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Abstract
Objectives Enlarged vestibular aqueduct (EVA) is a common finding associated with inner ear malformations (IEM). 
However, uniform radiologic definitions for EVA are missing and various 2D-measurement methods to define EVA have 
been reported. This study evaluates VA volume in different types of IEM and compares 3D-reconstructed VA volume to 
2D-measurements.
Methods A total of 98 high-resolution CT (HRCT) data sets from temporal bones were analyzed (56 with IEM; [cochlear 
hypoplasia (CH; n = 18), incomplete partition type I (IPI; n = 12) and type II (IPII; n = 11) and EVA (n = 15)]; 42 controls). 
VA diameter was measured in axial images. VA volume was analyzed by software-based, semi-automatic segmentation and 
3D-reconstruction. Differences in VA volume between the groups and associations between VA volume and VA diameter 
were assessed. Inter-rater-reliability (IRR) was assessed using the intra-class-correlation-coefficient (ICC).
Results Larger VA volumes were found in IEM compared to controls. Significant differences in VA volume between patients 
with EVA and controls (p < 0.001) as well as between IPII and controls (p < 0.001) were found. VA diameter at the midpoint 
(VA midpoint) and at the operculum (VA operculum) correlated to VA volume in IPI (VA midpoint: r = 0.78, VA operculum: 
r = 0.91), in CH (VA midpoint: r = 0.59, VA operculum: r = 0.61), in EVA (VA midpoint: r = 0.55, VA operculum: r = 0.66) 
and in controls (VA midpoint: r = 0.36, VA operculum: r = 0.42). The highest IRR was found for VA volume (ICC = 0.90).
Conclusions The VA diameter may be an insufficient estimate of VA volume, since (1) measurement of VA diameter does 
not reliably correlate with VA volume and (2) VA diameter shows a lower IRR than VA volume. 3D-reconstruction and VA 
volumetry may add information in diagnosing EVA in cases with or without additional IEM.
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Abbreviations
CH  Cochlear hypoplasia
CSF  Cerebrospinal fluid
EVA  Enlarged vestibular aqueduct

HRCT   High-resolution CT
ICC  Intra-class correlation coefficient
IEM  Inner ear malformation
IPI  Incomplete partition type I

 * Nora M. Weiss 
 nora.weiss@rub.de

1 Department of Otorhinolaryngology-Head and Neck 
Surgery, Ruhr-University Bochum, St. Elisabeth-Hospital 
Bochum, Bochum, Germany

2 Department of Translational Neurosciences, Faculty 
of Medicine and Health Sciences, University of Antwerp, 
Antwerp, Belgium

3 Department of Otorhinolaryngology, Head and Neck 
Surgery, Medical Center, Dortmund, Germany

4 Department of Otorhinolaryngology, Head and Neck 
Surgery, University Hospital Zurich, Zurich, Switzerland

5 University of Zurich, Zurich, Switzerland
6 Department of Otorhinolaryngology, Head and Neck 

Surgery, “Otto Körner”, Rostock University Medical Center, 
Rostock, Germany

7 Institute of Diagnostic and Interventional Radiology, 
Pediatric and Neuroradiology, Rostock University Medical 
Center, Rostock, Germany

8 Department of Otolaryngology-Head and Neck Surgery 
and Neurological Surgery, University of Texas, Southwestern 
Medical Center, Dallas, TX, USA

9 MED-EL, Innsbruck, Austria

http://orcid.org/0000-0002-0645-3591
http://crossmark.crossref.org/dialog/?doi=10.1007/s00405-022-07681-4&domain=pdf


2156 European Archives of Oto-Rhino-Laryngology (2023) 280:2155–2163

1 3

IPII  Incomplete partition type II
IRR  Inter-rater reliability
VA  Vestibular aqueduct
VA-Vcontrol  Vestibular aqueduct volume control
VAoperculum  Vestibular aqueduct diameter at the 

operculum
VAmidpoint  Vestibular aqueduct diameter at the midpoint
VA-VCH  Vestibular aqueduct volume cochlear 

