REVIEW

Effectiveness of progesterone-primed ovarian stimulation in assisted reproductive technology: a systematic review and meta-analysis

Ling Cui¹ · Yonghong Lin¹ · Fang Wang¹ · Chen Chen²

Received: 1 June 2020 / Accepted: 13 December 2020 / Published online: 12 January 2021 © The Author(s) 2021

Abstract

Purpose Progestin-primed ovarian stimulation (PPOS) is a new ovarian stimulation protocol that has been used over the last decade to enhance reproductive function. The purpose of this study is to evaluate whether PPOS is as effective as conventional protocols (without GnRHa downregulation).

Method Search terms included "medroxyprogesterone", "dydrogesterone", "progestin-primed ovarian stimulation", "PPOS", "oocyte retrieval", "in vitro fertilization", "IVF", "ICSI", "ART", and "reproductive". The selection criteria were nonrandomized studies and randomized controlled studies. For data collection and analysis, the Review Manager software, New-castle–Ottowa Quality Assessment Scale and GRADE approach were used.

Results The clinical pregnancy rates were not significantly different in either RCTs or NRCTs [RR 0.96, 95% CI (0.69–1.33), $l^2 = 71\%$, P = 0.81]; [RR 0.99, 95% CI (0.83–1.17), $l^2 = 38\%$, P = 0.88]. The live birth rates of RCTs and NRCTs did not differ [RCT: RR 1.08, 95% CI (0.74, 1.57), $l^2 = 66\%$, P = 0.69; NRCT: OR 1.03 95% CI 0.84–1.26), $l^2 = 50\%$, P = 0.79]. The PPOS protocol had a lower rate of OHSS [RR 0.52, 95% CI (0.36–0.75), $l^2 = 0\%$, P = 0.0006]. The secondary results showed that compared to the control protocol, the endometrium was thicker [95% CI (0.00–0.78), $l^2 = 0\%$, P = 0.05], the number of obtained embryos was higher [95% CI (0.04–0.65), $l^2 = 17\%$, P = 0.03] and more hMG was needed [in NRCT: 95% CI (307.44, 572.73), $l^2 = 0\%$, P < 0.00001] with the PPOS protocol.

Conclusion The PPOS protocol produces more obtained embryos and a thicker endometrium than the control protocol, with a lower rate of OHSS and an equal live birth rate. The PPOS protocol could be a safe option as a personalized protocol for infertile patients.

Trial registration Registration at PROSPERO: CRD42020176577.

Keywords Ovarian stimulation \cdot Assisted reproductive technology \cdot Controlled ovarian stimulation \cdot Clinical pregnancy rate \cdot Live birth rate

Fang Wang and Chen Chen contributed equally to this work.

Fang Wang postwf@163.com

Chen Chen chen.chen@uq.edu.au

¹ Department of Reproduction and Infertility, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China

² School of Biomedical Science, University of Queensland, St Lucia, Brisbane, QLD, Australia

Introduction

Progestin-primed ovarian stimulation (PPOS) was proposed by the Yanping Kuang M.D. group in 2015 [1]. Oral administration of exogenous progesterone (P), such as medroxyprogesterone acetate (MPA) and dydrogesterone (DYG) [2–5], beginning in the early follicular phase is used with gonadotropin during controlled ovarian stimulation (COS) [defined by The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO)] [6] in IVF/ICSI treatments. PPOS can effectively prevent the activation and transmission phases of oestradiol (E2)-induced LH surges and thus serves as an alternative to conventional treatment with GnRH analogs. Prior studies have shown that the PPOS protocol with medroxyprogesterone acetate (MPA) produces competent oocytes/embryos and achieves comparable pregnancy outcomes to those of GnRH antagonist protocols [3, 4, 7–11], as well as short-term protocols [12, 13] and mild stimulation protocols [5] (see Table 1). Coupled with the application of frozen-thawed embryo transfer (FET) and the dual trigger of GnRH agonist with low-dose hCG, the PPOS protocol also allows for nearly complete avoidance of OHSS occurrence [14, 15], since all the embryo transfers after PPOS are frozen. There are many clinical studies on PPOS protocol use in infertile women, including women who have normal ovarian function, PCOS [4, 15], poor ovarian response [7, 9], who are of advanced maternal age [5], having endometriosis [11] and donated oocytes [10]. The reported findings are variable; some studies have shown better live birth outcomes, while others showed no difference. The crucial clinical aspects of IVF protocols are efficacy and safety. Some studies have shown that the PPOS protocol may be cost-effective compared with the GnRH antagonist in planned freeze-only cycles, such as in preimplantation genetic testing or fertility preservation [11, 16]. These results are very consistent with our clinical observations, but we still need more solid evidence.

It is questionable whether PPOS has the same effect and is safer than conventional IVF protocols. The purpose of this systematic review was to investigate whether PPOS for the treatment of infertile patients achieved pregnancy outcomes that were the same as or better than those of conventional protocols (any COS protocol without gonadotrophin-releasing hormone agonist (GnRHa) downregulation). This work will hopefully provide statistical evidence for clinicians on PPOS use in the treatment of infertility.

Methods

Criteria for considering studies for this review

We performed a pairwise meta-analysis.

Types of studies

We included intervention studies in the form of randomized controlled trials and nonrandomized controlled trials that compared progestin-primed ovarian stimulation to other protocols.

Types of participants

Participants suffering from infertility.

Types of interventions

One of the interventions for IVF was PPOS, and the control interventions included the GnRH agonist protocol, as well as the short-term protocol and mild stimulation protocol (details of protocols are shown in Table 1).

Types of outcome measures

Primary outcomes:

- 1. Clinical pregnancy rate [6]
- 2. Live birth rate [6]
- 3. Incidence of OHSS [6]

Secondary outcomes:

- 1. Duration of stimulation
- 2. Dose of gonadotrophin for injection
- 3. Progestin values on trigger day (ng/ml)
- 4. Number of retrieved oocytes
- 5. Number of MII oocytes
- 6. Number of obtained embryos
- 7. Total cycle cancelation
- 8. Endometrial thickness

Data collection and analysis

Selection of studies

The titles and abstracts of articles were screened by two independent researchers (LC, FW) to be included or excluded. Any disagreement between the two as to which studies to include was resolved by discussion. A third author (YHL) would evaluate records when there was any unsolvable disagreement.

Data collection process

Data were extracted by one reviewer (LC), and checked by a second (FW). For each included study, the information collected included study design, methods, setting and time period, information about the participants (eligibility criteria), and drop-outs; interventions and outcomes, including clinical pregnancy rate, live birth rate, incidence of OHSS, duration of stimulation, dose of gonadotrophin for injection, progestin values on trigger day (ng/ml), number of retrieved oocytes, number of MII oocytes (mature oocytes), number of obtained embryos, total cycle cancelation, and endometrial thickness.

Author (year)	Country	Country Type of study	Participants	IVF protocol	Intervention
Eftekhar et al. (2019) [4]	Iran	RCT ¹	With PCOS aged between 18 and 40 years ($n = 60$ /each)	$PPOS^2$ vs GnRH ³ antagonist protocol	PPOS: rFSH ⁴ (Cinnal-f Cinnagen, Iran)for injection, DYG ⁵ for oral progesterone Antagonist protocol: cetrotide (Merck- Serono Germany) for injection
Chen et al. (2019) [7]	China	RCT	Participants with poor responders mean age was $35 (n = 170)(each)$	PPOS vs GnRH antagonist protocol	PPOS: hMG ⁶ for injection, MPA ⁷ for oral progesterone Antagonist protocol: cetrotide + hMG
Wen et al. (2018) [12]	China	RCT	PPOS (MPA 10 mg) and short-term protocol with maximum age was 35 years ($n=3.1$ /each)	PPOS vs short-term protocol	PPOS: hMG (Lizhu Pharmaceutical Trading Co., Zhuhai, China) for injection, metroxyprogesterone acetate (MPA, Xianju Pharma, Zhe- jiang, China) for oral progesterone Short-term protocol: triptorelin (Huilin, Germany) + hMG
Begueria et al. (2019) [8]	Spain	RCT	Women between 18 and 35 years $(n=91)$ (each)	PPOS vs GnRH antagonist protocol	PPOS: rFSH (Gonal-F Merck, Madrid, Spain) for injection, MPA (Progevera Pfizer, Spain) for oral progesterone Antagonist protocol: ganirelix (Orgal- utran, Merck Sharp and Dohme Limited, UK)
Wang et al. (2016) [15]	China	RCT	Patients with PCOS. age 18–39 years $(n = 60/\text{each})$	PPOS vs short-term protocol	PPOS: hMG (Anhui Fengyuan Pharma ceutical Co, China) for injection, MPA (Beijing Zhong Xin Pharmaceutical, China) for oral progesterone Short-term protocol: hMG for injec- tion
Iwami et al. (2018) [3]	Japan	Prospective nonrand- omized controlled study	Age younger than 41 years 125 in study group and 126 in con- trol group	PPOS vs GnRH antagonist protocol	PPOS: hMG (Teizo, ASKA Pharma- ceutical Co., Ltd., Tokyo, Japan) for injection, DYG (Duphaston, Abbott Healthcare, Tokyo, Japan) for oral progesterone Antagonist protocol: ganirelix (Gan- irelix MSD, Tokyo, Japan) or Cetrot- ide (EMD-Serono, Tokyo, Japan)
Wang et al. (2018) [13]	China	Retrospective cohort study	1107 cycles from the PPOS protocol and 969 cycles from the GnRH-a short protocol	PPOS vs short-term protocol	PPOS: hMG (Anhui Fengyuan Phar- maceutical Co., Ltd., Hefei, China) for injection, utrogestan (Labora- tories Besins International, Paris, France) for oral progesterone Short-term protocol: cetrorelix (Deca- peptyl, Ferring Pharmaceuticals, Germany)

 Table 1
 Characteristics of included studies

lable I (continued)					
Author (year)	Country	Country Type of study	Participants	IVF protocol	Intervention
Huang et al. (2019) [9]	China	Retrospective cohort study	Poor ovarian responders 63 cycles from the PPOS protocol and 123 cycles from the GnRH-a short protocol	PPOS vs GnRH antagonist protocol	PPOS: hMG (Anhui Fengyuan Phar- maceutical Co, China) for injection, MPA (Beijing Zhong Xin Pharma- ceutical, China) Antagonist protocol: cetrorelix (Deca- peptyl, Ferring Pharmaceuticals, Germany)
Peng et al. (2019) [5]	China	retrospective cohort study	Women with ages \geq 40 years. 122 cycles mild stimulation group and PPOS group (47 cycles)	PPOS vs mild stimulation protocol	PPOS: hMG (Lizhu Pharmaceutical Trading Co., Zhuhai, China) for injection, DYG (Duphaston; Abbott Biologicals B.V., Netherlands) for oral progesterone The mild stimulation proto- col: CC ⁸ (Codal Synto Ltd., Cyprus)+hMG
Yildiz et al. (2019) [10]	Turkey	Retrospective cohort study	103 donors, mean age 25 years 49 PPOS group 54 control group	PPOS vs GnRH antagonist protocol	PPOS: rFSH (Gonal F, MerckvSerono, Switzerland)) for injection, MPA (Tarlusal, Deva) for oral progester- one Antagonist protocol: (Cetrotide, Merck Serono)
Mathieu d'Argent et al. (2020) [11] France	France	Retrospective cohort study	Retrospective cohort study Age <40 years, with endometriosis (n=54/each)	PPOS vs GnRH antagonist protocol	PPOS: rFSH for injection, desogestrel for oral progesterone Antagonist protocol: (Ganirelix, orgalutran MSD France)
¹ RCT: randomized controlled trial ² PPOS: progestin-primed ovarian stimulation ³ GnRH: gonadotropin-releasing hormone	imulation mone				

Table 1 (continued)

⁴rFSH: recombinant human follicle stimulating hormone

⁶hMG: human menopausal gonadotropin ⁷MPA: medroxyprogesterone acetate

⁵DYG: dydrogesterone

⁸CC: clomiphene citrate

Search methods for identification of studies

This study was based on the PRISMA guidelines for systemic review and meta-analysis [17]. The electronic databases used were MEDLINE, EMBASE, and the Cochrane Library from 2010 to 13th March 2020 without limitation of region, language, or publication type. Specific strategies for electronic search at the database used a combination of (MeSH): ((((((medroxyprogesterone) or Dydrogesterone))) or progestin-primed ovarian stimulation) or PPOS)) and ((((oocyte retrieval rate) or IVF) or ICSI) or ART). The following keywords "medroxyprogesterone", "dydrogesterone", "progestin-primed ovarian stimulation", "PPOS", "oocyte retrieval", "IVF", "ICSI", "ART", and "reproductive" were used in the search. Intervention studies including prospective controlled study, retrospective cohort study, nonrandomized studies with comparison groups (NRCTs), and randomized controlled trial were included. The inventions of the control group included short-term protocol, GnRH antagonist protocol, and mild stimulation protocols (any cos protocol without GnRHa downregulation). The strategies for electronic search at the database used a combination of (MeSH) ((((((medroxyprogesterone) or Dydrogesterone))) or progestin-primed ovarian stimulation) or PPOS)) and ((((oocyte retrieval rate) or IVF) or ICSI) or ART).

