Skip to main content

Advertisement

Log in

Potential ferroptosis-related diagnostic and prognostic biomarkers in laryngeal cancer

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Laryngeal cancer (LC) is a common malignant tumor of the head and neck. However, the relationship between ferroptosis and LC is still unclear. The aim of this study was to identify potential ferroptosis-related biomarkers for diagnosis and prognosis in LC.

Methods

We screened differentially expressed genes (DEGs) related to ferroptosis in LC from the TCGA and FerrDb database. DEGs were identified and enrichment by GO/KEGG, GSEA, GSVA analysis. PPI analysis was performed using String and Cytoscape, then hub genes were extracted. Furthermore, ROC analysis, pan-cancer analysis, gene mutation analysis, immune infiltration correlation analysis and clinical correlation analysis of hub genes were performed.

Results

A total of 59 DEGs were screened, which were more significantly enriched in biological processes and involved in HIF-1 signaling pathway, serotonergic synapse and ferroptosis. A total of 29 significant gene set pathways of LC data were performed by GSEA analysis. The GSVA analysis obtained 53 significant differential gene set pathways. The top 20 genes were identified by PPI. ROC curves revealed four of the top20 genes had a good performance, which were CA9 (AUC = 0.930), MAPK3 (AUC = 0.915), MUC1 (AUC = 0.945), and NOX4 (AUC = 0.933). Subsequent analysis found that CDKN2A has the highest mutation frequency in the top 20 gene, and IFNG had a significant correlation with age, tumor stage, degree of tumor differentiation and lymphatic clearance surgery.

Conclusion

Our study identified key genes closely related to ferroptosis in LC, which still need more studies to explore the mechanisms involved and may become effective clinical diagnostic and prognostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salvador-Coloma C, Cohen E (2016) Multidisciplinary care of laryngeal cancer. J Oncol Pract 12(8):717–724. https://doi.org/10.1200/JOP.2016.014225

    Article  PubMed  Google Scholar 

  2. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xia Y, Liu S, Li C et al (2020) Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis 11(11):988. https://doi.org/10.1038/s41419-020-03194-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang M, Mao C, Ouyang L et al (2019) Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 26(11):2329–2343. https://doi.org/10.1038/s41418-019-0304-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu F, Du J, Liu J et al (2016) Identification of key target genes and pathways in laryngeal carcinoma. Oncol Lett 12(2):1279–1286. https://doi.org/10.3892/ol.2016.4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma J, Hu X, Dai B et al (2021) Bioinformatics analysis of laryngeal squamous cell carcinoma: seeking key candidate genes and pathways. Peer J 9:e11259. https://doi.org/10.7717/peerj.11259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldman MJ, Craft B, Hastie M et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678. https://doi.org/10.1038/s41587-020-0546-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou N, Bao J (2020) FerrDb: a manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations. Database (Oxford) 2020. https://doi.org/10.1093/database/baaa021

    Article  Google Scholar 

  9. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  Google Scholar 

  10. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  13. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  14. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chin CH, Chen SH, Wu HH et al (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robin X, Turck N, Hainard A et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  Google Scholar 

  17. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Method 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  Google Scholar 

  18. Pastorekova S, Gillies RJ (2019) The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev 38(1–2):65–77. https://doi.org/10.1007/s10555-019-09799-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon OJ, Park JJ, Ko GH et al (2015) HIF-1alpha and CA-IX as predictors of locoregional control for determining the optimal treatment modality for early-stage laryngeal carcinoma. Head Neck 37(4):505–510. https://doi.org/10.1002/hed.23620

    Article  PubMed  Google Scholar 

  20. Bernstein JM, Andrews TD, Slevin NJ et al (2015) Prognostic value of hypoxia-associated markers in advanced larynx and hypopharynx squamous cell carcinoma. Laryngoscope 125(1):E8-15. https://doi.org/10.1002/lary.24933

    Article  CAS  PubMed  Google Scholar 

  21. Schrijvers ML, van der Laan BF, de Bock GH et al (2008) Overexpression of intrinsic hypoxia markers HIF1alpha and CA-IX predict for local recurrence in stage T1–T2 glottic laryngeal carcinoma treated with radiotherapy. Int J Radiat Oncol Biol Phys 72(1):161–169. https://doi.org/10.1016/j.ijrobp.2008.05.025

    Article  CAS  PubMed  Google Scholar 

  22. Wachters JE, Schrijvers ML, Slagter-Menkema L et al (2013) Prognostic significance of HIF-1a, CA-IX, and OPN in T1–T2 laryngeal carcinoma treated with radiotherapy. Laryngoscope 123(9):2154–2160. https://doi.org/10.1002/lary.23831

    Article  PubMed  Google Scholar 

  23. Hu C, Wang H, Lin L et al (2020) Association between carbonic anhydrase 9 expression and poor prognosis in sinonasal squamous cell carcinoma. Ann Diagn Pathol 49:151643. https://doi.org/10.1016/j.anndiagpath.2020.151643

    Article  PubMed  Google Scholar 

  24. Li Z, Jiang L, Chew SH et al (2019) Carbonic anhydrase 9 confers resistance to ferroptosis/apoptosis in malignant mesothelioma under hypoxia. Redox Biol 26:101297. https://doi.org/10.1016/j.redox.2019.101297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu C, Zhao W, Yu J et al (2018) Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Sci Rep 8(1):574. https://doi.org/10.1038/s41598-017-18935-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Starska K, Forma E, Jozwiak P et al (2016) Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer. Tumour Biol 37(10):13185–13203. https://doi.org/10.1007/s13277-016-5178-8

