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Abstract
Objective To evaluate functional relationship between fetal circulatory response to intrauterine transfusion (IUT) as a cir-
culatory challenge and appearance of second systolic peak (P2) in middle cerebral artery (MCA) based on hemodynamic 
principles.
Methods According to the concept of pulse wave (PW) propagation and reflection in adults, PWs arrive twice at cerebral 
circulation, as primary wave caused by left ventricle ejection and secondary after reflection in peripheral arteries. Thus adults 
show a biphasic contour of systolic blood flow in cerebral arteries. Similar waveforms may appear in fetal MCA-Doppler, as 
a response to IUT as a circulatory challenge. This is a proof-of-principle study, applying classical hemodynamic principles 
to fetal circulation. Accordingly, appearance of MCA-P2 may indicate vasoconstriction with increased PW reflection and 
timing of P2(Δt) should agree with the additional PW travel time down to reflection and return (Tr). To test this agreement, 
we searched our database for IUTs performed for severe fetal anemia, and compared Δt, obtained by Doppler, with Tr, 
obtained by hemodynamic calculation using human fetal data. Level of agreement was assessed using Bland–Altman-Plots.
Results We identified 21 fetuses with adequate Doppler quality for Δt evaluation. In four cases (19%) MCA-P2 was observed 
before the intervention, and in 17 interventions (81%) thereafter; a highly significant association between IUT and P2 
appearance (p < 0.001). In these 17 interventions good agreement of P2 timing was found between Doppler assessment: 
Δt = 80 ± 8 ms, and hemodynamic calculation: Tr = 76 ± 4 ms.
Conclusion P2 appearance in fetal MCA-Doppler seems to indicate PW reflection due to increased vasoconstriction after 
IUT. Thus hemodynamic considerations might enable Doppler monitoring of fetal vasoconstriction.

Keywords Second systolic peak · Middle cerebral artery · Doppler · Intrauterine transfusion · Pulse wave reflection · 
Hemodynamic principles

Introduction

A transient second systolic peak (P2) may appear in fetal 
middle cerebral artery (MCA) Doppler waveforms after 
intrauterine transfusion (IUT). In a classical paper on fetal 
cerebral arteries Doppler waveforms before and after IUT 
published in 1990 Mari et al. showed cerebral and espe-
cially MCA Doppler waveforms with a second systolic peak 
(MCA-P2), one in a fetus with severe anemia (Hb 4 g/dl), 
and another one 2 h after IUT [1]. However, in the detailed 
hemodynamic discussion this particular systolic waveform 
feature was not mentioned.

Fetal condition after IUT is transiently worsened as the 
transfused blood has very low pH (< 7.0) and high hemato-
crit (Hct). Both these conditions increase systematic vaso-
constriction in animal models [2–4]. Recently evidence was 
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found that appearance of a second systolic peak in MCA 
Doppler of human fetuses with severe anemia may indicate 
increased pulse wave (PW) reflection, with secondary trans-
mission to head and cerebral circulation [5]. Furthermore, 
observed timing of reflection seems to minimize pulsatile 
energy consumption [6–8].

We speculate that IUT is associated with higher reflective 
conditions due to transiently increased fetal vasoconstric-
tion. The aim of our study was to evaluate the functional 
relationship between the fetal circulatory response to the 
IUT and the appearance of a MCA-P2 based on a hemody-
namic principles.

Patients and methods

This is a proof-of-principle study applying a classical hemo-
dynamic principles to the fetal circulation.

The pulse wave model of hemodynamics

In hemodynamics the concept of PW propagation and reflec-
tion is well established: cardiac contraction generates a PW 
and accelerates blood flow. During propagation of the PW to 
the periphery, reflections in the arterial system occur. Appar-
ently major reflected waves merge to a coherent reflected 
wave (RW), travelling back with an average velocity, c(Ao), 
along the aorta (Ao), and finally arriving at the left ventricle 
(LV) like an echo, after a definite time of return, the so-
called reflection time, Tr [9–11].

Based on this reflection time Tr (i.e. the two-way travel 
time taken for travelling down to reflection and back (shown 
in Fig. 1)) and the average PW velocity in the aorta, c(Ao), 
the functional distance L to reflection may be obtained:

This is the concept of the "effective length" L of the cen-
tral arterial system in hemodynamics [12] and corresponds 
approximately to the path lengths of aorta plus common iliac 
artery (CIA) as anatomical surrogates, conveniently written 
as: L(Ao +)

Consequently, RW seems to return from a functional dis-
tance L(Ao +) corresponding to the pelvic region [6, 10, 12] 
and may arrive at the LV during ongoing systole [11].