We excluded the following studies: (1) self-controlled study; (2) books, conferences, review articles, editorial, notes, thesis, case series, letters, posters, and case reports; (3) unreliable extracted data, overlapped datasets, and paragraphs of only abstract available.

Assessment of risk of bias in individual studies

Quality of studies

The Cochrane collaboration tools were used to assess the risk of bias in randomized controlled trials [18]. The Cochrane Collaboration risk of bias tool includes random sequence generation (selection bias), allocation sequence concealment (selection bias), blinding of participants and personnel performance bias (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other bias. The reviewers rated the quality of the included studies as low risk, unclear risk or high risk.

Newcastle–Ottawa Scale (NOS) was used to assess the quality of nonrandomized controlled studies in meta-analyses [19]. The NOS is useful, reliable, complementary tools for appraising methodological quality of medical education research [20]. The NOS contains eight items. The items are categorized into three dimensions including selection, comparability, and outcomes of studies. The NOS ranges from zero to nine stars as follows: selection of the study group (up to 4 stars/points), comparability of cohorts (up to 2 stars/points), and ascertainment of outcome (up to 3 stars/ points). High-quality studies achieve more than seven stars, medium-quality studies between four and six stars, and poorquality studies less than four stars.

Data synthesis

All data were entered into the analysis system (Review Manager, version 5.2). We used the risk ratio (RR) and 95% confidence intervals (CIs) for variables with dichotomous data for RCTs and odds ratios (ORs) for nonrandomized studies. For these variables, the weighted summary RR was calculated using the Mantel–Haenszel method. For continuous data, the mean difference (MD) was calculated and corrected according to the sample bias.

We constructed 'Summary of findings' tables using GRADE-pro [21]. We summarized and graded the certainty of the evidence for critical outcomes (clinical pregnancy rate, live birth rate, OHSS, duration of stimulation, dose of gonadotrophin for injection, number of retrieved oocytes, number of obtained embryos, and endometrial thickness).

Subgroup analysis and investigation of heterogeneity

Higgins I^2 values [22] were used to assess statistical heterogeneity between studies and values of $I^2 \le 25\%$ which were indicative of low heterogeneity.

We used a fixed-effect model in the analysis, as our results were all homogeneous according to the chi-squared test and $I^2 \leq 50\%$. The random-effect model was used in the analysis, our results were all homogeneous according to the chi-squared test, and $50\% \le I^2 \le 70\%$ was taken to indicate substantial statistical heterogeneity. If the chi-squared test result and I^2 were \geq 70%, where the heterogeneity was too large and not suitable for combined analysis, we performed a subgroup analysis. The effectiveness of HMG versus recombinant FSH in women undergoing ovarian stimulation for IVF/ICSI demonstrated a significant difference in the live birth rate [23, 24]. We performed subgroup analysis for clinical pregnancy rate (primary outcome), live birth rate (primary outcome), and dose of sex hormones for injection (secondary outcome) considering the different types of sex hormones for injection (rFSH or hMG) according to clinical experience.

Sensitivity analysis

For outcomes such as the number of MII oocytes, we examined the sensitivity versus risk of bias (by excluding one study [12] with unclear risks of bias from the analysis of selection bias, performance bias, detection bias, attrition bias, selective reporting, and reporting bias). We also assessed the outcome of gonadotrophin subgroup (hMG) sensitivity to risk of bias (by excluding one study [12] with unclear risks of bias from the analysis of selection bias, performance bias, detection bias, attrition bias, selective reporting, and reporting bias and one study [15] with a large difference in the mean \pm SD (2072.5 \pm 467.86 vs. 1501.25 \pm 68.18).

Results

Results of the search

We identified a total of 117 records from the electronic database searches. Deduplication and removal of all irrelevant records were performed. After the titles and abstracts were screened, 86 irrelevant records were excluded. Of the remaining 24 studies, we excluded 13 records. Details of the selection process for studies are summarized in the PRISMA flow diagram (Fig. 1). There were five RCTs, one nonrand-omized study and five retrospective cohort studies (Table 1).

Description of populations and interventions

Table 1 provides brief details of populations and interventions. Two RCTs [4, 15] included PCOS participants, and the studies by Chen et al. [7] and Huang et al. [9] included participants with poor responders. Wen et al. [12] and Begueria et al. [8] included participants with a maximum age of 35 years. Iwami et al. [3] and Mathieu d'Argent et al. [11] included participants with maximum ages of 41 and 40 years. Peng et al. [5] included participants aged \geq 40 years. Yildiz et al. [10] included participants with donor oocytes.

Quality of studies

The quality of the studies included varied widely. Randomized control trials (RCTs) were assessed for their methodological quality using the Cochrane Risk of Bias Tool. The full details of the risk of bias assessment for the randomized studies are given below (Fig. 2). Three of five RCTs had four or five out of seven domains with a low risk of bias, but one study [12] had six unclear risks of bias. Three of six nonrandomized studies achieved seven stars and were judged as high quality. The other three achieved four to six stars and were judged to be of medium quality. Full details of the Newcastle–Ottawa Scale (NOS) scores for the nonrandomized studies are provided in Table 2.

Quality of the evidence

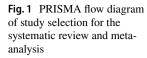
The GRADE approach aims to evaluate the quality of the evidence for each major outcome. It also takes into consideration the results from the trial sequential analyses (see summary of findings for the main comparison, Table 3). For the primary outcomes of the clinical pregnancy rate, the quality of the RCT groups and subgroups was moderate, while the nonrandomized studies were low. For the live birth rate, the quality of the RCT groups and subgroups was high, while the nonrandomized studies were low. For OHSS, the quality was high. The quality of each secondary outcome is described in detail in Table 3.

Primary outcomes

1. Clinical pregnancy rate

Five RCTs showed that the clinical pregnancy rate with the PPOS protocol was not different from that with the control group [RR 0.96, 95% CI (0.69–1.33), $I^2 = 71\%$, P = 0.81].

For $I^2 \ge 70\%$, the heterogeneity was too large and not suitable for combined analysis. Analysis of the effectiveness of HMG versus recombinant FSH in women undergoing ovarian stimulation for IVF/ICSI demonstrated a significant difference in live birth rates [23, 24]. We performed subgroup analysis for the clinical pregnancy rate (primary outcome). Two RCTs in the rFSH subgroup showed that the PPOS protocol had a lower clinical pregnancy rate than the control group [RR 0.64, 95% CI (0.49–0.85), $I^2 = 0\%$], and the result was statistically significant (P = 0.002). Three RCTs showed that in the hMG subgroup, the PPOS protocol led to a higher clinical pregnancy rate than the control group [RR 1.22 95% CI (0.99–1.5), $I^2 = 0\%$, P = 0.06], and the difference was very close to being statistically significant.


The results of five NRCTs did not show any significant difference in the clinical pregnancy rate between the two groups [RR 0.99, 95% CI (0.83–1.17), $I^2 = 38\%$, P = 0.88].

2. Live birth rate

The live birth rates were not different between groups in three RCTs [RR 1.08, 95% CI (0.74, 1.57), $I^2 = 66\%$, P = 0.69]. Additionally, the results of one NRCT showed that there was no difference between the two groups [OR 1.03 95% CI 0.84–1.26), $I^2 = 50\%$, P = 0.79] (Fig. 3).

3. OHSS

Only two RCTs described the incidence of OHSS, and the results showed that the PPOS protocol had a lower rate of OHSS [RR 0.52, 95% CI (0.36–0.75), $I^2 = 0\%$, P = 0.0006] (Fig. 3). The result was statistically significant.

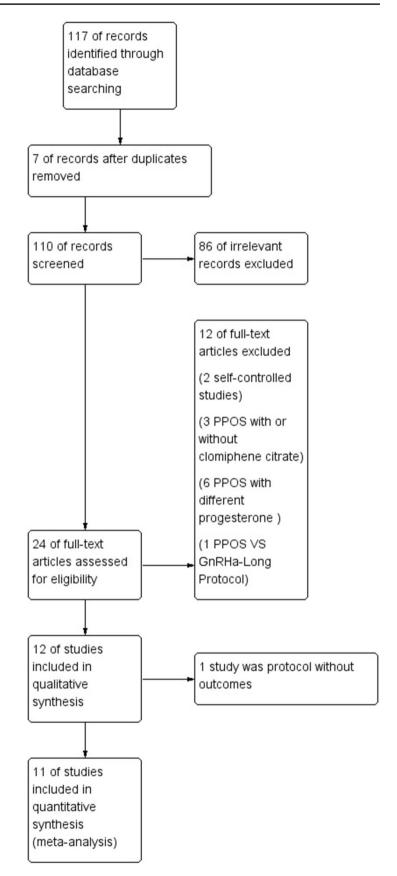


Fig. 2 Risk of bias assessment for the randomized studies

nent s	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
1 (RCT)Maryam et al, 2019	•	•	?	?	•	?	•
2 (RCT) Qiuju et al, 2019	٠	•	•	•	•	•	•
3 (RC)Xiaowei et al, 2018	?	?	?	?	?	?	•
4 RCT Beguerí 2019	•	•		•	•		•
5 RCT-Yun wang 2016	•	•	•	•	•	•	•

Table 2 Newcastle–Ottawa risk of bias for included NRCTs	Author (year)	Selection of study groups score	Comparability of groups score	Out- come score	Total NOS score	Risk of bias
	Iwami et al. (2018) [3]	3	1	1	5 stars	Medium
	Wang et al. (2018) [13]	3	1	3	7 stars	Low
	Huang et al. (2019) [9]	3	1	2	6 stars	Medium
	Peng et al. (2019) [5]	3	1	1	5 stars	Medium
	Yildiz et al. (2019) [10]	3	2	2	7 stars	Low
	Mathieu d'Argent E et al. (2020) [11]	4	1	2	7 stars	Low

623

Table 3Summary of findingsfor the main comparison

outcomes of fertility

Patient or population: patients with outcomes of fertility Settings: hospitals

Intervention: PPOS protocol

Comparison: control protocol

Dutcomes	Illustrative comparati	ve risks* (95% CI)	Relative effect	No of Participants	Quality of the
	Assumed risk	Corresponding risk	(95% CI)	(studies)	evidence (GRADE)
	Control	Clinical pregnancy rate			
CT-Clinical pregnancy rate	Study population		RR 0.96	964	$\oplus \oplus \oplus \circ$
	373 per 1000	358 per 1000	(0.69-4.33)	(5 studies)	Moderate ¹
		(257-496)			
	Moderate				
	419 per 1000	402 per 1000			
		(289—557)			
Ion-randomized-Clinical pregnacy rat	e Study population		OR 0.99	2900	⊕ ⊕ ∞
	681 per 1000	679 per 1000	(0.83-4.17)	(5 studies)	Low
		(639—714)			
	Moderate				
	495 per 1000	492 per 1000			
		(449—534)			
RCT-			RR 0.64	400	⊕⊕⊕⊙
.01-	Study population		(0.49-0.85)	(2 studies)	Moderate ¹
Clinical pregnancy rate of subgroup	447 4000		(0.43-0.03)	(2 300163)	moderate
FSH	417 per 1000	267 per 1000 (205—355)			
		(205—355)			
	Moderate				
	376 per 1000	241 per 1000			
		(184— 320)			
RCT-	Study population		RR 1.22	564	
			(0.99-4.5)	(3 studies)	Moderate
linical pregnancy rate of subgroup	340 per 1000	415 per 1000		. ,	
MG		(337—511)			
	Moderate				
	419 per 1000	511 per 1000			
	_	(415—629)			
RCT-Live birth rate	Study population		RR 1.08	805	$\oplus \oplus \oplus \oplus$
	268 per 1000	289 per 1000	(0.74-4.57)	(3 studies)	High
		(198— 420)			
	Moderate				
	275 per 1000	297 per 1000			
		(204–432)			
	Study population				
	Study population				
omparison group and the relative effec		its 95% CI).			
Confidence interval, RR risk ratio, OR	odds ratio				
RADE Working Group grades of evider					
igh quality: Further research is very un					
		impact on our confidence in the estimate of effect and			
		mpact on our confidence in the estimate of effect and	is likely to change the estimate.		
ery low quality: We are very uncertain					
		ince bias, detection bias, attrition bias, selective report	rting and reporting bias		
Chi-square test and I2=61% was taken	to indicate substantial sta	tistical heterogeneity.			

