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Abstract
In a growing number of social and clinical scenarios, machine learning (ML) is emerging as a promising tool for implement-
ing complex multi-parametric decision-making algorithms. Regarding ovarian cancer (OC), despite the standardization of 
features that can support the discrimination of ovarian masses into benign and malignant, there is a lack of accurate predic-
tive modeling based on ultrasound (US) examination for progression-free survival (PFS). This retrospective observational 
study analyzed patients with epithelial ovarian cancer (EOC) who were followed in a tertiary center from 2018 to 2019. 
Demographic features, clinical characteristics, information about the surgery and post-surgery histopathology were collected. 
Additionally, we recorded data about US examinations according to the International Ovarian Tumor Analysis (IOTA) clas-
sification. Our study aimed to realize a tool to predict 12 month PFS in patients with OC based on a ML algorithm applied 
to gynecological ultrasound assessment. Proper feature selection was used to determine an attribute core set. Three different 
machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and K-nearest neighbors (KNN), 
were then trained and validated with five-fold cross-validation to predict 12 month PFS. Our analysis included n. 64 patients 
and 12 month PFS was achieved by 46/64 patients (71.9%). The attribute core set used to train machine learning algorithms 
included age, menopause, CA-125 value, histotype, FIGO stage and US characteristics, such as major lesion diameter, side, 
echogenicity, color score, major solid component diameter, presence of carcinosis. RFF showed the best performance (accu-
racy 93.7%, precision 90%, recall 90%, area under receiver operating characteristic curve (AUROC) 0.92). We developed an 
accurate ML model to predict 12 month PFS.
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Introduction

Ovarian cancer

Ovarian cancer (OC) is the seventh-most-diagnosed cancer 
among women worldwide and the second-most-common 
gynecological malignancy. It represents appromixmately 
14,000 deaths in 2020 in the US [1].

Up to 90% of ovarian cancers are epithelial ovarian 
cancer (EOC) types. OC has multiple cellular origins [2]. 
The term tubo-ovarian cancer is often used because OC 
can arise as an ovarian or fallopian-tube mass or primary 
peritoneal cancer [3].

Type I tumors (low-grade serous, mucinous, endometri-
oid, and clear cell) occurring in the ovary are less aggres-
sive and are therefore more easly diagnosed at an early 
stage because they tend to grow slowly. Type II tumors 
(high-grade serous carcinomas (HGSC), undiffer-entiated 
carcinomas, and carcinosarcomas) may originate from 
the tubal and/or ovarian surface epithelium, and are more 
aggressive [4–6].

The absence of proper screening and diagnostic proce-
dures to detect OC at an early stage as well as the rapid 
spread of disease through the peritoneal surface are lead-
ing factors in the OC lethality [7, 8]. Nowadays, there is a 
lack of an accurate protocol to identify high-risk patients.

Therefore, identifying tools for accurate screening and 
early diagnosis and prognosis of OC represents a currently 
unmet clinical need.

In addition, the role of ultrasound (US) in OC is evolv-
ing. US is a cheap, non-invasive and well-recognized 
image modality for diagnosis and evaluation of OC [9].

The International Ovarian Tumor Analysis (IOTA) 
group established a standardized lexicon that includes all 
appropriate descriptors and definitions of the sonographic 
appearance characteristic of normal ovaries and ovarian 
lesions. To simplify the sonographer’s assessment in dif-
ferentiating benign from malignant adnexal masses, they 
also developed the Simple Rules classification system 
and the Assessment of Different Neoplasia in the Adnexa 
(ADNEX) model [10–16]. The Society of Radiologists in 
Ultrasound consensus statement [17, 18] and the Gyneco-
logic Imaging Reporting and Data System, also known as 
GI-RADS [19], are other proposed systems for the charac-
terization and management of ovarian masses (OM) [20].

In 2018, the Ovarian-Adnexal Reporting and Data Sys-
tem (O-RADS) created a risk stratification classification 
for consistent follow-up and management in clinical prac-
tice [21].