After substituting "L" by "L(Ao +)" in Eq. 1, and rear-
ranging, the following relation for Tr is obtained:

(1)L = c(Ao) ⋅ Tr∕2.

(2)L = L(Ao+) = L(Ao) + L(CIA) ≈ L(Ao) + 10%.

(3)Tr = 2L(Ao+)∕c(Ao).

Like an echo time, the reflection time Tr is given by the 
two-way travel distance to reflection and back: 2∙L(Ao +), 
divided by the average PW velocity in the aorta, c(Ao). This 
relation is the key for the transfer of the classical PW model 
to fetal circulation.

At the level of the aortic arch, a fraction of the reflected 
wave RW is diverted cranially to the cerebral circulation as 
a forward wave, to create the second systolic peak, P2 [13, 
14]. Hence this second wave arrives at the cerebral circula-
tion after a temporal delay corresponding to the additional 
travel time down to reflection and back, and thus is given by 
the aforementioned reflection time, Tr [15–17].

Transfer of the pulse wave model to the fetal 
circulation

If we apply the same principles of PW propagation and 
reflection to the fetal circulation, then PWs should arrive 
twice at cerebral circulation too: first by direct transmis-
sion, and second after downstream propagation, reflection 
and subsequent transmission. This second wave acceler-
ates ongoing flow and may create a second systolic peak 
in fetal cerebral waveforms, if PW reflection is strong 
enough. By analogy, the interval Δt until P2 onset (contour 
inflection point) on the fetal MCA waveform should coin-
cide with the temporal delay of reflected PW arrival at the 
Doppler recording site, given by the reflection time, Tr. To 

Fig. 1  Hemodynamic model. Left: diagram of pulse wave propaga-
tion, reflection and cerebral transmission. Right: middle cerebral 
artery (MCA) Doppler waveform with the time interval Δt to MCA-
P2 onset and reflection timing: Tr/T ≈ 0.2. Pulse waves reach twice to 
MCA: by direct transmission [1], and after reflection, return and sub-
sequent transmission [2]. The time interval Δt from MCA waveform 
onset to MCA-P2 onset corresponds to the reflection time Tr, i.e. the 
two-way travel time needed for travelling down to reflection and back



243Archives of Gynecology and Obstetrics (2023) 307:241–248 

1 3

our knowledge, reflection time is not known in the human 
fetus, but may approximately be calculated with [Eq. 3]: 
Tr = 2L(Ao +)/c(Ao).

Patients

In order to test the validity of the PW model in the fetal arte-
rial system, IUT was chosen as an exemplary, reproducible, 
extreme fetal distress situation. We performed a preliminary 
search in our perinatal database for IUTs performed from 
2006 to 2018 and reviewed the MCA Doppler waveforms 
obtained directly before and after IUT for appearance of 
MCA-P2. All cases with IUT performed for severe fetal ane-
mia (fHb ≤ 0.55 MOM) with a transfusion coefficient ≥ 0.03 
(IUT-volume [ml]/estimated fetal weight [g]) [18], and ges-
tational age (GA) between 26 + 0 and 30 + 6 weeks were 
included if Doppler image quality was adequate for Δt evalu-
ation (shown in Fig. 2).

The time interval (Δt) between MCA waveform onset and 
MCA-P2 onset was measured as shown in Fig. 1. Reflection 
time Tr was calculated according to Eq. 3 of the PW model: 
Tr = 2L(Ao +)/c(Ao) (shown in Fig. 1). The required factors: 
L(Ao +) = L(A0) + L(CIA), the anatomical surrogate of fetal 
functional distance to reflection, and c(Ao), the average PW 
velocity in the fetal aorta, were obtained based on human 
fetal data as follows:

• For both anatomical parameters, L(Ao) and L(CIA), 
GA-adjusted values had been published, and the sum 
of the vascular lengths was calculated according to the 

formulas proposed by Szpinda et al. for fetal Ao [19] 
and CIA [20], yielding: L(fAo +) = L(Ao) + L(CIA)
[mm] = 5.242∙GA(wks) − 48.36.

• Similarly GA-adjusted values for the PW velocity in the 
fetal Ao, c(Ao), were obtained according the follow-
ing formula: c(Ao) [cm/s] = 4.7∙GA(wks) + 125.1 [21]. 
In this study, c(Ao) was assessed from the longitudinal 
section of the descending fetal aorta at the level of the 
diaphragm.