Secondary outcomes

4. Duration of stimulation (day)

Data from both RCTs (MD 0.03 lower, 95% CI (-0.37-0.31), $I^2 = 44\%$, P = 0.85) and nonrandomized trials (MD 0.12 higher, 95% CI (-0.51-0.75), $I^2 = 61\%$, P = 0.71) showed that the duration of stimulation between the two groups was nearly the same. The slight difference was not statistically significant (Fig. 4).

³Increased dosage is better

5. Dose of gonadotrophin for injection (IU)

We performed preplanned subgroup analysis of the dose of gonadotrophin for two different kinds of gonadotrophin. Two RCTs in the rFSH subgroup showed that the mean difference (MD) in dose for PPOS in the rFSH subgroup was 55.1 higher [95% CI (- 48.35–158.56), $l^2 = 0\%$, P = 0.30]. Only one RCT showed that the MD in dose of the PPOS protocol was 121.3 lower in the hMG subgroup [95% CI (- 258.76– 16.16), P = 0.08]. These differences were not statistically significant. The results of NRCTs showed that the MD in the subgroup of rFSH was 116.47 lower [95% CI (- 480–247.24), $l^2 = 0\%$, P = 0.53]. NRCTs in the hMG subgroup showed that the MD for the PPOS protocol was 440.08 higher [95% CI (307.44, 572.73),

	Pri	mary	outcomes
--	-----	------	----------

1 Clinical pregnancy rate

1. Clinical pregnan	cy rate						
	PPC	S	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Random, 95% Cl
1.1 RCT-clinical pre	anancy	rate					
1 (RCT) Eftekhar 2019	6	41	15	51	10.0%	0.50 [0.21, 1.17]	
2 (RCT) Chen Q 2019	48	170	39	170	22.3%	1.23 [0.85, 1.77]	-
3 (RCT) Wen X 2018	17	34	13	31	17.0%	1.19 [0.70, 2.03]	
4 (RCT) Beguerí R 2019	47	153	71	155	24.7%	0.67 [0.50, 0.90]	-
5 (RCT) Wang Y 2016	49	75	45	84	25.9%	1.22 [0.94, 1.58]	+
S (itely wang 1 2010	40	10	40	04	20.070	1.22 [0.04, 1.00]	
Total (95% CI)		473		491	100.0%	0.96 [0.69, 1.33]	•
Total events	167		183				
Heterogeneity: Tau ² = 0.09	9; Chi ² = 1	3.85, dt	= 4 (P =	0.008);	I ² = 71%		Risk Ratio
Test for overall effect: Z =	0.25 (P =	0.81)					M-H. Fixed, 95% Cl
1.2 RCT-rFSH subg	roup						
	ap						
1 (RCT) Eftekhar 2019	6	41	15	51	15.9%	0.50 [0.21, 1.17]	
4 (RCT) Beguerí R 2019	47	153	71	155	84.1%	0.67 [0.50, 0.90]	-
Total (95% CI)		194		206	100.0%	0.64 [0.49, 0.85]	•
Total events	53		86				
Heterogeneity: Chi ² = 0.43							
Test for overall effect: Z =							Risk Ratio
							M-H. Fixed, 95% Cl
1.3 RCT-hMG subg	roup						
2 (RCT) Chen Q 2019	48	170	39	170	41.0%	1.23 [0.85, 1.77]	
3 (RCT) Wen X 2018	17	34	13	31	14.3%	1.19 [0.70, 2.03]	
5 (RCT) Wang Y 2016	49	75	45	84	44.7%	1.22 [0.94, 1.58]	Г
Total (95% CI)		279		295	100.0%	1.22 [0.99, 1.50]	•
Total events	114	215	97	205	100.070	1.22 [0.33, 1.30]	
Heterogeneity: Chi ² = 0.0		2 - 1 00					0.01 0.1 1 10 100
Test for overall effect: Z =), I = 0 X				Favours [control] Favours [PPOS]
1.4 NRCT-clinical p	regnan	icy rat	te				
	PPOS		Contr			Odds Ratio	Odds Ratio
Study or Subgroup						M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
10 Yidiz S 2019	55	86	66	105	8.3%	1.05 [0.58, 1.90]	
6 Iwami N 2018	103	195	100	202	18.0%	1.14 [0.77, 1.69]	_
7 Wang N 2018		1107	785	969	68.9%	0.87 [0.70, 1.08]	— —
8 Huang p 2019	19	50	25	112	3.7%	2.13 [1.03, 4.40]	
9 Peng Q 2019	3	18	7	56	1.1%	1.40 [0.32, 6.09]	
Total (95% Cl)		1456		1444	100.0%	0.99 [0.83, 1.17]	+
Total events	1052		983				

Primary outcomes

2. Live birth rate

2. Live Ditti fate							
	PP	OS	Con	trol		Risk Ratio	Risk Ratio
Study or Subgroup	Event	s Tota	Events	Tota	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.1 RCT-live birth	rate						
2 (RCT) Chen Q 2019	37	170	31	170	30.6%	1.19 [0.78, 1.83]	-
4 (RCT) Bequerí R 2019	31		42	153		0.74 [0.49, 1.11]	
5 (RCT) Wang Y 2016	44		36	84		1.37 [1.00, 1.87]	-
					100.00		
Fotal (95% CI)		398		407	100.0%	1.08 [0.74, 1.57]	T
Total events	112		109				
Heterogeneity: Tau ² = 0.0			= 2 (P = 0	1.05); 1-	= 66%		0.01 0.1 1 10 100
Fest for overall effect: Z =	0.40 (P =	0.69)					Favours [control] Favours [PPOS]
2.2 NRCT-live birt	h rate						
	PPC	S	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
10 Yidiz S 2019	43	86	51	105	12.4%	1.06 [0.60, 1.87]	±
7 Wang N 2018	659	872	599	785	83.1%	0.96 [0.77, 1.20]	
8 Huang p 2019	16	50	20	112	4.5%	2.16 [1.01, 4.66]	
Total (95% CI)		1008		1002	100.0%	1.03 [0.84, 1.26]	•
Total events	718		670				
Heterogeneity: Chi ² = 3.9	9, df = 2 (P = 0.14); I ² = 509	%			
Test for overall effect: Z =	0.26 (P =	0.79)					
Primary outcomes							Favours [control] Favours [PPOS]
3. OHSS	5						
0. 01100	PPO	s	Contro	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
1 (RCT) Eftekhar 2019	22	60	41	60	94.3%	0.54 [0.37, 0.78]	
5 (RCT) Wang Y 2016	0	60	2	60	5.7%	0.20 [0.01, 4.08]	·
Total (95% CI)		120		120	100.0%	0.52 [0.36, 0.75]	•
Total events	22		43				
Heterogeneity: Chi ² = 0.4		P = 0.52					
Test for overall effect: Z =							0.01 0.1 1 10 100
			·				Favours (ppos) Favours (control)

0.01 0.1 1 10 100 Favours [control] Favours [PPOS]