But quickly, a simple description of the tumor and of its 
extension may not be sufficient. The application of preci-
sion medicine could help answering a question about early 

response to treatment, best timing for surgery, prognosis 
or molecularly targeted drug.

Machine Learning

In a growing number of social and clinical scenarios, 
machine learning (ML) is emerging as a promising tool for 
the implementation of complex multi-parametric decision-
making algorithms [22, 23]. In that sense, a ML approach is 
a potential gamechanger [24]. In fact, in addition to detecting 
linear patterns in analyzed data, it can unravel complex non-
linear relationships between patient attributes that cannot 
be solved by traditional statistical methods, merging them 
to produce a prediction or a probability for a given outcome 
[22, 25, 26].

ML is a step toward precision medicine, leading to 
improved patient profiling and personalized treatment. 
Supervised ML algorithms have been shown to be effective 
in predicting treatment responses and disease progression 
in patients affected with heterogeneous diseases [27, 28].

Regarding OC, despite the standardization of features that 
can support the discrimination of ovarian masses into benign 
and malignant, there is the lack of accurate predictive mod-
eling based on US examination for PFS.

Materials and methods

In this retrospective observational study, we analyzed con-
secutive patients with EOC who were followed in a tertiary 
center from 2018 to 2019.

Demographic features (age), clinical characteristics (par-
ity, menopause, CA-125 value, genetic mutation state, treat-
ment) were collected as well as information about surgery 
(surgical procedures, residual tumor) and post-surgery his-
topathology (histotypes, grading, FIGO stage). Additionally, 
we recorded data about transvaginal and/or transabdominal 
US examinations according to IOTA classification (unilat-
eral lesion, side, largest diameter of lesion, type of tumor, 
echogenicity of cyst fluid in tumors, color score, diameter of 
largest solid component, shadows, ascites, carcinosis, sub-
jective assessment).

Our study aimed to realized a tool to predict 12 month 
PFS in patients with OC based on a ML algorithm applied 
to gynecological ultrasound assessment.

In total, the original database included n. 64 patients and 
n. 22 variables.

Appropriate feature selection was used to determine an 
attribute core set (see Supplementary Materials for further 
details).

This study followed STARD guidelines [29] and the TRI-
POD statement [30].
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The ML algorithms were aimed at forecasting PFS at 
12 month follow-up.

Student’s t test for paired samples or Wilcoxon matched-
pair signed-rank test were used as appropriate to identify 
difference between continuous variables between different 
observation periods. McNemar’s test was used to identify the 
difference among dummy variables between.

The attribute core set used to train the algorithms was 
determined using a recursive feature elimination (RFE) 
wrapper based on a decision tree algorithm with extreme 
gradient boosting (XGBoost) [31]; in brief, this algorithm 
automatically selects from all the recorded attributes (n. 23) 
the best number of features on their importance for the given 
outcome predictions (PFS at 12 months). Feature selection 
can counteract overfitting problems and improve classifi-
cation performance. RFE method is one of the commonly 
used feature selection methods for small samples problems 
[32–34] (For further details about RFE see Supplementary 
Materials).

The entire analysis was implemented in a Python 3.6 
environment using scikit-learn (ver.0.22.1) and XGBoost 
(ver. 1.1.0) libraries [31, 35]. After z-score normalization, 
we performed a Bayesian ridge conditional ridge imputa-
tion [36] for missing data. The latter method proved to be 
the most accurate method of imputation for obstetrics and 
gynecology datasets [37] (see Supplementary Materials for 
further details).

Three different classifiers, both linear and non-linear, 
were trained and cross-validated with five-fold cross-vali-
dation using the core set of attributes recovered from the 
RFE to predict 12 month PFS.