hypoplasia
VA-VEVAS  Vestibular aqueduct volume enlarged ves-

tibular aqueduct syndrome
VA-VIPI  Vestibular aqueduct volume incomplete par-

tition type I
VA-VIPII  Vestibular aqueduct volume incomplete par-

tition type II

Introduction

Inner ear malformations (IEM) are responsible for approxi-
mately 20–30% of cases with congenital profound sensori-
neural hearing loss (SNHL) [1–4]. The therapy of choice for 
patients with profound SNHL associated with IEM usually 
consists of cochlear implantation (CI). In IEM, in addition to 
the anatomy of the cochlea and the auditory nerve, particular 
attention should be paid to the radiologic morphology of the 
vestibular aqueduct (VA) [5]. Enlarged vestibular aqueduct 
syndrome (EVAS) is the most common IEM in children with 
SNHL [6]. The bony VA harbors the intraosseous portion of 
the endolymphatic sac and the endolymphatic duct, which 
connects the endolymphatic sac to the endolymphatic sys-
tem of the cochlea and the vestibular labyrinth. Although 
the functional significance of the endolymphatic duct and 
sac is poorly understood, it is hypothesized that these struc-
tures critically contribute the inner ear fluid and electrolyte 
homeostasis. An enlarged VA (EVA) develops due to an 
enlarged, dysfunctional endolymphatic sac and duct as a 
consequence of a complex inner ear endothelial dysfunc-
tion perturbating the endolymph composition [7, 8]. EVA 
may be a risk factor for vestibular symptoms and hearing 
loss, and may be associated with syndromic disorders [9]. 
The pathophysiology of audiovestibular symptoms associ-
ated with EVAS is not well understood. The endolymphatic 
sac dysfunction or additional ion transport pathologies of the 
inner ear may explain both the episodic cochleovestibular 
symptoms as well as the progressive sensorineural hearing 
loss due to neurosensory degeneration [7, 10]. Moreover, 
a conductive hearing loss commonly observed in EVAS is 
likely to be the cause of a third window effect of the EVA 
[11]. Furthermore, an EVA is likely to be associated with 
modiolar defects resulting in cerebrospinal fluid (CSF) leaks 
(“CSF gusher”; [12–14]). CSF gusher is accompanied by 
peri-/intraoperative challenges to seal the cochlea and can 

lead to postoperative meningitis [15]. Moreover, recent 
studies demonstrated an association between the risk of 
postoperative vertigo in patients with EVA and with simul-
taneously increased endolymphatic sac volume [16]. Pre-
operative assessment of VA size could therefore be useful 
in improving perioperative management and assist in perio-
perative risk reduction. For this reason, preoperative com-
puted tomography (CT) and/or magnetic resonance imaging 
(MRI) are performed routinely to determine morphological 
abnormalities which could affect treatment, particularly sur-
gical intervention, and to prognosticate hearing outcome. 
Nevertheless, imaging may be challenging to interpret [17].

EVA is commonly diagnosed on axial CT images by 
measuring the diameter of the VA in the middle of its course 
or at the level of the operculum. However, uniform defi-
nitions for EVA are missing and various 2D measurement 
methods to define EVA are reported in the literature. The 
Valvassori criteria define an enlarged VA as larger than 
1.5 mm measured at the midpoint of the VA [18]. A more 
recent classification (“Cincinnati criteria”) includes two dif-
ferent measurement points, one at the midpoint and one at 
the operculum [19]. In a further classification, Weissman 
suggests using the diameter of the adjacent semicircular 
canal as a reference [20]. Dewan et al. compared two differ-
ent classification systems and found varying results (44% 
versus 16% EVAS) depending on the criteria used [21]. In 
addition, a high variability in 2D VA diameter measurements 
among the axial, oblique and double oblique view in CT 
was reported [22]. In this study, it is hypothesized that 3D 
reconstruction of the VA facilitates the evaluation of VA size 
and that volumetric data may be useful as a diagnostic cri-
terion for EVA. The aim of this study was to determine VA 
diameter and volume in different types of IEM. Furthermore, 
we studied whether 2D parameters, such as VA diameter, 
correlate with VA volume and whether VA volumetry may 
support the use of a specific 2D measurement cutoff value 
for the diagnosis of EVA.