0.01 0.1

Fig. 4 Forest plot of studies of secondary outcomes

Secondary outcomes

4. Duration of stimu					
	PPOS	Control		Mean Difference	Mean Difference
Study or Subgroup	Mean SD T		Total Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
4.1 RCT-duration of st			00 40.0%	0.74 / 0.00 / 501	
1 (RCT) Eftekhar 2019 2 (RCT) Chen Q 2019	10.24 2.39 8.3 2.2	60 9.53 2.01 170 8.7 2.7	60 18.2% 170 41.5%	0.71 [-0.08, 1.50] -0.40 [-0.92, 0.12]	-
3 (RCT) Wen X 2018	0 0	0 0 0	0	Not estimable	
4 (RCT) Beguerí R 2019 5 (RCT) Wang Y 2016	11.2 1.8 9.52 2.01	86 11.2 2.4 60 9.48 3.33	87 28.5% 60 11.7%	0.00 [-0.63, 0.63] 0.04 [-0.94, 1.02]	
		376	377 100.0%	-0.03 [-0.37, 0.31]	
Total (95% CI) Heterogeneity: Chi ² = 5.32			577 100.0%	-0.03 [-0.37, 0.31]	
Test for overall effect: Z = 0	0.19 (P = 0.85)				ours [PPOS] Favours [control]
Study or Subgroup	Mean SD	Total Mean SD	Total Weight	IV, Random, 95% CI	IV, Random, 95% Cl
4.2 NRCT-duration of s					
10 Yidiz S 2019	11 8.15	87 11 8.15			
I 1 Mathieu d'Argent E 2020 6 Iwami N 2018	11.2 2.1 14.74 1.99	54 11.4 2 125 14.11 1.73			
7 Wang N 2018	0 0	0 0 0	and the second se	Not estimable	
8 Huang p 2019 9 Peng Q 2019	10.83 5.02 8.49 2.03	63 9.9 4.18 47 9.06 2.05			
Fotal (95% CI)		376	512 100.0%		
Heterogeneity: Tau ² = 0.27;	Chi ² = 10.23, df =				
Fest for overall effect: $Z = 0$.	.37 (P = 0.71)				Favours (PPOS) Favours (control)
Secondary outcome					
5. Dose of gonado	tropin				
Study or Subgroup	PPOS Moan SD	Contro Total Mean		Mean Difference IV, Fixed, 95% Cl	Mean Difference IV, Fixed, 95% Cl
Study or Subgroup 5.1 RCT-rFSH subgroup	Mean SD	Total Mean S	SD Total Weigh	1 v , rixea, 95% Cl	IV, FIXEU, 95% CI
-	1,528.45 413.15	60 1,430 354.	45 60 56.4%	6 98.45 [-39.29, 236 19]	+
4 (RCT) Beguerí R 2019	2,132 495.2			6 -1.03 [-157.70, 155 70]	-
Total (95% CI) Heterogeneity: Chi²= 0.87, di		146 = 0%	147 100.0	6 55.10 [-48.35, 158.56]	•
Tes: for overall affect: Z = 10	4 (P = 0.30)				
5.2 RCT-hMG subgroup					100
2 (RCT; Chen Q 2019	1,3362 3145	170 1,757.5 377.3	2 170 00.0%	-121.30 [-258.76, 16.16]	
Total (95% CI)		170	170 100.0%	-121.30 [-258.76, 16.16]	•
Heterogeneity: Not applicabl Test for overall effect: Z = 1.7					-500 -253 0 253 500
	0(, 0.00)				Favcurs (PPOS) Favours (confro)
24 . L C. L	PPOS	Contro		Mean Difference	Mean Difference
Study or Subgroup 5.3 NRCT-rFSH subgroup		Total Mean S	D Total Weight	t IV, Fixed, 95% C	I IV, Fixed, 95% CI
10 Yidiz S 2019 11№athieu d'ArgentE 2020	2,475 1,834.7 3,556 1,247	87 2,400 1,834 54 3,826 1,34			
Total (95% CI) -leterogeneity: Chi ^a = 0.85, d Test for overall effext: Z = 0.6		141 = 036	141 100.0%	-116.47 [-480.18, 247.24	
5.4 NRCT-hMG subgroup					1
		25 1 51 9 84 541	86 123 75.6	% 437 4F [2E4 88 590 04	
6 Iwam N 2018 1,957 8 Huang p 2013 2,485.	7.3 682.86 12 71 1,385.74 6	25 1,519.84 541 63 2,140.93 1,036 47 1,518.14 547	.01 123 11.7	% 344.78 [-43.31, 732.87]	
6 Iwam N 2018 1,957 8 Huang p 2013 2,485. 9 Peng Q 2019 2,061.	7.3 682.86 12 71 1,385.74 6 17 1,254.63 4	63 2,140.93 1,036	.01 123 11.7 .25 122 12.7	% 344.78 [-43.31, 732.87]	
6 Iwam N 2018 1,957 8 Huang p 2013 2,485. 9 Peng G 2019 2,061. ⁻ Total (95% CI) Heterogeneity: Chi ² = C.53, d	7.3 682.86 12 71 1,385.74 (17 1,254.63 4 17 1,254.63 4 17 1,254.63 4	63 2,140.93 1,036 47 1,518.14 547 235	.01 123 11.7 .25 122 12.7	% 344.78 [-43.31,732.87] % 543.03 [171.43,914.63]	-1002 -500 0 500 100
6 Iwam N 2018 1,957 8 Huang p 2013 2,485. 9 Peng Q 2019 2,061 . Total (95% CI) Heterogeneity: Chi ² = C.53, d Test 'or overall effect: Z = 6.5	7.3 682.86 12 71 1,385.74 6 17 1,254.63 Hf = 2 (P = 0.77); P 50 (P = 0.00001)	63 2,140.93 1,036 47 1,518.14 547 235	.01 123 11.7 .25 122 12.7	% 344.78 [-43.31,732.87] % 543.03 [171.43,914.63]	
6 Iwam N 2018 1,957 8 Huang p 2013 2,485. 9 Peng Q 2019 2,061. Total (95% CI) 1 Hetsrogeneity: Chi ^P = C.53, d 2 Test for overall effect: Z = 6.5 6 econdary outcomes 6	7.3 682.86 12 71 1,385.74 (17 1,254.63 if = 2 (P = 0.77); (P 50 (P = 0.00001) S	63 2,140.93 1,036 47 1,518.14 547 235 = 0%	.01 123 11.7 .25 122 12.7	% 344.78 [-43.31,732.87] % 543.03 [171.43,914.63]	-1002 -500 0 500 100
6 Iwam N 2018 1,957 8 Huang p 2013 2,485. 9 Peng Q 2019 2,061. Total (95% CI) 1 Hetsrogeneity: Chi ^P = C.53, d 2 Test for overall effect: Z = 6.5 6	7.3 682.86 12 71 1,385.74 (17 1,254.63 if = 2 (P = 0.77); (P 50 (P = 0.00001) S	63 2,140.93 1,036 47 1,518.14 547 235 = 0%	.01 123 11.7 .25 122 12.7 371 100.0	% 344.78 [-43.31,732.87] % 543.03 [171.43,914.63]	-1002 -500 0 500 100
6 Iwam N 2018 1,957 8 Huang p 2013 2,485: 9 Peng Q 2019 2,061: Total (95% CI) Hetsrogeneity: Chi ² = C.53, d Test ³ or overall effect Z = 65 iecondary outcomes 5. Progestin , values	7.3 682.86 11 71 1,385.74 (17 1,254.63 if = 2 (P = 0.77); P 50 (P = 0.00001) 5 5 on trigger of PPOS	63 2,140.93 1,036 47 1,518.14 547 235 = 0% day(ng/ml)	.01 123 11.7 .25 122 12.7 371 100.0	 344.78 [-43.31,732.87, 543.02 [171.43,914.03 440.08 [307.44,572.73] an Difference 	-1002 -500 0 500 1C0 Favours (PPOS) Favours (control
6 Iwam N 2018 1,957 8 Hang p 2013 2,485: 9 Peng 0 2019 2,061: Total (95% CI) Heterogeneity: Ch ² = C.53, d Test 'or overall effect Z = 6.5 econdary outcomes . Progestin , values Study or Subgroup N 5.1 RCT-P-value	2.3 682.86 11 71 1,385.74 (1 17 1,254.63 (1 17 1,254.63 (1) 17 1,254.63 (1) 17 1,254.63 (1) 17 1,254.63 (1) 17 1,254.63 (1) 17 1,254 (1) 0.72 1,25 (1) 0.72 1,25 (1) 0.4 0.19 (1)	63 2,140,93 1,036 47 1,518.14 547 235 = 0% day(ng/ml) Control al Mean SD Tr 10 0.81 0.92	.01 123 11.7 .25 122 12.7 371 100.0 o <u>tal Weight </u>	 344.78 [-43.31,732.87, 543.02 [171.43,914.03 440.08 [307.44,572.73] an Difference 	-1002 -500 0 500 1C0 Favours (PPOS) Favours (contro)
6 Iwam N 2018 1,957 8 Hang p 2013 2,485; 9 Peng 0 2019 2,061; Total (95% CI) Heterogeneity, Ch ² = C.53, d Test 'or overall effect: Z = 6.5 econdary outcomes . Progestin , values Study or Subgroup N 5.1 RCT-P-value 1 (RCT) Effekhar 2019 2 (RCT) Chen Q 2019 3 (RCT) Wen X 2018 Iotal (95% CI) Heterogeneity, Ch ² = 0.09, Test for overall effect: Z = 1.	7.3 682.86 11: 71 1,386.74 (1) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 18 0,00001) S 5 0 0 trigger (2) 9 0 0 0 0 (2) 1.25 6 0.4 0.19 17 0 0 (2) 1.5 (P = 0.25)	83 2,140.93 1,036 47 1,518.14 547 235 = 0% Control al Mean SD Tr 10 0.81 0.92 10 0.43 0.3 0 0 0 0 10 0 17= 0%	01 123 11.7 25 122 12.7 371 100.0 0 0 1.8% -0 0 230 100.0% -0	 % 344,78 [+43,31,732,87 % 543.02 [171,43,914.83 % 440.08 [307,44,572,73] % 440,742,742,742 % 440,742,742 % 440,742,742 % 440,742,742 % 440,744,742 % 440,744,742 % 440,7	-100: -500 0 500 1C0 Favours (PPOS) - avcurs (control Mean Difference IV, Fixed, 95% CI
6 Iwam N 2018 1,957 8 Huang p 2013 2,485; 9 Peng Q 2019 2,061; Total (95% CI) Hetsrogeneity: Chi ² = C,53, d rest'or overall effect: Z = 6,5 econdary outcomes . Progestin , values Study or Subgroup N 5,1 RCT-P-value 1 (RCT) Effekhar 2019 2 (RCT) Chen Q 2019	7.3 682.86 11: 71 1,386.74 (1) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 18 0,00001) S 5 0 0 trigger (2) 9 0 0 0 0 (2) 1.25 6 0.4 0.19 17 0 0 (2) 1.5 (P = 0.25)	83 2,140.93 1,036 47 1,518.14 547 235 = 0%	01 123 11.7 25 122 12.7 371 100.0 0 0 1.8% -0 0 230 100.0% -0	 % 344,78 [+43.31,732.87 % 543.02 [171.43,914.83 % 440.08 [307.44,572.73] % 440.08 [307.44,572.73] % 640.08 [307.44,572.73] 	-1002 -500 0 500 1C0 Favours (PPOS) Favours (contro)
6 Iwam N 2018 1,957 8 Hang p 2013 2,485; 9 Peng 0 2019 2,061; Total (95% CI) Heterogeneity: Ch ^P = C.53, d Test 'or overall effect: Z = 6.5 econdary outcomest . Progestin , valuess Study or Subgroup N 5.1 RCT-P-value 1 (RCT) Effekhar 2019 2 (RCT) Chen Q 2019 3 (RCT) Wen X 2018 Total (95% CI) Heterogeneity: Ch ^P = 0.09, Test for overall effect: Z = 1, Study or Subgroup	7.3 682.86 11: 71 1,386.74 (1) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 18 0,00001) S 5 0 0 trigger (2) 9 0 0 0 0 (2) 1.25 6 0.4 0.19 17 0 0 (2) 1.5 (P = 0.25)	83 2,140.93 1,036 47 1,518.14 547 235 = 0%	01 123 11.7 25 122 12.7 371 100.0 0 0 1.8% -C 0 230 100.0% -0 0 0 Total Weight	 % 344,78 [+43.31,732.87 % 543.02 [171.43,914.83 % 440.08 [307.44,572.73] % 100 [0.48,0.30] % 100 [0.48,0.30]	-100: -500 0 500 1C0 Favours (PPOS) - avcurs (control Mean Difference IV, Fixed, 95% CI
6 Iwam N 2018 1,957 8 Hang p 2013 2,485: 9 Peng 2019 2,061: Total (95% CI) Heterogeneity, Ch ^P = C.53, d Test 'or overall effect: Z = 6.5 econdary outcomes b Progestin , values Study or Subgroup N 5.1 RCT-P-value 1 (RCT) Effekhar 2019 2 (RCT) Wen X 2018 Total (95% CI) Heterogeneity: Ch ^P = 0.09, Test for overall effect: Z = 1. Study or Subgroup 6.2 NRCT-P-value 1 Mathieu d'Argent E 2020 1 Huang p 2019	.3 682.86 11: 71 1,382.74 (1) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 16 (P = 0.00001) S con trigger (2) 900 (2) 900 (2) 1.5 (P = 0.25) Mean SD 1.6 1.5 0.73 0.59	83 2,140.93 1,036 47 1,518.14 547 235 = 0%	01 123 11.7 25 122 12.7 371 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	 % 344,78 [+43,31,732.87 % 543.02 [171.43,914.83 % 440.08 [307.44,572.73] % 100 [-0.08, 0.02] % 100 [-0.08, 0.23] 	-100: -500 0 500 1C0 Favours (PPOS) - avcurs (control Mean Difference IV, Fixed, 95% CI
6 Iwam N 2018 1,957 8 Hang p 2013 2,485: 9 Peng 0 2019 2,061: Total (95% CI) Heterogeneity: Ch ^P = C.53, d Test 'or overall effect Z = 6.5 econdary outcomes . Progestin , values Study or Subgroup N 5.1 RCT-P-value 1 (RCT) Effekhar 2019 2 (RCT) Chen 0 2019 3 (RCT) Wen X 2018 Total (95% CI) Heterogeneity: Ch ^P = 0.09, Test for overall effect Z = 1. Study or Subgroup 5.2 NRCT-P-value 1 Mathieu d'Argent E 2020	.3 682.86 11: 71 1,385.74 (1) 17 1,254.63 (2) 18 = 2 (P = 0.77); P 50 (P = 0.00001) S con trigger of PPOS Mean SD Tot: 0 0 0 7 0 0 0 23 df = 1 (P = 0.77); 15 (P = 0.25) Mean SD 1.6 1.5	83 2,140.93 1,036 47 1,518.14 547 235 = 0% Control al Mean SD Tr 0 0.43 0.32 0 0 0 0 0 0 0 0 0 0 1/P = 0% Total Mean ST 54 1.4 1.2	01 123 11.7 25 122 12.7 371 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	 % 344,78 [+43,31,732.87 % 543.02 [171.43,914.83 % 440.08 [307.44,572.73] % 0.10 [-0.08, 0.02] % 0.20 [-0.31, 0.71] % 0.20 [-0.31, 0.71] % 0.20 [-0.31, 0.71] 	-100: -500 0 500 100 Favours (PPOS) - avcurs (control Mean Difference IV. Fixed, 95% Cl
6 Iwam N 2018 1,957 8 Hang p 2013 2,485: 9 Peng 0 2019 2,061: Total (95% CI) Heterogeneity: Ch ^P = C.53, d Test 'or overall effect: Z = 6.5 econdary outcomes . Progestin , values Study or Subgroup N 5.1 RCT-P-value I (RCT) Eflekhar 2019 2 (RCT) Chen Q 2019 3 (RCT) Wen X 2018 Total (95% CI) 4 deterogeneity: Ch ^P = 0.09, Fest for overall effect: Z = 1. Xudy or Subgroup 5.2 NRCT-P-value 1 Mathieu d'Argent E 2020 Huang p 2019 Peng Q 2019	.3 682.86 11: 71 1,382.74 (1) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 17 1,254.63 (2) 16 (P = 0.00001) S con trigger (2) 900 (2) 900 (2) 1.5 (P = 0.25) Mean SD 1.6 1.5 0.73 0.59	83 2,140.93 1,036 47 1,518.14 547 235 = 0% Control al Mean SD Tr 10 0.81 0.92 10 0.43 0.3 10 0 0 10 0 1 ² 1 ² = 0% Total Mean SL 54 1.4 1.2 63 0.63 0.66 47 0.82 0.56	01 123 11.7 25 122 12.7 371 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	 % 344,78 [+43,31,732.87 % 543.02 [171.43,914.63 % 440.08 [307.44,572.73] % 440.08 [307.44,572.73] % 440.08 [307.44,572.73] % 100 [-0.49, 0.30] 0.03 [-0.08, 0.02] Not estimable .03 [-0.08, 0.02] Mot estimable .03 [-0.08, 0.02] Mot estimable .03 [-0.08, 0.02] 	-100: -500 0 500 100 Favours (PPOS) - avcurs (control Mean Difference IV. Fixed, 95% Cl
6 Iwam N 2018 1,957 8 Hang p 2013 2,485; 9 Peng v 2013 2,485; 9 Peng v 2013 2,061; Total (95% CI) Heterogeneity, Ch ^P = C.53, d Test 'or overall effect Z = 6.5 econdary outcomes . Progestin , values Study or Subgroup N 5.1 RCT-P-value I (RCT) Effekhar 2019 2 (RCT) Wen X 2018 (RCT) Ven X 2019 3 (RCT) Ven X 2019 5.2 INRCT-P-value 1 Mathieu d'Argent E 2020 Huang p 2019	.3 682.86 11 71 1,382.74 0 17 1,254.63 2 if = 2 (P = 0.77); P 50 (P = 0.00001) S con trigger (C PPOS Mean SD Tot: 0.72 1.25 6 0.4 0.19 17 0 0 233 df = 1 (P = 0.77); 1.5 (P = 0.25) Mean SD 1.6 1.5 0.73 0.59 0.58 0.81	83 2,140 93 1,036 47 1,518.14 547 235 = 0% day(ng/ml) Control al Mean SD Tr to 0.81 0.92 0 0.43 0.3 0 0 0 0 0 0 0 0 1 ⁶ 54 1.4 1.4 47 0.82 0.56 164	01 123 11.7 25 122 12.7 371 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0	 % 344,78 [+43,31,732.87 % 543.02 [171.43,914.83 % 440.08 [307.44,572.73] % 440.08 [307.44,572.73] % 440.08 [307.44,572.73] % 100 [-0.49, 0.30] 0.03 [-0.08, 0.02] Not estimable .03 [-0.08, 0.02] https://www.integradiance.org https://www.integradiance.org www.integradiance.org www.integradiance.org"/www.integradiance.org www.integradiance.org"/www.integradiance.org www.integradiance.org"/www.integradiance.org wwwwwwwwwwww	-100: -500 0 500 100 Favours (PPOS) - avcurs (control Mean Difference IV. Fixed, 95% Cl