While logistic regression (LR) was almost always the 
algorithm of choice to find independent predictors in mul-
tivariate models, it must be noticed that the study hypoth-
eses were usually based on the unrealistic assumption that 
the association between the prognostic factors and clinical 
outcomes is direct and isolated. In contrast, LR is not suit-
able for the modeling of non-independent variables. For this 
reason, along with usual LR, for linear modeling, we used 
the non-parametric K-nearest neighbors (KNN) and random 
forest (RFF) [36] algorithms. The latter models have recently 
been shown to accurately predict important outcomes for 
woman’s health, even in the presence of non-linear patterns 
in data [38–40]. Furthermore, we choose RFF because there 
is evidence of accurate performance in case of unbalanced 
data, which is often the case of clinical datasets [41]. We 
also ran RFF using cost-sensitive training (using the argu-
ment class weight = “balanced” in scikit-learn) to try to over-
come unbalanced class issue.

A repeated grid-search with cross-validation was used for 
optimal hyperparameter tuning to maximize the classifiers’ 
performance [42] (See Supplementary Material for hyper-
parameter fine-tuning).

For each classifier, we plotted ROC curves, and then area 
under receiver operating characteristic curve (AUROC) was 
determined.

Then, based on the optimal probability cut-off (Youden’s 
Index) [43] classifiers’ performance was compared with the 
following metrics:

• Accuracy=
true positivies+ true negatives

true positivies+ true negatives+ false positives+ false negatives
,

• Recall (True Positive Rate (TPER) )=
true positives

true positivies+ false negatives
,

• Precision=
true positives

true positives+ false positives

In general, a classification model forecasts a binary out-
come for a given observation and class. In the process of 
predicting, a model may output the probability of an obser-
vation belonging to each possible class. This case allows 
some flexibility in the way predictions are interpreted and 
presented, allowing the choice of a threshold, such as the 
afore-mentioned Youden’s index [44].

For a model to be reliable, the estimated class proba-
bilities should reflect the true underlying probability of the 
sample. To check these assumptions, a diagnostic calibration 
curve for the candidate best classifier was also plotted [44].

The study was conducted in accordance with the Dec-
laration of Helsinki, and the protocol was approved by the 
Scientific Board University of Bari, Bari, Italy. All patients 
had signed a consent to use the data in scientific purposes.

Results

Our analysis included n. 64 patients with diagnosis of EOC. 
Demographic and clinical characteristics, information about 
surgery procedures, post-surgery histopathology and US fea-
tures are outlined in (Table 1).

Patients had a mean age (± SD) of 54.1 ± 14.9 years at 
diagnosis and n. 28/64 (43.7%) were menopausal patients. 
CA-125 median value was 828.25 (± 2018.82) U/mL. Four 
out of 64 (6.25%) women had BRCA1 mutation, n. 4/64 
(6.25%) women had BRCA2 mutation and n. 2/64 (3.12%) 
women had BRIP1 mutation.

Concerning US characteristics, n. 34/64 (53.1%) 
patients had a unilateral mass and the median greatest 
diameter was 113.6 ± 57.6 mm. The most common tumor 
type was multilocular-solid (28/64 (43.7%)), followed by 
solid (26/64 (40.7%)), unilocular-solid (8/64 (12.5%)), and 
multilocular (2/64 (3.1%)) masses. The median diameter of 
the largest solid component was 71.1 ± 45.1 mm. The most 
common echogenicity of cyst fluid was anechoic (22/64 
(34.4%)), followed by low level echogenicity in n.10/64 
(15.6%) and ground glass echogenicity in n. 6/64 (9.4%). 
Most of these tumors showed intense vascularity on color 
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Table 1  Cohort characteristics. 
Variables of the original dataset 
(n.22) are listed in bold