Methods

Image analysis

In CT data sets, multiplanar slices were reconstructed in 
the axial plane (0.1–1 mm). The diameter of the VA was 
determined at the midpoint between the VA exit from the 
vestibule and the operculum  (VAmidpoint) as well as at the 
level of the operculum  (VAoperculum) as suggested by Boston 
et al. [19] (Fig. 1a). The definition of EVA was based on the 
Cincinnati criteria with operculum width > 1.9 mm and/or 
midpoint width > 0.9 mm [19] and was measured according 
to Wang et al. [23].
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Furthermore, the CT data sets were reconstructed using 
3D slicer (https:// www. slicer. org/, version 4.13.0, Mas-
sachusetts, USA [24]). Segmentation of the inner ear was 
performed using threshold analysis (threshold range − 1024 
to 700 Hounsfield units) and a 3D model of the inner ear 
was reconstructed as described elsewhere [25] (Fig. 1b). The 
VA volume was calculated using the segmentation module 
and the segment statistics module in the 3D slicer software 
(Fig. 1c). IEM were diagnosed according to the Sennaroglu 
and Saatci classification [2, 26]. In inconclusive cases, the 
INCAV criteria were added [27]. All measurements were 
performed by two independent examiners (ENT residents 

with more than 1 year of experience interpreting tempo-
ral bone imaging after instruction and training under the 
supervision of two senior physicians [radiology consult-
ant and ENT consultant, each with more than 6 years of 
experience]). Both investigators were blinded to the previ-
ous measurement. All CT data sets were anonymized prior 
image analyses. The study was approved by the local ethics 
committee (No. A2019-0201).

Statistical analysis

Statistical analyses were performed using Prism (version 8, 
GraphPad Software, La Jolla, CA, USA). The significance 
level was set to p < 0.05. Normal distribution was tested 
using the Kolmogorov–Smirnov test. Data did not pass 
normality test. To compare differences among groups, the 
Kruskal–Wallis test was used. Dunn’s test was used to cor-
rect for multiple comparisons. Correlations were assessed 
using Spearman correlation. The inter-rater reliability (IRR) 
was determined by calculating the intra-class correlation 
coefficient (ICC). Receiver operating characteristic (ROC) 
curves were determined to estimated sensitivity and specific-
ity. The cutoff value was determined, where Youden's index, 
i.e. sensitivity + specificity − 1, reached its maximum.

Results

In this retrospective multi-center study, 56 high-resolution 
CT (HRCT) of the temporal bone from patients undergoing 
cochlear implantation due to severe to profound sensori-
neural hearing loss because of IEM were analyzed. All CT 
data sets were reconstructed using a hard kernel and bone 
window/level setting. Slice thickness varied between 0.625 
and 1 mm. IEM consisted of 15 cases of EVAS, 18 cases of 
cochlear hypoplasia (CH), 12 cases of incomplete partition 
(IP) type I (IPI) and 11 cases of IP type II (IPII) with EVA 
(Mondini malformation). HRCT data sets of 42 patients with 
no inner ear pathology, including no SNHL and no prior ear 
surgery were used as a reference.

Based on the Cincinnati criteria, 2D measurements 
showed EVA defined as an  VAoperculum > 1.9 mm in 35/56 
(63%) IEM cases. In all these 35 cases, the  VAmidpoint 
was > 0.9 mm. In addition, 9/56 (16%) cases showed EVA 
defined by a  VAmidpoint > 0.9 mm. Taken together, a total of 
44/56 (79%) cases exhibited EVA according to the Cincin-
nati criteria. The range of values for the diameter of the 
 VAmidpoint and the  VAoperculum for the individual malforma-
tion types is shown in Table 1. The control group showed 
an  VAoperculum < 1.9 mm and a  VAmidpoint ≤ 0.9 in all cases.

A 3D model of the inner ear was successfully recon-
structed in every case. The procedure of segmenta-
tion, reconstruction and volume determination takes 