Archives of Gynecology and Obstetrics (2021) 303:615–630

Fig. 5	Forest plot of studies of
second	dary outcomes

Secondary outcomes

	E F	POS		C	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean		Total	Mean		Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
7.1 RCT-Number of re	trieved	oocv	tes						
1 (RCT) Eftekhar 2019	15.74			18.65	7 87	60	2.6%	-2.91 [-6.11, 0.29]	•
2 (RCT) Chen Q 2019	3.7	2.6	170	3.4		170	94.0%	0.30 [-0.23, 0.83]	
3 (RCT) Wen X 2018		26.1	34	11.5	9.5	31		3.10 [-6.29, 12.49]	+ F
5 (RCT) Wang Y 2016	15.28		60		8.49	60	3.1%	-0.52 [-3.45, 2.41]	
otal (95% CI)			324	24.04		321	100.0%	0.20 [-0.32, 0.72]	—
Heterogeneity: Chi² = 4.37 Fest for overall effect: Z = 1			(2); 1*=	31%					
7.2 NRCT-Number of	retriev	ed oo	cytes						
0 Yidiz S 2019	30	29.3	87	28	29.7	87	0.1%	2.00 [-6.77, 10.77]	<
1Mathieu d'Argent E 2020			54	7.9		54			
i Iwami N 2018	10.71		125	11.1		126	3.9%		
Huang p 2019	1.81	0.9	63		1.25	123			-
Peng Q 2019		2.76	47		2.77	123	9.7%		
	J.r 2	2.10	47	0.07	4.11	122	5.1 70	5.15 [5.16, 1.00]	
otal (95% CI)			376			512	100.0%	-0.05 [-0.33, 0.24]	+
leterogeneity: Chi ² = 0.68	. df = 4 (F	2 = 0.9		0%					-t-t-1
est for overall effect: Z = 0			-//	- /*					-4 -2 0 2
Secondary outcom									Favours [PPOS] Favours [contr
B. Number of M II of		s							
	-	POS		Cor	ntrol			Mean Difference	Mean Difference
udy or Subgroup			Total I			otal V		V, Random, 95% Cl	IV, Random, 95% Cl
8.1 RCT-Number of	MII ood	ytes							
1 (RCT) Eftekhar 2019		8.88	60	16.03	6,99	60	4.2%	-3.53 [-6.39, -0.67]	·
2 (RCT) Chen Q 2019	3.2	2.4	170	2.8	2.2	170	40.6%	0.40 [-0.09, 0.89]	+
4 (RCT) Beguerí R 2019	6.7	1.2	153	6.6	1.2	155	49.7%	0.10 [-0.17, 0.37]	+
5 (RCT) Wang Y 2016		6.71		14.23	7	60	5.5%	-0.33 [-2.78, 2.12]	
							100.00		
Total (95% CI)			443	0.05	. 13		100.0%	0.05 [-0.56, 0.65]	
Heterogeneity: Tau ² = 0.18				= 0.05)	; I² = 61		100.0%	0.05 [-0.56, 0.65]	
Heterogeneity: Tau ² = 0.18				= 0.05)	; I ² = 61		100.0%	0.05 [-0.56, 0.65]	
Heterogeneity: Tau ² = 0.18 Fest for overall effect: Z = 1 Study or Subgroup	0.15 (P = <u>Mea</u>	0.88) n S	lf = 3 (P D Tota			1%		0.05 [-0.56, 0.65] t IV, Fixed, 95% CI	
Heterogeneity: Tau ² = 0.18 Fest for overall effect: Z = 1 Study or Subgroup B.2 NRCT-Number o	0.15 (P = <u>Mea</u> f MII oc	0.88) n <u>s</u> ocytes	lf = 3 (P <u>D Tota</u>	al Mea	<u>n SE</u>	1%)) Tota	l Weigh	t IV, Fixed, 95% CI	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Fest for overall effect: Z = 0 Study or Subgroup B.2 NRCT-Number of 0 Yidiz S 2019	0.15 (P = <u>Mea</u> f MII oc 2	0.88) n <u>s</u> ocytes 4 24.	lf = 3 (P D Tota 9 8	<u>al Mea</u> 7 2	<u>n SE</u> 3 21.9	1% <u>) Tota</u> 5 8:	<u>I Weigh</u> 7 0.9%	t IV, Fixed, 95% CI	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Fest for overall effect: Z = 1 Audy or Subgroup 3.2 NRCT-Number of 0 Yidiz S 2019 Iwami N 2018	0.15 (P = <u>Mea</u> f MII oc 2 8.5	0.88) n <u>S</u> ocytes 4 24. 3 5.3	lf = 3 (P D Tota 9 8 9 12	<mark>al Mea</mark> 7 2 5 8.7	n SE 3 21.9 1 4.23	1 %) Tota 5 8 7 12	<mark>I Weigh</mark> 7 0.9% 6 28.2%	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 0 Yidiz S 2019 Si warni N 2018	0.15 (P = <u>Mea</u> f MII oc 2	0.88) n <u>S</u> ocytes 4 24. 3 5.3	lf = 3 (P D Tota 9 8 9 12	<mark>al Mea</mark> 7 2 5 8.7	<u>n SE</u> 3 21.9	1 %) Tota 5 8 7 12	<mark>I Weigh</mark> 7 0.9% 6 28.2%	t IV, Fixed, 95% CI	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 10 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019	0.15 (P = <u>Mea</u> f MII oc 2 8.5	0.88) n <u>S</u> ocytes 4 24. 3 5.3	lf = 3 (P D Tota 9 8 9 12	a <u>l Mea</u> 7 2 5 8.7 7 3.0	n SE 3 21.9 1 4.23	1 %) Tota 5 81 7 121 3 122	1 Weigh 7 0.99 6 28.29 2 71.09	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 <u>Study or Subgroup</u> 3.2 NRCT-Number or 0 Yidis 2 2019 5 Iwami N 2018 3 Peng Q 2019 Total (95% CI) Heterogeneity: Chi ² = 0.12	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 c, df = 2 (F	0.88) n S ocytes 4 24. 3 5.3 57 2. P = 0.9	lf = 3 (P D Tota 9 8 9 12 2 4 25	a <u>l Mea</u> 7 2 5 8.7 7 3.0 9	n SE 3 21.9 1 4.23	1 %) Tota 5 81 7 121 3 122	1 Weigh 7 0.99 6 28.29 2 71.09	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number or 0 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 c, df = 2 (F	0.88) n S ocytes 4 24. 3 5.3 57 2. P = 0.9	lf = 3 (P D Tota 9 8 9 12 2 4 25	a <u>l Mea</u> 7 2 5 8.7 7 3.0 9	n SE 3 21.9 1 4.23	1 %) Tota 5 81 7 121 3 122	1 Weigh 7 0.99 6 28.29 2 71.09	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 3.2 NRCT-Number of 0 Yidi S 2019 5 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Fest for overall effect: Z = 0 Secondary outcom	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 2,8 4, df = 2 (F 0.59 (P = es	0.88) n S ocytes 4 24. 3 5.3 7 2. P = 0.9 0.56)	If = 3 (P D Tota 9 8 9 12 2 4 22 4 25 4); I ² = 1	a <u>l Mea</u> 7 2 5 8.7 7 3.0 9	n SE 3 21.9 1 4.23	1 %) Tota 5 81 7 121 3 122	1 Weigh 7 0.99 6 28.29 2 71.09	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 3.2 NRCT-Number of 10 Yidiz S 2019 6 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Test for overall effect: Z = 0 Secondary outcom	0.15 (P = <u>Mea</u> f MII oc 2.8.5 2.8 1. df = 2 (F 0.59 (P = es ined er	0.88) n S ocytes 4 24. 3 5.3 7 2. P = 0.9 0.56) mbry	If = 3 (P D Tota 9 8 9 12 2 4 22 4 25 4); I ² = 1	al Mea 7 2 5 8.7 7 3.0 9 0%	n SE 3 21.6 1 4.23 8 2.39	1 %) Tota 5 81 7 121 3 122	I Weigh 7 0.99 6 28.29 2 71.09 5 100.09	 M. Fixed, 95% CI 1.00 [-5.91, 7.91] -0.18 [-1.38, 1.02] -0.21 [-0.97, 0.55] -0.19 [-0.83, 0.45] 	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 0 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Fest for overall effect: Z = 0 Secondary outcom 0. Number of obtai	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 c, df = 2 (F 0.59 (P = es ined en P	0.88) n S ocytes 4 24. 3 5.3 7 2. P = 0.9 0.56) mbry POS	If = 3 (P D Tota 9 8 9 12 2 4 25 4); ² = 1 ros	n <u>l Mea</u> 7 2 5 8.7 7 3.0 9 0%	n SE 3 21.6 1 4.23 8 2.39	1 %) Tota 5 8: 7 12: 3 12: 3 33:	I Weigh 7 0.99 6 28.29 2 71.09 5 100.09	t IV. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 10 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Test for overall effect: Z = 0 Secondary outcom 9. Number of obtai tudy or Subgroup	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 2, df = 2 (F 0.59 (P = es ined en P <u>Mean</u>	0.88) n S ocytes 4 24. 3 5.3 7 2. P = 0.9 0.56) mbry POS SD	If = 3 (P D Tota 9 8 9 12 2 4 25 4); ² = 1 ros Total	al Mea 7 2 5 8.7 7 3.0 9 0% Co Mean	n SE 3 21.5 1 4.23 8 2.35 ontrol SD	1 %) Tota 5 81 7 120 3 122 3 33 3 3	1 Weigh 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09	t IV. Fixed, 95% Cl 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% Cl	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 10 Yidiz S 2019 5 Iwami N 2018 9 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Fest for overall effect: Z = 0 Secondary outcom 9. Number of obtai tudy or Subgroup (RCT) Eftekhar 2019	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 1, df = 2 (F 0.59 (P = es ined er <u>P</u> <u>Mean</u> 7.91	0.88) n S ocytes 4 24. 3 5.3 7 2. P = 0.9 0.56) mbry POS SD 6.63	If = 3 (P D Tota 9 8 9 12 2 4 25 4); I ² = 1 70S Total 60	al Mea 7 2 5 8.7 7 3.0 9 0% Co <u>Mean</u> 9.48	n SE 3 21.6 1 4.23 8 2.39 ontrol SD 4.62	1 % <u> Tota</u> T <u>ota</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>3</u> <u>5</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>5</u> <u>6</u> <u>5</u> <u>6</u> <u>6</u> <u>6</u> <u>7</u> <u>7</u> <u>7</u> <u>1</u> <u>2</u> <u>1</u> <u>2</u> <u>1</u> <u>2</u> <u>1</u> <u>2</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	 Weight 0.99 28.29 71.09 100.09 100.09 Weight 2.2% 	t IV. Fixed, 95% CI 1.00 [-5.91, 7.91] -0.18 [-1.38, 1.02] -0.21 [-0.97, 0.55] -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.16 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number or 10 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Test for overall effect: Z = 0 Secondary outcom 9. Number of obtai tudy or Subgroup (RCT) Effekhar 2019 (RCT) Chen Q 2019	0.15 (P = <u>Mea</u> f MII oc 2.8 5. df = 2 (F 0.59 (P = es ined en <u>P</u> <u>Mean</u> 7.91 2.7	0.88) n S Socytes 4 24. 3 5.3 7 2. 9 = 0.9 0.56) mbry POS SD 6.63 2.2	If = 3 (P D Tota 9 8 9 12 2 4 25 4); I ² = 1 005 Total 60 170	al Mea 7 2 5 8.7 7 3.0 9 0% Co <u>Mean</u> 9.48 2.2	n SE 3 21.6 1 4.23 8 2.39 ontrol SD 4.62 1.9	1% <u>) Tota</u> 5 8: 7 124 3 12: 333 <u>33</u> <u>Total</u> 60 170	U Weight 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09 Weight 2.2% 48.3%	t IV. Fixed, 95% CI 1.00 [-5.91, 7.91] -0.18 [-1.38, 1.02] -0.21 [-0.97, 0.55] -0.21 [-0.97, 0.55] -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.18 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 0 Yidiz S 2019 3 Iwami N 2018 3 Peng Q 2019 Fotal (95% CI) Heterogeneity: Chi ² = 0.12 Fest for overall effect: Z = 0 Secondary outcom 9. Number of obtain tudy or Subgroup (RCT) Eftekhar 2019 (RCT) Wen X 2018	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 ., df = 2 (F 0.59 (P = es ined er <u>P</u> <u>Mean</u> 7.91 2.7 4	0.88) n S ocytes 4 24. 3 5.3 7 2. 9 = 0.9 0.56) mbry POS SD 6.63 2.2 3.3	If = 3 (P D Tota 9 8 9 12 2 4 25 25 4); I ² = 1 COS Total 60 170 31	al Mea 7 2 5 8.7 7 3.0 9 9.0% Ce <u>Mean</u> 9.48 2.2 3.2	n SI 3 21.3 1 4.27 8 2.39 5000000 50000000000000000000000000000	 <u>1%</u> <u>100</u> <u>100</u> 120 120 120 120 120 339 339 120 120<!--</td--><td> I Weight 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09 Weight 2.2% 48.3% 4.3% </td><td>t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47] 0.50 [0.06, 0.94] 0.80 [-0.66, 2.26]</td><td>Favours [control] Favours [PPOS</td>	 I Weight 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09 Weight 2.2% 48.3% 4.3% 	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47] 0.50 [0.06, 0.94] 0.80 [-0.66, 2.26]	Favours [control] Favours [PPOS
Heterogeneity: Tau [≠] = 0.18 Test for overall effect: Z = 1 3.2 NRCT-Number of 0 Yidiz S 2019 Warni N 2018 9 Peng Q 2019 Total (95% CI) Heterogeneity: Chi ² = 0.12 Test for overall effect: Z = 0 5.0 Number of obtain tudy or Subgroup (RCT) Effekhar 2019 (RCT) Chen Q 2019 (RCT) Ven X 2018 (RCT) Beguerí R 2019	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 0.59 (P = es ined er <u>P</u> <u>Mean</u> 7.91 2.7 4 5.1	0.88) n S bcytes 4 24. 3 5.3 7 2. 9 = 0.9 0.56) mbry POS SD 6.63 2.2 3.3 1.4	If = 3 (P D Tota 9 8 9 9 12 2 4 255 25 4); I ² = 1 00S Total 60 170 31 86	al Mea 7 2 5 8.7 7 3.0 9 0% Ce <u>Mean</u> 9.48 9.48 2.2 3.2 4.9	n SI 3 21.4 1 4.22 8 2.38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1% 5 8: 7 12/ 3 12: 33: Total 60 170 31 87	Weight 7 0.99 6 28.29 2 71.09 5 100.09 Weight 2.2% 48.3% 4.3% 42.9% 42.9%	t IV. Fixed, 95% CI 1.00 [-5.91, 7.91] -0.18 [-1.38, 1.02] -0.21 [-0.97, 0.55] -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.81, 0.47] 0.50 [0.06, 0.29] 0.80 [-0.66, 2.26] 0.20 [-0.26, 0.66]	Favours [control] Favours [PPOS
Heterogeneity: Tau [≠] = 0.18 Test for overall effect: Z = 1 3.2 NRCT-Number of 0 Yidiz S 2019 Warni N 2018 9 Peng Q 2019 Total (95% CI) Heterogeneity: Chi ² = 0.12 Test for overall effect: Z = 0 5.0 Number of obtain tudy or Subgroup (RCT) Effekhar 2019 (RCT) Chen Q 2019 (RCT) Ven X 2018 (RCT) Beguerí R 2019	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 ., df = 2 (F 0.59 (P = es ined er <u>P</u> <u>Mean</u> 7.91 2.7 4	0.88) n S bcytes 4 24. 3 5.3 7 2. 9 = 0.9 0.56) mbry POS SD 6.63 2.2 3.3 1.4	If = 3 (P D Tota 9 8 9 12 2 4 25 25 4); I ² = 1 COS Total 60 170 31	al Mea 7 2 5 8.7 7 3.0 9 0% Ce <u>Mean</u> 9.48 2.2 3.2	n SI 3 21.4 1 4.22 8 2.38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	 <u>1%</u> <u>100</u> <u>100</u> 120 120 120 120 120 339 339 120 120<!--</td--><td> I Weight 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09 Weight 2.2% 48.3% 4.3% </td><td>t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47] 0.50 [0.06, 0.94] 0.80 [-0.66, 2.26]</td><td>Favours [control] Favours [PPOS</td>	 I Weight 7 0.99 6 28.29 2 71.09 5 100.09 5 100.09 Weight 2.2% 48.3% 4.3% 	t V. Fixed, 95% CI 6 1.00 [-5.91, 7.91] 6 -0.18 [-1.38, 1.02] 6 -0.21 [-0.97, 0.55] 6 -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.61, 0.47] 0.50 [0.06, 0.94] 0.80 [-0.66, 2.26]	Favours [control] Favours [PPOS
Heterogeneity: Tau ² = 0.16 Test for overall effect: Z = 1 Study or Subgroup 3.2 NRCT-Number of 0 Yidiz S 2019 5 Iwami N 2018 3 Peng Q 2019 fotal (95% CI) Heterogeneity: Chi ² = 0.12 Fest for overall effect: Z = 0 Secondary outcom 9. Number of obtai tudy or Subgroup (RCT) Effekhar 2019 (RCT) Chen Q 2019	0.15 (P = <u>Mea</u> f MII oc 2 8.5 2.8 0.59 (P = es ined er <u>P</u> <u>Mean</u> 7.91 2.7 4 5.1	0.88) n S bcytes 4 24. 3 5.3 7 2. 9 = 0.9 0.56) mbry POS SD 6.63 2.2 3.3 1.4	If = 3 (P D Tota 9 8 9 9 12 2 4 255 25 4); I ² = 1 00S Total 60 170 31 86	al Mea 7 2 5 8.7 7 3.0 9 0% Ce <u>Mean</u> 9.48 9.48 2.2 3.2 4.9	n SI 3 21.4 1 4.22 8 2.38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1% <u>) Tota</u> 5 8: 7 12: 3 12: 3 3: 3 3: 50 170 31 87 60	Weight 7 0.99 6 28.29 2 71.09 5 100.09 Weight 2.2% 48.3% 4.3% 42.9% 42.9%	t IV. Fixed, 95% CI 1.00 [-5.91, 7.91] -0.18 [-1.38, 1.02] -0.21 [-0.97, 0.55] -0.19 [-0.83, 0.45] Mean Difference IV. Fixed, 95% CI -1.57 [-3.81, 0.47] 0.50 [0.06, 0.29] 0.80 [-0.66, 2.26] 0.20 [-0.26, 0.66]	Favours [control] Favours [PPOS