The results of the Doppler-recorded time intervals Δt, 
were compared to the results of the model-calculated PW 
reflection time, Tr. Data coding and descriptive statistics 
were performed with SPSS version 26.0 (IBM, SPSS Inc., 
USA). To evaluate the agreement of the results obtained 
by both methods, Doppler assessment, Δt, and model cal-
culation, Tr, a Bland–Altman (mean-difference or limits of 
agreement) plot was used. The intermethod average (Av) of 
each pair of results: Av(Δt, Tr) = (Δt + Tr)/2, was plotted 
against the intermethod difference: Diff(Δt, Tr) = (Δt − Tr), 
and the 95% limits of agreement (LA) between the results 
of both methods, Δt and Tr, were calculated.

The study was conducted in accordance with the approval 
of the local Ethics Commission (KEK-ZH. Nr.2020–01225).

Fig. 2  Example of fetal middle 
cerebral artery (MCA) Doppler 
with a good image quality pre-
senting a second systolic peak 
(MCA-P2)
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Results

We could identify 21 interventions meeting all inclusion cri-
teria and adequate Doppler quality for Δt evaluation. In 4 
cases (19%) MCA-P2 was observed before the intervention, 
and in 17 interventions (81%) MCA-P2 was observed there-
after, thus indicating a highly significant association between 
IUT performed for severe anemia and observation of MCA-
P2 (p < 0.001, Fisher’s exact test) after the intervention.

Thus 17 interventions remained for Δt measurements and 
these were performed on 14 fetuses (3 fetuses with repeated 
interventions). The underlying cause for anemia was mater-
nal red cell alloimmunization in 10 cases, anti-Kell anti-
bodies in 3 cases and fetal parvovirus B12 infection in one 
case. Mean GA (± SD) at IUT was 28 ± 1 weeks at a fetal 
weight of 1061 ± 358 g. Fetal hemoglobin measurements 
before IUT were 5.6 ± 1.4 g/l followed by IUT with a mean 
IUT-Volume of 42 ± 12 ml. Neonatal outcome data are pre-
sented in Table 1.

The mean value of the time intervals Δt, measured 
between MCA waveform onset and MCA-P2 onset in Dop-
pler waveforms obtained in these cases after IUT was: 
Δt = 80 ± 8 ms.

The mean of the vascular path lengths obtained accord-
ing Eq.  2: L(Ao +) = L(Ao) + L(CIA) using individual, 
GA-adjusted human fetal data on Ao and CIA lengths was: 
L(Ao +) = 9.7 ± 0.7 cm, and the mean of the aortic PW 
velocities obtained from individual, GA-adjusted fetal aortic 
velocity data [21] was: c(Ao) = 255 ± 6 cm/s.

Finally, we calculated the individual reflection times Tr 
according to Eq. 3: Tr = 2∙L(Ao +)/c(Ao), and obtained as 
mean value: Tr = 76 ± 4 ms (Table 2).

Good agreement between the results of both methods, 
Tr = 76 ± 4 ms and Δt = 80 ± 8 ms, was confirmed by the 

Table 1  Neonatal outcome data

*Last US at our center took place after 34 + 0 gestational age (GA), women were sent to the hospital close 
to home for delivery. Outcome data are not available
# Progressive Hydrops fetalis despite transfusions. Interdisciplinary decision with the parents for palliative 
care

Nr GA at birth Mode of birth Birth weight Apgar pH Hct (%) Neonatal therapy

1 37 + 3 Vaginal 3170 6–9–9 7.26 48 None
2 30 + 5 C-Section 1450 2–9–9 7.33 20 Transfusion
3 *
4 *
5 *
6 *
7 37 + 5 Vaginal 3030 8–9–9 7.15 43 None
8 37 + 1 Vaginal 2850 8–9–9 7.26 55 None
9 37 + 1 Vaginal 2750 8–9–9 7.31 59 None
10 36 + 2 C-Section 3040 8–9–10 7.39 51 Phototherapy
11 37 + 3 C-Section 2900 8–9–10 7.38 36 Phototherapy
12 25 + 1 #Vaginal 1120 1–1–1
13 38 + 3 Vaginal 3060 9–9–10 7.39 42 None
14 37 + 5 Vaginal 2860 8–9–10 7.28 59 None