Fig. 1  Exemplary measurements of the vestibular aqueduct (VA) 
width and 3D reconstruction in a temporal bone with an enlarged VA 
(EVA). a Two-dimensional measurements according to the Cincin-
atti criteria at the midpoint (upper green arrow) and the operculum 
(lower green arrow) of the VA in an axial high-resolution computed 
tomography (HRCT). b Segmentation of the 3D reconstruction from 
the axial HRCT. Yellow: segmentation of the bony labyrinth. Blue 
surface: segmentation of the VA. c Three-dimensional reconstruction 
of the bony labyrinth (yellow) and the EVA (blue). hSCC, horizontal 
semicircular canal

https://www.slicer.org/


2158 European Archives of Oto-Rhino-Laryngology (2023) 280:2155–2163

1 3

approximately 25 min. The values for individual VA vol-
umes (VA-Vcontrol = VA volume control; VA-VCH = VA vol-
ume CH; VA-VIPI = VA volume IPI; VA-VIPII = VA volume 
IPII; VA-VEVAS = VA volume EVAS) among the different 
IEM are shown in Fig. 2. The median VA volume was 
higher in all IEM types compared to the control group. The 
Kruskal–Wallis test revealed significant differences in the 
VA volume between different groups of IEMs (5 groups, 
n = 101, p < 0.001). Post hoc analysis showed significant 
differences between VA-VEVAS and VA-Vcontrol (median 
difference 56.2  mm3, 95% CI 28.5–127.9  mm3, p < 0.001) 
as well as between VA-VIPII and VA-Vcontrol (median dif-
ference 72.6  mm3, 95% CI 68.6–109.8  mm3, p < 0.001). 
VA-VCH and VA-VIPI exhibited a trend to a larger values 
than VA-Vcontrol (VA-VCH: p = 0.24; VA-VIPI: p = 0.15) that 
did not reach statistical significance (Fig. 2). A vestibular 
aqueduct volume of > 15.4  mm3 differentiated EVAS from 
a normal vestibular aqueduct with a specificity of 100.0% Ta
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Fig. 2  Scatterplot showing the distribution of values of vestibular 
aqueduct volume (VA-V) of the individual inner ear malformation 
(IEM) groups and the VA-Vcontrol. Significant differences between 
the control group and the VA-VEVA as well as between the control 
group and the VA-VIPII were found. n.s. not significant. Box indicates 
median, whiskers indicate interquartile range. The upper section of 
the y-axis has been compressed for better visualization
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(95% CI 83.2–100.0%) and a sensitivity of 100.0% (95% 
CI 92.1–100.0%).

Correlations between the VA volume and the diameter 
of the VA were found for the control group  (VAmidpoint: 
r = 0.36, p = 0.02,  VAoperculum: r = 0.42, p = 0.006; Fig. 3a), 
CH  (VAmidpoint: r = 0.59, p = 0.01,  VAoperculum: r = 0.61, 
p = 0.007; Fig.  3b), IPI  (VAmidpoint: r = 0.78, p = 0.004, 
 VAoperculum: 0.91, p = 0.001; Fig. 3c) and EVAS  (VAmidpoint: 
r = 0.55, p = 0.04,  VAoperculum: r = 0.66, p = 0.009; Fig. 3e). 
No correlations between the VA volume and the diameter of 
the VA were found for IPII (Fig. 3d). Overall, the  VAoperculum 
showed a slightly stronger correlation to the VA volume 
compared to the  VAmidpoint.

A good inter-rater reliability was found for the 2D meas-
urements at the operculum (ICC = 0.82) as well as at the 
midpoint (ICC = 0.86). The inter-rater reliability for the 3D 
measurements was excellent (ICC = 0.90).

Highly varying shapes of the VA in different types of IEM 
were observed. Figure 4 shows exemplary VA shapes in a 
control (Fig. 4a–c) and a case of IEM with central dilata-
tion and narrowing toward the operculum and the vestibule 
(Fig. 4d–f). Furthermore, two cases with both very wide VA 
openings toward the operculum, but contrasting VA volumes 
are shown (Fig. 4g–l).

Discussion

The results of the present study suggest that VA diameter 
alone may be an insufficient estimate of the total VA volume, 
since first, measurement of VA diameter does not correlate 
well with VA volume, and second, the VA diameter shows 
a lower IRR than VA volume. In particular, we found that 
VA diameter does not accurately predict VA volume among 
EVA cases. Inconsistent correlations were found between the 
VA volume and the VA diameter. We introduced volumetry 
of the VA based on radiologic data as a novel diagnostic 
approach for EVA. Using VA volumetry, we found a high 
prevalence of EVA in several types of IEM. Diagnosing 

EVA is hindered by abnormal VA shapes, which challenge 
2D measurements from axial CT images. Measuring VA 
diameter may lead to highly varying results depending on 
the imaging quality, the chosen slice and the individual 
investigator. This may be another explanation for by a major-
ity moderate correlations between the VA volume and the 
VA diameter in measurements of the VA in HRCTs.

