7th and 8th editions of the AJCC staging system in terms of predicting recurrence and survival in patients with papillary thyroid carcinoma. Oral Oncol 87:158–164

    Article  PubMed  Google Scholar 

  38. Nixon IJ, Wang LY, Palmer FL, Tuttle RM, Shaha AR, Shah JP, Patel SG, Ganly I (2014) The impact of nodal status on outcome in older patients with papillary thyroid cancer. Surgery 156:137–146

    Article  PubMed  Google Scholar 

  39. Randolph GW, Duh Q-Y, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, Tufano RP, Tuttle RM (2012) The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 22:1144–1152

    Article  PubMed  Google Scholar 

  40. Sakorafas GH, Koureas A, Mpampali I, Balalis D, Nasikas D, Ganztzoulas S (2019) Patterns of lymph node metastasis in differentiated thyroid cancer; clinical implications with particular emphasis on the emerging role of compartment-oriented lymph node dissection. Oncol Res Treat 42:143–147

    Article  PubMed  Google Scholar 

  41. Ghossein R (2009) Update to the College of American Pathologists reporting on thyroid carcinomas. Head Neck Pathol 3:86–93

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong CM, Ahn B-C, Park JY, Jeong SY, Lee S-W, Lee J (2012) Prognostic implications of microscopic involvement of surgical resection margin in patients with differentiated papillary thyroid cancer after high-dose radioactive iodine ablation. Ann Nucl Med 26:311–318

    Article  PubMed  Google Scholar 

  43. Wang LY, Ghossein R, Palmer FL, Nixon IJ, Tuttle RM, Shaha AR, Shah JP, Patel SG, Ganly I (2015) Microscopic positive margins in differentiated thyroid cancer is not an independent predictor of local failure. Thyroid 25:993–998

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kluijfhout WP, Pasternak JD, Kwon JS, Lim J, Shen WT, Gosnell JE, Khanafshar E, Duh Q-Y, Suh I (2016) Microscopic positive tumor margin does not increase the risk of recurrence in patients with T1–T2 well-differentiated thyroid cancer. Ann Surg Oncol 23:1446–1451

    Article  PubMed  Google Scholar 

  45. Kamel Hasan O, De Brabandere S, Rachinsky I, Laidley D, MacNeil D, Van Uum S (2020) Microscopic positive tumor margin increases risk for disease persistence but not recurrence in patients with stage T1-T2 differentiated thyroid cancer. J Thyroid Res 2020;2020:5287607. https://doi.org/10.1155/2020/5287607

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under award number T32GM008620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yarah M. Haidar.

Ethics declarations

Conflict of interest

ECK is a consultant for Stryker ENT (Kalamazoo, MI).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, A., Nguyen, T., Goshtasbi, K. et al. A comparative analysis of treatment efficacy in intermediate-risk thyroid cancer. Eur Arch Otorhinolaryngol 280, 2525–2533 (2023). https://doi.org/10.1007/s00405-023-07832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07832-1

Keywords

Navigation