Test for overall effect: Z = 2.24 (P = 0.03)

 $I^2 = 0\%$, P < 0.00001]. The difference was statistically significant (Fig. 4).

6. Progestin values on trigger day (ng/ml)

Data from both RCTs [MD 0.03 lower, 95% CI (-0.08-0.02), $l^2 = 0\%$, P = 0.25] and NRCTs [MD 0.01 lower 95% CI (-0.27-0.26), $l^2 = 61\%$, P = 0.94] (Fig. 4) showed that the progestin values on the trigger day between the two groups were nearly the same. The slight difference was not statistically significant.

7. Number of retrieved oocytes

Data from both RCTs [MD 0.2 higher, 95% CI (-0.32-0.72), $l^2 = 31\%$, P = 0.45] and NRCTs [MD 0.05 lower 95% CI (-0.33-0.24), $l^2 = 0\%$, P = 0.76] (Fig. 5) showed that the number of retrieved oocytes between the two groups was nearly the same.

Favours [control] Favours [PPOS]

8. Number of MII oocytes

Data from either RCTs [MD 0.05 higher, 95% CI (-0.56-0.65), $l^2 = 61\%$, P = 0.88] or NRCTs [MD 0.19 lower 95% CI (-0.83-0.45), $l^2 = 0\%$, P = 0.56] (Fig. 5)