Age at diagnosis (years), mean ± SD 54.1 ± 14.9 years
Parity, median (IQR) 1 (0–2)
Menopause, n. (%) 28/64 (43.7%)
CA-125 (U/mL), mean ± SD 828.25 (± 2018.82)
Genetic mutation state 4/64 (6.25%)
BRCA1m, n. (%)
BRCA2m, n. (%) 4/64 (6.25%)
BRIP1m, n. (%) 2/64 (3.12%)
Unilateral tumor, n. (%) 34/64 (53.1%)
Side, n. (%)
 Right 16/64 (25%)
 Left 18/64 (28.1%)
 Middle 30/64 (46.9%)
 Largest diameter of lesion (mm), mean ± SD 113.6 ± 57.6

Type of tumor, n. (%)
 Unilocular 0
 Unilocular-solid 8/64 (12.5%)
 Multilocular 2/64 (3.1%)
 Multilocular-solid 28/64 (43.7%)
 Solid 26/64 (40.7%)

Echogenicity of cyst fluid in tumors not classified as solid, n. (%)
 Anechoic 22/64 (34.4%)
 Ground glass 6/64 (9.4%)
 Low level 10/64 (15.6%)

Color Score, n. (%)
 1 8/64 (12.5%)
 2 6/64 (9.4%)
 3 18/64 (28.1%)
 4 32/64 (50%)

Diameter of largest solid component (mm), mean ± SD 71.1 ± 45.1
 Shadows, n. (%) 8/64 (12.5%)
 Ascites, n. (%) 18/64 (28.1%)
 Carcinosis, n. (%) 20/64 (31.2%)

Diagnosis on basis of subjective assessment, n. (%)
 Benign 8/64 (12.5%)
 Malignant 56/64 (87.5%)

Surgery, n. (%)
 Open surgery 49/64 (76.5%)
 Laparoscopy 15/64 (23.5%)

Residual Tumor, n. (%)
 R0 48/64 (75%)
 R1 or R2 16/64 (25%)

Histotypes, n. (%)
 High-grade serous 42/64 (65.6%)
 Endometrioid 10/64 (15.6%)
 Clear cell 8/64 (12.5%)
 Mucinous 4/64 (6.3%)

Grading, n. (%)
 G1 12/64 (18.7%)
 G2 2/64 (6.3%)
 G3 48/64 (75%)
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Doppler examination (32/64 (50%)) and n. 18/64 (28.1%) 
moderate vascularity. Based on the subjective assessment 
by the original US examiner, n. 56/64 (87.5%) masses 
were classified as malignant and n. 8/64 (12.5%) as benign 
tumors. Ultrasonographic evaluation revealed ascites in n. 
18/64 (28.1%) and carcinosis in n. 20/64 (31.2%). Only n. 
8/64 (12.5%) revealed shadows.

Concerning the surgical procedure, n. 49/64 (76.5%) 
underwent open surgery and n. 15/64 (23.5%) underwent 
laparoscopy. Forty eight out of 64 (75%) presented no 
residual tumor; n. 16/64 (25%) presented microscopic (R1) 
or macroscopic (R2) residual tumor.

On histopathological analysis, histotypes were n. 42/64 
(65.6%) high-grade serous carcinoma, n. 10/64 (15.6%) 
endometrioid, n. 8/64 (12.5%) clear cell and 4/64 (6.3%) 
mucinous. Grade was G1 in n. 12/64 (18.7%), G2 in n. 
2/64 (6.3%), G3 in n. 48/64 (75%). Most tumors were 
FIGO Stage III (26/64 (40.6%)), followed by FIGO stage 
I (22/64 (34.4%)) and FIGO stage IV (14/64 (21.9%)). 
Only n. 2/64 (3.1%) had a FIGO stage II.

Twenty four out of 64 (37.5%) were treated with neo-
adjuvant chemotherapy with paclitaxel–carboplatin, n. 
24/64 (37.5%) with adjuvant chemotherapy with pacli-
taxel–carboplatin, n. 8/64 (12.5%) adjuvant chemotherapy 
with paclitaxel–carboplatin and parp inhibitor and n. 2/64 
(3.1%) paclitaxel–carboplatin and bevacizumab. Six out 
of 64 (9.4%) required no treatment. 12-month PFS was 
achieved by 46/64 patients (71.9%, unbalanced classes).