Table 2  Gestational age (GA) adjusted, individual values for: func-
tional distance to reflection, L(Ao +) = L(Ao) + L(CIA), average fetal 
aortic pulse wave velocity, c(Ao), and individually calculated reflec-
tion times, Tr = 2L(Ao +)/c(Ao) and time interval Δt to MCA-P2 
onset of 17 IUT procedures

Nr GA L(Ao +) [cm] c(Ao) [cm/s] Tr [ms] Δt (ms)

1 26 + 3 8.8 247 71 76
2 26 + 5 8.8 247 71 87
3 26 + 5 8.8 247 71 83
4 27 + 1 9.3 252 74 86
5 27 + 1 9.3 252 74 67
6 27 + 3 9.3 252 74 71
7 27 + 4 9.3 252 74 84
8 27 + 4 9.3 252 74 71
9 27 + 4 9.3 252 74 84
10 27 + 4 9.3 252 74 80
11 28 + 1 9.8 257 76 83
12 28 + 6 9.8 257 76 79
13 29 + 3 10.4 262 80 88
14 29 + 4 10.4 262 80 79
15 29 + 5 10.4 262 80 95
16 30 + 1 10.9 266 82 83
17 30 + 6 10.9 266 82 67
Mean 28 ± 1 9.7 ± 0.7 255 ± 6 76 ± 4 80 ± 8
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Bland–Altman plot: the intermethod difference between 
mean Δt (80 ms) and mean Tr (76 ms) was 4.8 ms, and 
the 95% limits of agreement (LA, ms) were [− 11.8; + 20.8] 
(shown in Fig. 3).

Discussion

This study provides evidence that a second systolic peak, 
P2, in MCA Doppler might indicate PW reflection due to 
increased fetal vasoconstriction after IUT. Accordingly, 
hemodynamic principles might enable Doppler monitoring 
of fetal vasoconstriction.

MCA Doppler has doubtlessly established its priority 
role in the diagnosis of fetal anemia [22–24]. In pregnan-
cies complicated by maternal red cell alloimmunization, 
monitoring the MCA peak systolic blood flow velocity by 
Doppler assessment was shown to be reliable enough to 
replace invasive testing. The present study however, directs 
the focus to an additional, new tool of the MCA Doppler 
imaging, the second systolic peak, MCA-P2, which may 
identify increased fetal PW reflection as a marker of fetal 
distress. There are a number of aspects that deserve detailed 
consideration.

Fetal MCA Doppler waveforms mainly show a slightly 
convex [25] systolic downslope, sometimes changing from 
a more or less discernable systolic shoulder (MCA-S) to a 
clearly visible but less frequent second systolic peak (MCA-
P2). This latter waveform pattern may appear in cerebral 

and especially in MCA Doppler waveforms after IUT, as 
shown in the classical paper by Mari [1] and occasionally 
in fetal MCA waveforms published by others [26–28]. We 
could observe that MCA-P2 was more frequently persisting 
in severe anemic fetuses after IUT with a significant transfu-
sion volume, and we decided to study this so far unaddressed 
or overlooked phenomenon.

IUT performed as therapeutic intervention may tran-
siently worsen the fetal condition due to low pH and high 
Hct of the transfused blood. Animal models revealed signs 
of systemic fetal vasoconstriction due to transient acidemia 
and hyperviscosity after IUT [2–4]. Thus, IUT constitutes a 
well-defined and quantifiable circulatory stress to the fetal 
cardiovascular system. In the human fetus IUT was found 
to increase blood pressure (BP) in the umbilical vein (UV) 
[29], but we could not localize any report on arterial BP 
measurements. Whereas in fetal lambs IUT was reported 
to increase arterial BP [30]. However, in the human fetus 
IUT was associated with a significant increase in Arginine 
vasopressin (AVP) levels [31], an antidiuretic hormone and 
potent vasoconstrictor, which increases peripheral vascular 
resistance and raises arterial BP in adults [32]. This sup-
ports the assumption that IUT may increase vasoconstric-
tion in the human fetus too. According to our preliminary 
observations, major IUT challenge might be detected by the 
appearance of MCA-P2.