Fig. 6 Forest plot of studies of

secondary outcomes

Secondary outcomes

10. Total cycle cancelation

	PP		Con			Risk Ratio	Risk Ratio
Study or Subgroup			Events	Tota	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
10.1 RCT-Total cycl	le cancel	ation					
1 (RCT) Eftekhar 2019		1 60	C) 6	0 100.0%	9.00 [0.50, 163.58]	
Total (95% CI)		60		6	0 100.0%	9.00 [0.50, 163.58]	
Total events	4	1	C)			
Heterogeneity: Not app Test for overall effect: 2		= 0.14)					0.001 0.1 1 10 100 Favours (PPOS) Favours (contro
Study or Subgroup	Events	Total I	vonte	Total	Weight N	I-H, Random, 95% Cl	
				Totta	weight h	-n, rundom, 55% cr	11-11, Tunuoni, 55% ci
10.2 NRCT-Total cy							
6 Iwami N 2018		1339		1381	58.9%	0.01 [-0.00, 0.02]	T
8 Huang p 2019	5	63	11	123	26.2%	-0.01 [-0.09, 0.07]	
9 Peng Q 2019	7	47	31	122	14.9%	-0.11 [-0.23, 0.02]	
Total (95% CI)		1449		1626	100.0%	-0.01 [-0.07, 0.04]	+
Total augusta	10		64				
Total events	46 0.00: Chi	- 4 16		= 0.11	2)· IZ = 57%		+ + + + +
Heterogeneity: Tau ² = Test for overall effect:	= 0.00; Chi ^a Z = 0.44 (f		df= 2 (P	= 0.12	2); I² = 52%		
Heterogeneity: Tau ² = Test for overall effect Secondary outcom	0.00; Chi ^a Z = 0.44 (f mes	° = 0.66	df= 2 (P	= 0.12	2); I ² = 52%		
Heterogeneity: Tau ² = Test for overall effect: Secondary outcom	0.00; Chi ^a Z = 0.44 (f mes	P = 0.66	df= 2 (P)	e 0.1 2	2); I² = 52%	Mean Difference	
Heterogeneity: Tau [#] = Testfor overall effect: Secondary outcor 11. Endometrial t	0.00; Chi ^a Z = 0.44 (f mes hickness	°=0.66	df = 2 (P) C	control			Favours (PPOS) Favours (contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcor 11. Endometrial t Study or Subgroup	z = 0.44 (f z = 0.44 (f mes hickness pp <u>Mean</u>	⊃ = 0.66 0S <u>SD Tota</u>	df = 2 (P) C	control		Mean Difference	Favours (PPOS) Favours (contro Mean Difference
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcor 11. Endometrial t Study or Subgroup	z = 0.44 (f z = 0.44 (f mes hickness pp <u>Mean</u>	⊃ = 0.66 0S <u>SD Tota</u> ss	df=2 (P) C al Mean	control	Total Wei	Mean Difference	Favours (PPOS) Favours (contro Mean Difference
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcou 11. Endometrial t <u>Study or Subgroup</u> 11.1 RCT-Endometri	z = 0.00; Chi ^a Z = 0.44 (f mes hickness pp <u>Mean</u> ial thickne	P = 0.66 OS <u>SD Tota</u> SS .34 6	df=2 (P) C al Mean	control SD	<u>Total Wei</u> 60 76.	Mean Difference ght IV, Fixed, 95% Cl	Favours (PPOS) Favours (contro Mean Difference
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcou 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Effekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI)	0.00; Chi ^a Z = 0.44 (f mes hickness hickness al thickne 9.2 1 11.52 2	DS SD Tota SS .34 6 .25 6	df = 2 (P) c a <u>l Mean</u> 0 8.83 0 11.07 0	control SD	Total Wei 60 76. 60 23.	Mean Difference aht IV, Fixed, 95% Cl 4% 0.37 [-0.08, 0.82]	Favours (PPOS) Favours (contro Mean Difference
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcon 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0.	0.00; Chi ^a Z = 0.44 (f mes hickness ppo Mean al thickne 9.2 1 11.52 2 03, df = 1 (F	DS SD Tota SS .34 6 .25 6 12 2 = 0.86);	df = 2 (P) c a <u>l Mean</u> 0 8.83 0 11.07 0	control SD	Total Wei 60 76. 60 23.	Mean Difference ght IV, Fixed, 95% CI 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25]	Favours (PPOS) Favours (contro Mean Difference
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcon 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019	0.00; Chi ^a Z = 0.44 (f mes hickness ppo Mean al thickne 9.2 1 11.52 2 03, df = 1 (F	DS SD Tota SS .34 6 .25 6 12 2 = 0.86);	df = 2 (P) c a <u>l Mean</u> 0 8.83 0 11.07 0	control SD	Total Wei 60 76. 60 23.	Mean Difference ght IV, Fixed, 95% CI 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25]	Favours (PPOS) Favours (contro Mean Difference IV, Fixed, 95% CI
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcon 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Effekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup	2.0.00; Chi ^a Z = 0.44 (f mes hickness Ppr Mean al thickne 9.2 1 11.52 2 03, df = 1 (F = 1.96 (P = Mean SD	P = 0.66 DS <u>SD</u> Tota SS .34 6 .25 6 12 P = 0.86); 0.05) Total	df = 2 (P) a <u>l Mean</u> 0 8.83 0 11.07 0 ^P = 0%	Sontrol SD 1.14 2.23	Total Wei 60 76. 60 23. 120 100.	Mean Difference ght IV, Fixed, 95% CI 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78]	Favours (PPOS) Favours (contro Mean Difference IV, Fixed, 95% CI
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcou 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup 11.2 NRCT-Endomet	0.00; Chi ¹ Z = 0.44 (f mes hickness <u>PP(</u> <u>Mean</u> al thickne 9.2 1 11.52 2 03, df = 1 (F = 1.96 (P = <u>Mean SD</u> trial thickre	P = 0.66 DS <u>SD</u> Tota ss .34 6 .25 6 12 P = 0.86); 0.05) <u>Total</u> ness	df = 2 (P) al Mean 0 8.83 0 11.07 0 P = 0% Mean	SD SD 1.14 2.23 SD To	Total Wei 60 76. 60 23. 120 100.	Mean Difference aht IV, Fixed, 95% Cl 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78]	Favours [PPOS] Favours [contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcor 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup 11.2 NRCT-Endomet 6 Iwami N 2018	2.0.00; Chi [#] Z = 0.44 (f mes hickness Ppr Mean al thickne 9.2 1 11.52 2 03, df = 1 (F = 1.96 (P = Mean SD trial thickr	DS SD Tota SS 12 2 = 0.86); 0.05) Total Dess 5 125	df = 2 (P) al <u>Mean</u> 0 8.83 0 11.07 0 I ^P = 0% <u>Mean</u> 9.38 1	50000000000000000000000000000000000000	<u>Total Wei</u> 60 76. 60 23. 120 100. ntal Weight	Mean Difference ht IV, Fixed, 95% Cl 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78] IV, Random, 95% Cl 0.16 [-0.25, 0.57]	Favours [PPOS] Favours [contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcou 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% Cl) Heterogeneity: Chi [#] = 0. Test for overall effect Z Study or Subgroup 11.2 NRCT-Endomet 6 Iwami N 2018 8 Huang p 2019	2.0.00; Chi ^P Z = 0.44 (f mes hickness Ppr Mean 11.52 2 03, df = 1 (F = 1.96 (P = Mean SD trial thickr 9.54 1.66 10.53 2.78	P = 0.66 SS 5D Tota SS 34 6 12 P = 0.86); 0.05) Total mess i 125 ; 63	df = 2 (P) al Mean 0 8.83 0 11.07 0 I ^P = 0% Mean 9.38 1 10.34 3	50000000000000000000000000000000000000	Total Wei 60 76. 60 23. 120 100. tal Weight 126 41.9% 23 25.3%	Mean Difference ght IV, Fixed, 95% CI 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78] IV, Random, 95% CI 0.16 [-0.25, 0.57] 0.19 [-0.71, 1.09]	Favours [PPOS] Favours [contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcor 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup 11.2 NRCT-Endomet 6 Iwami N 2018	2.0.00; Chi [#] Z = 0.44 (f mes hickness Ppr Mean al thickne 9.2 1 11.52 2 03, df = 1 (F = 1.96 (P = Mean SD trial thickr	P = 0.66 SS 5D Tota SS 34 6 12 P = 0.86); 0.05) Total mess i 125 ; 63	df = 2 (P) al <u>Mean</u> 0 8.83 0 11.07 0 I ^P = 0% <u>Mean</u> 9.38 1	50000000000000000000000000000000000000	<u>Total Wei</u> 60 76. 60 23. 120 100. ntal Weight	Mean Difference ght IV, Fixed, 95% CI 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78] IV, Random, 95% CI 0.16 [-0.25, 0.57] 0.19 [-0.71, 1.09]	Favours [PPOS] Favours [contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcor 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Effekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup 11.2 NRCT-Endomet 6 Iwami N 2018 8 Huang p 2019 9 Peng Q 2019 Total (95% CI)	2.0.00; Chi ^P Z = 0.44 (f mes hickness PP(Mean al thickne 9.2 1 11.52 2 03, df = 1 (f = 1.96 (P = Mean SD trial thickr 9.54 1.66 10.53 2.76 9 1.97	P = 0.66 SD Tota SS 34 6 25 6 125 0.05) Total Total 125 63 47 235	df= 2 (P) <u>al Mean</u> 0 8.83 0 11.07 0 1 ^p = 0% <u>Mean</u> 9.38 1 10.34 3 9.78 1	50000000000000000000000000000000000000	Total Wei 60 76. 60 23. 120 100. stal Weight 126 41.9% 123 25.3% 122 32.8% 371 100.0%	Mean Difference aht N, Fixed, 95% Cl 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78] . IV. Random, 95% Cl 0.16 [-0.25, 0.57] 0.19 [-0.71, 1.09] -0.78 [-1.44, -0.12]	Favours [PPOS] Favours [contro
Heterogeneity: Tau [#] = Test for overall effect: Secondary outcoor 11. Endometrial t Study or Subgroup 11.1 RCT-Endometri 1 (RCT) Eftekhar 2019 5 (RCT) Wang Y 2016 Total (95% CI) Heterogeneity: Chi [#] = 0. Test for overall effect: Z Study or Subgroup 11.2 NRCT-Endomet 6 Iwami N 2018 8 Huang p 2019 9 Peng Q 2019	2.21; ChP = 1.21; ChP = 2.21;	P = 0.66 SS 5D Tota SS	df= 2 (P) <u>al Mean</u> 0 8.83 0 11.07 0 1 ^p = 0% <u>Mean</u> 9.38 1 10.34 3 9.78 1	50000000000000000000000000000000000000	Total Wei 60 76. 60 23. 120 100. stal Weight 126 41.9% 123 25.3% 122 32.8% 371 100.0%	Mean Difference aht N, Fixed, 95% Cl 4% 0.37 [-0.08, 0.82] 6% 0.45 [-0.35, 1.25] 0% 0.39 [-0.00, 0.78] . IV. Random, 95% Cl 0.16 [-0.25, 0.57] 0.19 [-0.71, 1.09] -0.78 [-1.44, -0.12]	Favours [PPOS] Favours [contro

showed that the number of MII oocytes between the two groups was nearly the same.

9. Number of obtained embryos

Only the five RCTs (Fig. 5) had the date of the number of obtained embryos, and the result showed that the PPOS protocol had more obtained embryos [MD 0.35 higher 95% CI (0.04–0.65), $l^2 = 17\%$, P = 0.03]. The result was statistically significant.

10. Total cycle cancelation

Data from both RCTs [95% CI (0.50–163.58), P = 0.14] and NRCTs [95% CI (-0.07-0.04), $I^2 = 52\%$, P = 0.66] (Fig. 6) showed that there were no significant differences in the total cycle cancelation rates between the two groups.

11. Endometrial thickness (millimeter, mm)

Data from RCTs showed that the endometrium was thicker with the PPOS protocol than with the control protocol [MD 0.39 mm, higher 95% CI (0.00–0.78), $I^2 = 0\%$, P = 0.05], and difference was statistically significant. Data from NRCTs (Fig. 6) showed that the

endometrium was thinner with the PPOS protocol than with the control group [MD 0.14 mm lower 95% CI (- 0.78–0.49), $I^2 = 67\%$, P = 0.66], though the difference was not statistically significant.

Discussion

The results of this meta-analysis showed that the PPOS protocol had more obtained embryos and a thicker endometrium than the control protocol, with a lower rate of OHSS. There were no significant differences in the live birth rate, duration of stimulation, progestin values on trigger day (ng/ml), number of retrieved oocytes, number of MII oocytes, or total cycle cancelation rates between the two groups.

In the rFSH subgroup, the clinical pregnancy rate was lower in the PPOS group than in the control group, and the result was statistically significant. Three RCTs showed that in the hMG subgroup, the clinical pregnancy rate of the PPOS protocol was higher than that of the control group, and the difference was near statistical significance (P = 0.06). The quality of the evidence (GRADE) was moderate. The results of the RCT of the rFSH/hMG subgroups showed that there was no significant difference in the dose of rFSH/ hMG between the two groups, and the quality of the evidence (GRADE) was high. Only NRCTs in the hMG subgroup showed that the dose of hMG in the PPOS protocol was higher. Data from RCTs showed that the PPOS protocol had a thicker endometrium, and the quality of evidence was high with a significant difference. While NRCTs showed that the endometrium was thinner with the PPOS protocol, there was no significant difference, and the quality of evidence (GRADE) was low.

The prevalence of infertility is high around the world, and it is estimated that 1 out of 4 couples are infertile [25]. ART has developed quite rapidly over recent years, and there is still an unmet need for ovarian stimulation protocols with improved efficacy, safety, and convenience. New protocols, such as GnRH antagonist protocols and mild stimulation protocols, have been proposed over the last decade. Progestin-primed ovarian stimulation (PPOS) is also one of these new ovarian stimulation protocols. Some studies [26, 27] have suggested that compared with conventional ovarian stimulation methods, the PPOS protocol neither compromises neonatal outcomes of IVF newborns nor increases the prevalence of congenital malformations. This is the first meta-analysis to examine the effect of the PPOS protocol in ART. According to our review, the safety and effectiveness of PPOS are confirmed.

Poor ovarian response (POR) to ovarian hyperstimulation is one of the greatest challenges in assisted reproduction technology. According to the report from the Society for Assisted Reproductive Technology (SART) in 2018 in the USA, in women considered to be poor responders, there is fair evidence to support the recommendation that mild ovarian stimulation is cost-effective, although live birth rates are extremely low among both women undergoing the mild ovarian stimulation and those undergoing conventional IVF [28]. A retrospective study (Peng et al.) [5] showed no significant difference in the clinical pregnancy rates between the mild stimulation (12.5%) and PPOS groups (16.7%). The average numbers of oocytes and viable embryos and the live birth rates were comparable to those in the GnRH antagonist group. Although the PPOS protocol did not improve the clinical pregnancy rates of POR patients, it might be an option for personalized protocols.