As detailed in (Fig. 1), RFE retrieved an attribute core 
set used to train machine learning algorithms including 
age, menopause, CA-125 value, histotype, FIGO stage and 
US characteristics, such as major lesion diameter (Fig. 2), 
side, echogenicity (Fig. 3), color score (Fig. 4), major 
solid component diameter (Fig. 5), presence of carcinosis 
(Fig. 6).

The attribute core set used to train machine learning algo-
rithms is reported in (Fig. 1). RFF showed an accuracy of 
0.93, AUROC 0.92.

The final dataset had a dimensionality of 64 columns × 12 
rows (n.11 selected attributes plus n. 1 target class (PFS at 
12 months, as above mentioned).

As reported in (Table 2), at optimal cut-off (Youden’s 
index), RFF (n. estimators = 500, depth = 5) showed the 
best performance (accuracy 93.7%, precision 90%, TPR 
90%, AUROC 0.92), outperforming LR (accuracy 82%, 
precision 80.1%, TPR 84.1%, AUROC 0.81), and KNN (n. 
of neighbors = 5) (accuracy 73.6%, precision 76.5%, TPR 
83.3%, AUROC 0.69).

In (Fig. 7), ROC curve for RFF (box A), LR (box B) and 
KNN (box C) models was reported.

In (Fig. 8) calibration diagnostic has been plotted for 
RFF; PFS roughly happened with an observed relative 
frequency consistent with the forecast value, showing an 
acceptable calibration curve. We would expect the match 
between predicted frequencies and observed frequencies to 
increase with a larger dataset. 

We also reported the Odds ratios for the LR model for the 
interpretation of core set covariate associations in (Table 3).

Discussion

The keystone of survival analyses in cancer research has 
historically been Cox proportional hazard regression 
model, being a surrogate for estimating treatment efficacy 
and safety. This model is based on the assumption of linear 
association. However, many clinicopathologic features show 
a non-linear association in medicine [45].

The ML approach has recently brought an unprecedented 
growth of applications to medical imaging.

In the study of OC, since 1999, artificial neural networks 
[46, 47] have been applied to classify US image into benign 
and malignant, but image features were manually measured 
and provided by the investigators.

In 2015, Kazendar et al. [48] developed a fully auto-
matic ML classifier stratifying US images as benign or 

Table 1  (continued)
FIGO Stage, n. (%)
 I 22/64 (34.4%)
 II 2/64 (3.1%)
 III 26/64 (40.6%)
 IV 14/64 (21.9%)

Treatment, n. (%)
 No treatment 6 /64 9.4%)
 Neoadjuvant therapy 24/64 (37.5%)

Adjuvant chemotherapy
 Paclitaxel–Carboplatin 24/64 (37.5%)
 Paclitaxel–Carboplatin–Bevacizumab 2/64 (3.1%)
 Paclitaxel–Carboplatin–Parp inhibitor 8/64 (12.5%)
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malignant masses with an accuracy of 77% when images 
were enhanced with a Local Binary Pattern operator.

Recently, due to the wide availability of digital medical 
images and the technical advances in hardware and soft-
ware, ML has also been applied in conjunction with radi-
omic analysis.

In a study by Chiappa et al. [49], ML and radiomics were 
applied to transvaginal ultrasonography (TUS) to implement 

a decision support system (DSS) for predicting the risk level 
of malignancy of OM.

The DSS was based on a set of three radiomic ML mod-
els, named as solid masses, cystic masses and mixed masses. 
These radiomic models were integrated with information 
about presence/absence of acoustic shadows and serum 
CA-125 level, considering two different thresholds accord-
ing to menopausal status.