    Article  CAS  PubMed  Google Scholar 

  27. Sipaul F, Birchall M, Corfield A (2011) What role do mucins have in the development of laryngeal squamous cell carcinoma? Syst rev Eur Arch Otorhinol 268(8):1109–1117. https://doi.org/10.1007/s00405-011-1617-8

    Article  Google Scholar 

  28. Hasegawa M, Takahashi H, Rajabi H et al (2016) Functional interactions of the cystine/glutamate antiporter CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7(11):11756–11769. https://doi.org/10.18632/oncotarget.7598

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeannon JP, Stafford FW, Soames JV et al (2001) Altered MUC1 and MUC2 glycoprotein expression in laryngeal cancer. Otolaryngol Head Neck Surg 124(2):199–202. https://doi.org/10.1067/mhn.2001.112481

    Article  CAS  PubMed  Google Scholar 

  30. Croce MV, Price MR, Segal-Eiras A (2000) Detection and isolation of MUC1 mucin from larynx squamous cell carcinoma. Pathol Oncol Res 6(2):93–99. https://doi.org/10.1007/BF03032356

    Article  CAS  PubMed  Google Scholar 

  31. Croce MV, Rabassa ME, Price MR et al (2001) MUC1 mucin and carbohydrate associated antigens as tumor markers in head and neck squamous cell carcinoma. Pathol Oncol Res 7(4):284–291. https://doi.org/10.1007/BF03032385

    Article  CAS  PubMed  Google Scholar 

  32. Itoh T, Yonezawa S, Nomoto M et al (1996) Expression of mucin antigens and Lewis X-related antigens in carcinomas and dysplasia of the pharynx and larynx. Pathol Int 46(9):646–655. https://doi.org/10.1111/j.1440-1827.1996.tb03667.x

    Article  CAS  PubMed  Google Scholar 

  33. Croce MV, Rabassa ME, Pereyra A et al (2008) Differential expression of MUC1 and carbohydrate antigens in primary and secondary head and neck squamous cell carcinoma. Head Neck 30(5):647–657. https://doi.org/10.1002/hed.20756

    Article  PubMed  Google Scholar 

  34. Orcutt KP, Parsons AD, Sibenaller ZA et al (2011) Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res 71(11):3932–3940. https://doi.org/10.1158/0008-5472.CAN-10-3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fletcher EV, Love-Homan L, Sobhakumari A et al (2013) EGFR inhibition induces proinflammatory cytokines via NOX4 in HNSCC. Mol Cancer Res 11(12):1574–1584. https://doi.org/10.1158/1541-7786.MCR-13-0187

    Article  CAS  PubMed  Google Scholar 

  36. Sobhakumari A, Schickling BM, Love-Homan L et al (2013) NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells. Toxicol Appl Pharmacol 272(3):736–745. https://doi.org/10.1016/j.taap.2013.07.013

    Article  CAS  PubMed  Google Scholar 

  37. Seo SU, Kim TH, Kim DE et al (2017) NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin. Redox Biol 13:608–622. https://doi.org/10.1016/j.redox.2017.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu S, Wang XZ, He C et al (2021) ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide and iron. Acta Pharmacol Sin 42(10):1690–1702. https://doi.org/10.1038/s41401-021-00700-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park MW, Cha HW, Kim J et al (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947. https://doi.org/10.1016/j.redox.2021.101947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Todorova TA, Jordanov SH, Stancheva GS et al (2015) Mutational status of CDKN2A and TP53 genes in laryngeal squamous cell carcinoma. Pathol Oncol Res 21(2):413–421. https://doi.org/10.1007/s12253-014-9836-0

    Article  CAS  PubMed  Google Scholar 

  41. Chen WS, Bindra RS, Mo A et al (2018) CDKN2A copy number loss is an independent prognostic factor in hpv-negative head and neck squamous cell carcinoma. Front Oncol 8:95. https://doi.org/10.3389/fonc.2018.00095

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sanchez Barrueco A, Gonzalez Galan F, Villacampa Auba JM et al (2019) p16 Influence on laryngeal squamous cell carcinoma relapse and survival. Otolaryngol Head Neck Surg 160(6):1042–1047. https://doi.org/10.1177/0194599818821910

    Article  PubMed  Google Scholar 

  43. Yu ST, Zhou Z, Cai Q et al (2017) Prognostic value of the C-reactive protein/albumin ratio in patients with laryngeal squamous cell carcinoma. Onco Target Ther 10:879–884. https://doi.org/10.2147/OTT.S128391

    Article  CAS  Google Scholar 

  44. Xie Y, Zhu S, Song X et al (2017) The Tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20(7):1692–1704. https://doi.org/10.1016/j.celrep.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Green M, Choi JE et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569(7755):270–274. https://doi.org/10.1038/s41586-019-1170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (Grant No. 81903983); China Postdoctoral Science Foundation (Grant No. 2019M651122).

Author information

Authors and Affiliations

Authors

Contributions

ZJ and ZF design, analysis and interpretation of data. ZJ, ZF and XD statistical analysis; ZF and JW drafting of the manuscript. JW, XW and AY critical revision of the manuscript for important intellectual content, administrative support, obtaining funding, supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jia Wang, Xianyao Wan or Aihui Yan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the work.

Ethical approval

Ethics approval and patient written informed consent were not required because all analyses in our study were mainly performed based on data from a common database.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Fang, Z., Dong, X. et al. Potential ferroptosis-related diagnostic and prognostic biomarkers in laryngeal cancer. Eur Arch Otorhinolaryngol 279, 5277–5288 (2022). https://doi.org/10.1007/s00405-022-07433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07433-4

Keywords

Navigation