The VA is commonly evaluated on axial images. How-
ever, the exact position along the VA, where the VA diam-
eter should be determined, is a matter of debate. The first 
to propose VA measurements, Valvassori and Clemis, con-
sidered a VA with a width of on axial view greater than 
1.5 mm at the midpoint of its course from the vestibule to the 
posterior cranial fossa as enlarged [18]. Later, other authors 
introduced different criteria and used measurements at the 
operculum [19]. However, widely accepted definitions are 
missing and current measurement methods may lead to 
misdiagnoses, since they only consider a maximum of two 
measurement points [12]. Yet, the identification and accu-
rate measurement of the VA is challenging even in subjects 
with normal anatomy and a correct assessment of VA vol-
ume. Consequently, this is even more difficult in patients 
with IEM [28–30]. The present study provides evidence that 
measuring VA width may not accurately distinguish EVA 
from normal VA. Variations in the VA shape as shown in 
Fig. 4 are disregarded by classification systems based on 
VA diameter at fixed points, such as the Cincinnati criteria 
[19]. Therefore, such classification systems may easily lead 
to misclassified VA size, in particular if the distance of the 
VA is measured at only one point. 3D measurements con-
sider the complete course of the VA as well as the length 
and height of the VA that are assumed to strongly impact 
the volume. Therefore, VA volume may be less prone to 
measurement errors and exhibits an excellent inter-rater vari-
ability. This is in line with the results of this study, where the 
3D reconstruction showed better inter-rater reliability than 
VA width measurements indicating a more intuitive and reli-
able assessment. The median VA-volume in this study was 
5.8  mm3 (95% CI 4.5–7.1  mm3) which is in accordance to 

Fig. 3  Correlations between vestibular aqueduct (VA) volume and 
VA diameter measured at the VA midpoint  (VAmidpoint) and at the 
operculum  (VAoperculum) in controls (a), the cochlear hypoplasia (CH) 
group (b) the incomplete partition type I (IPI) group (c), the incom-

plete partition type II (IPII) group (d) and the enlarged vestibular 
aqueduct syndrome (EVAS) group (e). r Spearman’s rank correlation 
coefficient. Line represents linear regression line. The scaling of the 
x-axes differs among the groups for better visualization
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another study investigating the VA-volume in controls [31]. 
Moreover, our results are in accordance with the diagnos-
tic application of 3D measurement in other fields, e.g., the 
assessment of the growth of vestibular schwannomas, where 
more accurate values from volume measurements compared 
to two-dimensional measurements have been reported [32].

A volume threshold to distinguish EVA from normal 
VA may serve as an additional tool to 2D measurements in 
diagnosing EVA. The median volume of the  VAcontrol in this 
study was only 5.2  mm3 which is comparable to values found 
in histological studies [31]. Based on the present study, we 
anticipate a value of approximately 15  mm3 to distinguish 
a normal VA from an EVA. With these data, future stud-
ies including clinical data may investigate possible asso-
ciations between EVA as defined by 3D measurement and 
clinical symptoms, such as progressive hearing loss, vertigo 
or the estimated surgical risk, in particular the risk for a 
CSF gusher.

As a note of caution, however, EVA appears to be an 
etiologically distinct malformation with various factors that 
may account for the severity of the associated syndrome, i.e. 
EVAS [7, 33]. Although EVAS is an IEM, the malformation 

is not considered to be the cause of hearing loss. There is 
little evidence that either VA size correlates with the rate of 
hearing loss progression [34, 35] or that the frequency and 
severity of hearing loss is associated with the VA diameter 
determined at any point along the VA [36]. Moreover, most 
studies do not report VA size to be a predictor for the rate of 
hearing loss progression[37–42]. However, Berrettini et al. 
reported an association between a volume of the endolym-
phatic sac and endolymphatic sac complex greater than 1 mL 
and profound hearing loss [37]. It is assumed that the VA is 
enlarged secondary to an enlargement of the endolymphatic 
duct [8]. The enlargement of the bony VA, therefore, consti-
tutes a “fossil-like record” of the primary cellular pathology 
of the endolymphatic compartment [8]. This is in line with 
largely missing correlations between the width of the VA 
and sudden/progressive hearing loss. Nevertheless, these 
studies were based on VA measurements evaluated on axial 
2D images. Current studies provide evidence, that standard-
ized measurements of the VA that are less prone to errors 
correlate with the probability of deafness [43]. For this rea-
son, it may be worth revisiting these associations using VA 
volumetry to define EVA in both cases of isolated EVA as 