Fig. 1  Feature importance of 
the attribute coreset

Fig. 2  Size lesions measurement. The sizes of the lesion are measured as the largest three diameters (in mm) in two perpendicular planes. The 
largest diameter was found to be one of the most important features to predict PFS
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This addition integrates the malignancy risk predicted by 
each of the three TUS radiomic models.

The DSS was based on TUS imaging and serum CA-125 
level and showed 91% accuracy, 100% sensitivity, and 80% 
specificity in independent tests.

Martinez-Mas et  al. [50] realized a ML algorithms 
aimed to perform the automatic categorization of OC from 
US images. They analyzed 348 images. For each patient 

case and US image, its input features were previously 
extracted using Fourier descriptors calculated over the 
Region Of Interest (ROI). Then, four ML algorithms were 
considered to perform the classification stage: KNN, Lin-
ear Discriminant (LD), Support Vector Machine (SVM) 
and Extreme Learning Machine (ELM). LD, SVM and 
ELM reported more than 85% accuracy.

Fig. 3  Echogenicity of cyst fluid. The echogenicity of cyst fluid in tumors not classified as solid is described as anechoic (Panel a, low level 
(homogeneous low level echogenic) (Panel b) or ground glass (homogeneously dispersed echogenic cystic contents) (Panel c)

Fig. 4  Assessment of blood flow. The assessment of blood flow is 
a subjective assessment evaluated with a color scale. Panel a Color 
score 1: no flow, Panel b Color score 2: minimal flow, Panel c Color 

score 3: moderate flow, Panel d Color score 4: intense flow. The color 
score evaluation was found to be one of the most important features 
to predict PFS
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Regarding ML applications in the clinical management of 
OC patients, Hwangbo et al. [51] aimed to develop ML mod-
els predicting platinum sensitivity in patients with HGSC. 
Using the stepwise selection method, based on the AUC 
values, six variables associated with platinum sensitivity 
were selected: age, initial serum CA-125 levels, neoadju-
vant chemotherapy, pelvic lymph node status, pelvic tissue 
involvement other than uterus and tubes, and small bowel 
and mesentery involvement. Based on these variables, pre-
dictive models were constructed using four ML algorithms, 
LR, RFF, SVM and deep neural network. Evaluation of 
model performance using the five-fold cross-validation 
method identified the LR-based model as the best for iden-
tification platinum-resistant cases. Therefore, they developed 
a web-based nomogram adapting the LR model results for 
clinical utility.

Also attempting to improve treatment choices of OC 
patients, Shannon et al. [52] developed a ML tool to identify 
predictive molecular markers for cisplatin chemosensitivity.

CYTH3, GALNT3, S100A14, and ERI1 were the four 
potential biomarkers identified. Validation was performed on 
a cohort of n. 50 patients who underwent surgery followed 
by adjuvant carboplatin. Predictive models were established 
to predict chemosensitivity. The four biomarkers were also 
evaluated for their ability to prognosticate overall survival 
(OS) in three OC microarray expression datasets from The 
Gene Expression Omnibus. The extreme gradient boosting 
(XGBoost) algorithm was selected for the final model to 
validate the accuracy in an independent validation dataset 
(n = 10). CYTH3 and S100A14, followed by nodal stage, 
were the most important features. The signature of the four 
genes had a comparable prognosis to clinical information 
for two-year survival.

To date, only few studies attempted to apply ML to ultra-
sound evaluation of adnexal masses to predict benign or 
malignant histology.

On the other hand, some authors applied ML using only 
clinical and laboratory data to predict treatment response. To 
our best knowledge, this is the first ML algorithm basing on 
clinical, surgical, histophalogical and US features to predict 
PFS in patients diagnosed with OC.

The variables identified by the RFE as the attribute core 
set to predict the PFS had been already studied in literature.

In our cohort, age and menopausal status were negatively 
associated with PFS (Table 3). Consistently, Okunade et al. 
reported that age ≤ 55 years was an independent predictor 
of improved PFS [53]. In the study of Trifanescu et al., in 
premenopausal women, PFS was significantly higher than 
in post-menopausal ones [54].