In 2015, Dr. Kuang et al. [1] proposed the PPOS protocol such as medroxyprogesterone acetate (MPA) cotreatment with gonadotropin hMG during COS in IVF treatment. Several studies have suggested that progesterone in PPOS protocols may offer a variety of options such as medroxyprogesterone acetate (MPA), dydrogesterone [2–5, 28], or utrogestan [13, 29, 30]. In PPOS protocols, all of these options are sufficient to prevent an untimely LH rise. As DYG has been extensively used worldwide for the treatment of threatened miscarriage and recurrent miscarriage, DYG administration in PPOS protocols produces a comparable number of top-quality embryos and pregnancy outcomes compared with MPA [28]. However, further randomized controlled trials are needed to confirm this conclusion.

Recombinant follicle-stimulating hormone (rFSH) and human menopausal gonadotropin (uHMG) are widely used for controlled ovarian stimulation (COS). rFSH treatment results in a higher oocyte yield per cycle than human menopausal gonadotropin treatment [31, 32]. Different clinics choose different GN doses in PPOS protocols. From this meta-analysis, we conclude that there is no difference in the live birth rate. In the subgroup analysis, the hMG subgroup had a better clinical pregnancy rate, while the rFSH group had a lower clinical pregnancy rate than the control group. It may be suggested to choose hMG for COS in the PPOS protocol. A cost-effectiveness study [16] showed that PPOS protocols were cost-effective when freeze-only was planned for preimplantation genetic testing or fertility-preservation cycles, where a GnRH antagonist protocol would otherwise be used. In addition, this study cannot accurately specify drugs for PPOS protocols. More RCTs should be performed to evaluate the best drug candidates for individual infertile patients.

The strength of this meta-analysis lies in the strict methodology guided by PRISMA guidelines.

Additionally, the quality of the RCTs was evaluated using the Cochrane Handbook method as a way to enhance external validity. The quality of NRCTs was evaluated using the Newcastle–Ottawa Scale. Furthermore, we graded the certainty of the evidence for critical outcomes by GRADE-pro.

Limitations of the review

Only five RCTs were included in our meta-analysis. The outcomes of NRCT by GRADE-pro were quite low. Furthermore, 6 of the 11 records included were from China. Progestin-primed ovarian stimulation (PPOS) was first proposed by the Yanping Kuang M.D. group in 2015. Over the last two years, many centers around the world have begun to choose PPOS.

Conclusion

The PPOS protocol produces more obtained embryos and a thicker endometrium than the control group, with a lower rate of OHSS and equal clinical pregnancy rate, live birth rate, duration of stimulation, progestin value on trigger day (ng/ml), number of retrieved oocytes, number of MII oocytes, and total cycle cancelation rate. In the subgroup analysis, the hMG subgroup had a better clinical pregnancy rate, while the rFSH group had a lower clinical pregnancy rate than the control group. It may be suggested to choose hMG for COS in the PPOS protocol. More RCTs should be performed to evaluate the best ones for respective infertile patients.

Acknowledgements Professor Fang Wang and Professor Chen Chen contributed equally to this work.

Author contributions Dr. LC was involved in the design and conduct of the review, data analysis, and drafting of the manuscript. Professor YHL was involved in and supervised the data analysis and critical discussion. Professor FW was involved in the design and conduct of the review, checked the data extraction, revised the manuscript, and validated the final version for submission. Professor CC was involved in the design, supervised the data analysis, and revised the manuscript.

Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

Compliance with ethical standards

Conflict of interest None.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Kuang Y, Chen Q, Fu Y, Wang Y, Hong Q, Lyu Q et al (2015) Medroxyprogesterone acetate is an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Fertil Steril 104(1):62–703. https://doi.org/10.1016/j. fertnstert.2015.03.022
- Huang J, Xie Q, Lin J, Lu X, Zhu J, Gao H et al (2019) Progestinprimed ovarian stimulation with dydrogesterone versus medroxyprogesterone acetate in women with polycystic ovarian syndrome for in vitro fertilization: a retrospective cohort study. Drug Design, Dev Therapy 13:4461–4470. https://doi.org/10.2147/DDDT. S230129
- Iwami N, Kawamata M, Ozawa N, Yamamoto T, Watanabe E, Moriwaka O et al (2018) New trial of progestin-primed ovarian stimulation using dydrogesterone versus a typical GnRH antagonist regimen in assisted reproductive technology. Arch Gynecol Obstet 298(3):663–671. https://doi.org/10.1007/s0040 4-018-4856-8

- Eftekhar M, Hoseini M, Saeed L (2019) Progesterone-primed ovarian stimulation in polycystic ovarian syndrome: an RCT. Int J Reprod Biomed 17(9):671–676. https://doi.org/10.18502/ijrm. v17i9.5103
- Peng Q, Cao X, Wang J, Wang L, Xu J, Ji X et al (2019) Progestin-primed ovarian stimulation vs mild stimulation in women with advanced age above 40: a retrospective cohort study. Reprod Biol Endocrinol: RB&E 17(1):91. https://doi.org/10.1186/s1295 8-019-0518-3
- Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K et al (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril 92(5):1520–1524. https://doi. org/10.1016/j.fertnstert.2009.09.009
- Chen Q, Chai W, Wang Y, Cai R, Zhang S, Lu X et al (2019) Progestin vs. Gonadotropin-releasing hormone antagonist for the prevention of premature luteinizing hormone surges in poor responders undergoing in vitro fertilization treatment: a randomized controlled trial. Front Endocrinol 10:796. https://doi. org/10.3389/fendo.2019.00796
- Begueria R, Garcia D, Vassena R, Rodriguez A (2019) Medroxyprogesterone acetate versus ganirelix in oocyte donation: a randomized controlled trial. Hum Reprod 34(5):872–880. https://doi. org/10.1093/humrep/dez034
- Huang P, Tang M, Qin A (2019) Progestin-primed ovarian stimulation is a feasible method for poor ovarian responders undergoing in IVF/ICSI compared to a GnRH antagonist protocol: a retrospective study. J Gynecol Obstet Human Reprod 48(2):99–102. https ://doi.org/10.1016/j.jogoh.2018.10.008
- Yildiz S, Turkgeldi E, Angun B, Eraslan A, Urman B, Ata B (2019) Comparison of a novel flexible progestin primed ovarian stimulation protocol and the flexible gonadotropin-releasing hormone antagonist protocol for assisted reproductive technology. Fertil Steril 112(4):677–683. https://doi.org/10.1016/j.fertnstert .2019.06.009
- Mathieu d'Argent E, Ferrier C, Zacharopoulou C, Ahdad-Yata N, Boudy AS, Cantalloube A et al (2020) Outcomes of fertility preservation in women with endometriosis: comparison of progestinprimed ovarian stimulation versus antagonist protocols. J Ovarian Res 13(1):18. https://doi.org/10.1186/s13048-020-00620-z
- Wen X, Kuang Y, Zhou L, Yu B, Chen Q, Fu Y et al (2018) Lipidomic components alterations of human follicular fluid reveal the relevance of improving clinical outcomes in women using progestin-primed ovarian stimulation compared to short-term protocol. Med Sci Monitor: Int Med J Exp Clin Res 24:3357–3365. https://doi.org/10.12659/MSM.906602
- Wang N, Lin J, Zhu Q, Fan Y, Wang Y, Fu Y et al (2018) Comparison of neonatal outcomes and live-birth defects after progestinprimed ovarian stimulation versus conventional ovarian stimulation for in vitro fertilization: a large retrospective cohort study. Medicine 97(34):e11906. https://doi.org/10.1097/MD.00000 00000011906
- Lu X, Hong Q, Sun L, Chen Q, Fu Y, Ai A et al (2016) Dual trigger for final oocyte maturation improves the oocyte retrieval rate of suboptimal responders to gonadotropin-releasing hormone agonist. Fertil Steril 106(6):1356–1362. https://doi.org/10.1016/j. fertnstert.2016.07.1068
- Wang Y, Chen Q, Wang N, Chen H, Lyu Q, Kuang Y (2016) Controlled ovarian stimulation using medroxyprogesterone acetate and hMG in patients with polycystic ovary syndrome treated for IVF: a double-blind randomized crossover clinical trial. Medicine 95(9):e2939. https://doi.org/10.1097/MD.00000000002939
- Evans MB, Parikh T, DeCherney AH, Csokmay JM, Healy MW, Hill MJ (2019) Evaluation of the cost-effectiveness of ovulation suppression with progestins compared with GnRH analogs in

assisted reproduction cycles. Reprod Biomed Online 38(5):691–698. https://doi.org/10.1016/j.rbmo.2018.12.044

- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006
- Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi. org/10.1136/bmj.d5928
- Wells GA SB, O'Connell Dea (2008) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. http://www.ohrica/programs/clinical_epidemiology/ oxfordasp
- Cook DA, Reed DA (2015) Appraising the quality of medical education research methods: the Medical Education Research Study Quality Instrument and the Newcastle-Ottawa Scale-Education. Acad Med: J Assoc Am Med Colleges 90(8):1067–1076. https:// doi.org/10.1097/ACM.00000000000786
- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P et al (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bmj.39489.47034 7.AD
- Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi. org/10.1002/sim.1186
- Al-Inany HG, Abou-Setta AM, Aboulghar MA, Mansour RT, Serour GI (2008) Efficacy and safety of human menopausal gonadotrophins versus recombinant FSH: a meta-analysis. Reprod Biomed Online 16(1):81–88. https://doi.org/10.1016/s1472 -6483(10)60559-7
- Coomarasamy A, Afnan M, Cheema D, van der Veen F, Bossuyt PM, van Wely M (2008) Urinary hMG versus recombinant FSH for controlled ovarian hyperstimulation following an agonist long down-regulation protocol in IVF or ICSI treatment: a systematic review and meta-analysis. Hum Reprod 23(2):310–315. https:// doi.org/10.1093/humrep/dem305
- Jesus AR, Silva-Soares S, Silva J, Severo M, Barros A, Doria S (2019) Reproductive success of assisted reproductive technology in couples with chromosomal abnormalities. J Assist Reprod Genet 36(7):1471–1479. https://doi.org/10.1007/s10815-019-01486-x
- Zhang J, Mao X, Wang Y, Chen Q, Lu X, Hong Q et al (2017) Neonatal outcomes and congenital malformations in children born

after human menopausal gonadotropin and medroxyprogesterone acetate treatment cycles. Arch Gynecol Obstet 296(6):1207–1217. https://doi.org/10.1007/s00404-017-4537-z

- 27. Huang J, Xie Q, Lin J, Lu X, Wang N, Gao H et al (2019) Neonatal outcomes and congenital malformations in children born after dydrogesterone application in progestin-primed ovarian stimulation protocol for IVF: a retrospective cohort study. Drug Design, Dev Therapy 13:2553–2563. https://doi.org/10.2147/DDDT. S210228
- Yu S, Long H, Chang HY, Liu Y, Gao H, Zhu J et al (2018) New application of dydrogesterone as a part of a progestin-primed ovarian stimulation protocol for IVF: a randomized controlled trial including 516 first IVF/ICSI cycles. Hum Reprod 33(2):229–237. https://doi.org/10.1093/humrep/dex367
- Zhu X, Zhang X, Fu Y (2015) Utrogestan as an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Medicine 94(21):e909. https://doi. org/10.1097/MD.00000000000909
- 30. Wang Y, Kuang Y, Chen Q, Cai R (2018) Gonadotropin-releasing hormone antagonist versus progestin for the prevention of premature luteinising hormone surges in poor responders undergoing in vitro fertilisation treatment: study protocol for a randomised controlled trial. Trials 19(1):455. https://doi.org/10.1186/s1306 3-018-2850-x
- Levi Setti PE, Alviggi C, Colombo GL, Pisanelli C, Ripellino C, Longobardi S et al (2015) Human recombinant follicle stimulating hormone (rFSH) compared to urinary human menopausal gonadotropin (HMG) for ovarian stimulation in assisted reproduction: a literature review and cost evaluation. J Endocrinol Invest 38(5):497–503. https://doi.org/10.1007/s40618-014-0204-4
- 32. Revelli A, Pettinau G, Basso G, Carosso A, Ferrero A, Dallan C et al (2015) Controlled Ovarian Stimulation with recombinant-FSH plus recombinant-LH vs. human Menopausal Gonadotropin based on the number of retrieved oocytes: results from a routine clinical practice in a real-life population. Reprod Biol Endocrinol: RB&E 13:77. https://doi.org/10.1186/s12958-015-0080-6

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.