Fig. 4  Exemplary vestibular aqueduct (VA) shapes in a control and 
three cases of inner ear malformation (IEM). a–c 2D-measurements 
of the  VAmidpoint (a) and the  VAoperculum (b) in the axial high-resolu-
tion computed tomography (HRCT) as well as three-dimensional 
(3D) reconstruction of the bony labyrinth (c) in a normal con-
trol. d–f Case 1, incomplete partition type I: two-dimensional (2D) 
measurements of the  VAmidpoint (d) and  VAoperculum (e) in the axial 
HRCT as well as a 3D reconstruction (f). The VA is centrally dilated 
with narrowing toward the operculum and the vestibule. g–i Case 
2, enlarged vestibular aqueduct syndrome (EVAS): 2D measure-
ments of the  VAmidpoint (g) and  VAoperculum (h) in the axial HRCT 
as well as 3D reconstruction of the bony labyrinth (i). j–l Case 3, 

EVAS: 2D-measurements of the  VAmidpoint (j) and  VAoperculum (k) 
in the axial HRCT as well as a 3D reconstruction of the bony laby-
rinth (l). In both case 2 and case 3, the VA is narrow toward the 
vestibule and shows a very broad opening toward the operculum. 
Both cases were classified as EVA according to the Cincinnati cri-
teria (case 2:  VAmidpoint = 1.0  mm,  VAoperculum = 2.1  mm; case 3: 
 VAmidpoint = 1.0 mm;  VAoperculum = 1.9 mm). The volume of case 2 is 
29.5  mm3. The volume of case 3 is 16.4  mm3. Green volume, coch-
lea; yellow volume: vestibular labyrinth; blue volume: VA. hSCC 
horizontal semicircular canal, pSCC posterior semicircular canal. 
Scale bars: 5 mm
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well as in cases of additional IEM. It has been shown in 
other studies, that standardized radiological measurements 
may give new insights into the etiopathology and progno-
sis of diseases associated with the endolymphatic duct and 
sac, such as Meniere’s disease [44–46]. When transferring 
such findings into a clinical context, algorithms for standard-
ized detection of radiological features may gain importance 
[47]. The present study is limited by the sample sizes of the 
individual malformation types. Since the prevalence of the 
individual malformation types is low, statistical analyses are 
hindered by a small number of subjects. For this reason, 
cases of CH type I to type IV were summarized to allow a 
limited number of statistical tests. However, IEMs are rare 
and compared to other studies, the number of included data 
sets is high. Results regarding the clinical outcome such as 
gusher and the effect of cochlear implantation were missing, 
since the images were sent to the authors for second opinion. 
Another limitation is that MRI imaging was not assessed in 
this study. For this reason, only the bony covered VA but 
not the endolymphatic sac was reconstructed. Yet, this study 
was primarily designed to explore anatomic features in IEM 
with focus on the VA. Future studies may assess volume 
from MRI imaging to add a calculation of the volume of the 
intra-cranial portion of the endolymphatic sac and analyze 
larger patient groups including clinical data.

Conclusions

Defining EVA based on VA diameter measurements has a 
high inter-rater variability. Furthermore, this method may 
fail to correctly diagnose EVA in cases with an abnormal 
shape of the VA. We introduce volumetry of the VA based 
on radiologic data as a novel tool to define EVA. Using this 
method of VA volumetry, we found a high prevalence of 
EVA in several types of IEM. VA volume correlates with 
the VA diameter, but may be less prone to misclassifica-
tion of EVA as the VA diameter at defined points may be 
normal despite an abnormal shape and volume of the VA. 
3D reconstruction allows an improvement in visualization 
and volumetric assessment of VA and may be an additional 
diagnostic tool in defining EVA.
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