We looked for corresponding Doppler signs seen in 
cerebrovascular waveforms in adults, and found that simi-
lar systolic waveform modulations were attributed to PW 

Fig. 3  Bland–Altman plot to 
assess the agreement between 
Δt and Tr: the intermethod 
difference between mean Δt 
(80 ms) and mean Tr (76 ms) 
was 4.8 ms, and the 95% limits 
of agreement (LA, ms) were 
[− 11.8; + 20.8]
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propagation, reflection and cranial transmission [13, 15, 
17, 33, 34]. Accordingly, systemic vasoconstriction mod-
ulates PW reflection and the shape of cerebrovascular 
waveforms [12, 13, 35]. Thus, we assumed that this hemo-
dynamic approach might be applicable in fetuses too and 
be useful to describe the functional relationship between 
IUT as a circulatory challenge and MCA-P2 appearance 
as a result of PW reflection. A valid model should enable 
to describe the response of the fetal arterial system in a 
predictive way and this is what we could confirm with 
this study. The temporal delay Tr of reflected wave arrival 
to MCA, as calculated by the model: Tr = 2L(Ao +)/c(Ao), 
coincided with the clinically observed temporal delay Δt 
to MCA-P2 onset, the assumed sign of fetal PW reflection 
appearing in MCA Doppler waveforms. Thus, the result of 
the model-calculated PW reflection time, Tr = 76 ± 4 ms, 
is comparable to the results of the Doppler-recorded time 
interval Δt = 80 ± 8 ms. The Bland–Altman method con-
firmed good agreement between both results (shown 
in Fig.  3): within the 95% limits of agreement (LA) 
[− 11.8; + 20.8] (ms), indicating a mid-systolic event in 
fetuses between 26 and 32 weeks’ gestation, were mean 
ejection time (systole) was reported between 165 and 
175 ms [36–38]. Finally the intermethod difference of 
4.8 ms between mean Δt (= 80 ms) and mean Tr (= 76 m) 
is within the temporal resolution capacity of the Doppler 
method (~ 10 ms) [39].

The validity of the PW model in the human fetus is 
supported by recently published studies on optimal pul-
satile timing in the mammalian cardiovascular system [6, 
40]. Accordingly, energy consumption of pulsatile cardiac 
action is optimized when the (one-way) transit time to 
PW reflection takes about 10%, or equivalent, when the 
(2-way) transit time to PW reflection and return (= Tr) 
takes about 20% of the cardiac cycle T: Tr/T ≈ 0.2 [6–8]. 
Assuming a mean fetal heart rate of 150 bpm (i.e. cardiac 
cycle T = 400 ms), then with our study result: Tr = 76 ms, 
follows: Tr/T = 76 ms/400 ms = 0.19. This indicates nearly 
optimal pulsatile timing and seems to confirm the valid-
ity of the same PW optimization criterion in the fetus. 
Moreover, a simple look to the MCA waveform pattern 
allows a brief visual check of this 20% criterion (Tr/T ≈ 
0.2, Fig. 1).

For ethical and clinical reasons we could not have 
direct access to the arterial system of the fetus, the subject 
of our study. This is a main limitation of our study, i.e. 
we could not measure vasoconstriction or arterial blood 
pressure to study the fetal circulatory response to IUT 
directly. Nevertheless, we could observe critical signs of 
PW reflection and these observations are based on a well-
stablished hemodynamic model in (adult) physiology [10, 
12, 13, 15, 33–35].

Conclusion

The transfer of the hemodynamic model of PW propaga-
tion and reflection to the fetus is feasible and provides a 
new, non-invasive access to the fetal cardiovascular system. 
Accordingly a second systolic peak in fetal MCA Doppler 
imaging, MCA-P2, seems to indicate increased fetal PW 
reflection, and may appear in particular circumstances after 
IUT, a therapeutic intervention associated with transient fetal 
circulatory distress. Thus consideration of a secondary sys-
tolic peak P2 in fetal MCA-Doppler waveforms might open a 
diagnostic window to observe signs of fetal vasoconstriction 
after IUT. Whether monitoring of this particular Doppler 
sign might be of clinical benefit in fetal treatment, remains 
to be evaluated in systematic clinical studies. Clearly, these 
hemodynamic considerations provide additional insight and 
may help to design such a study.

This hemodynamic model approach may also open a 
window to evaluate transplacental effects of vasoactive sub-
stances on fetal cardiovascular system, including anesthet-
ics, tocolytics and antihypertensives [41]. In the meanwhile, 
the same hemodynamic principle of PW reflection from the 
arterial system and transmission to cerebral arteries became 
also the basis for the interpretation of maternal ophthalmic 
artery Doppler waveforms to predict and to monitor preec-
lampsia [42–44].
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