In clinical practice, residual tumor is regarded as the 
most important factor for PFS [53]. Patients with absence 
of residual tumor after primary debulking surgery or 
interval debulking surgery have an increased PFS and 

Fig. 5  Major solid component diameter measurement. The largest 
solid component in a cystic solid tumors is measures separately with 
the assessment of two or three diameters in two perpendicular planes. 
The largest solid component was found to be one of the most impor-
tant features to predict PFS

Fig. 6  Ultrasound finding of carcinosis. Ultrasound assessment of 
carcinosis was found to be one of the most important features to pre-
dict PFS

Table 2  Algorithms Performance

Algorithm with the best performance on five-fold cross-validation is 
indicated in bold. Accuracy, Recall, Precision and AUROC for RFF, 
were significantly better than other algorithms’ ones
AUROC area under receiver operating characteristics curve, LR logis-
tic regression, KNN K-nearest neighbors, RFF random forest TPR 
true positive rate

Youden’s   
index cut-
off

Accuracy 
(%)

TPR (%) Precision 
(%)

AUROC

LR 0.64 82 84.1 80.1 0.81
RFF 0.77 93.7 90 90 0.92
KNN 0.68 73.6 83.3 76.5 0.69
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OS rates compared to patients with residual tumor [55]. 
However, in our study, this was not identified by ML as 
a predictor of prognosis. Of note running a LR for infer-
ential purpose, residual tumor was found associated with 
PFS (OR 3.04, 95% CI 1.62–4.46, data not shown). Addi-
tionally, residual tumor was strongly correlated with high 
FIGO Stage in our cohort (Cramer’s V = 0.91, data not 
shown). In this regard, on building a XGBoost-based RFE 
wrapper, it must be noticed that such multicollinearity is 
auto-handled and algorithm only keeps one of autocorre-
lated attributes for splitting trees [56]. This might explain 
why residual tumor was not included in the attribute core 
set.

The main limitation of our study is the low sample size, 
which in fundamental in ML research. Neverdless RFF 
as proven robust in previous studies with low or similar 
sample size [23]. To be adopted in clinical practice, the 
algorithm will need extensive external validation on larger 
prospective cohorts.

In gynecologic oncology, ML is a step toward preci-
sion medicine, leading to an improved patient profile and 
personalized treatment.

This model could be applied at the time of diagnosis 
to predict 12 month PFS in patients with OC. Ultrasound 
is a simple, non-invasive and inexpensive examination. 
The creation of a ML approach applied to gynecological 
ultrasound could allow to personalize the follow-up, strati-
fying patients according to the predicted PFS, intensifying 
the prescription of instrumental examinations in high-risk 
patients and reducing the request in low-risk patients.

This algorithm requires few easy-to-collect attributes. 
Further studies are needed to assess the potential of ML 
algorithms in routine gynecologic care.

Fig. 7  Receiver operating characteristics curve for Random Forest (box (A)), Logistic Regression (box (B)) and K-nearest neighbors (box (C)) 
models

Fig. 8  Calibration diagnostics for RFF model. 12 month PFS roughly 
happened with an observed relative frequency consistent with the 
forecast value, showing good calibration

Table 3  Odds ratios for the logistic regression model (outcome event: 
relapse within 12 months)

OR 95% CI

Age at diagnosis 1.11 1.05–1.18
Menopause 22.67 4.52–113.46
Ca125 1.001 1.000069–1.001946
Side 0.40 0.25–1.25
Histotype 1.47 1.17–1.83
Echogenicity of cyst fluid 0.20 1.10–1.90
Color score 1.53 0.82–2.84
Largest diameter of lesion 0.99 0.98–1.00
Carcinosis 9.5 2.74–32.88
Figo stage 7.39 2.27–24.07
Solid tumor 1.01 0.99–1.01
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