
Vol.:(0123456789)1 3

Archives of Dermatological Research (2023) 315:2107–2118 
https://doi.org/10.1007/s00403-023-02594-6

ORIGINAL PAPER

Overexpression of hypoxia‑inducible factor‑1α in hidradenitis 
suppurativa: the link between deviated immunity and metabolism

Naglaa Fathi Agamia1   · Osama Ahmed Sorror1 · Naglaa Mohamed Sayed1 · Rasha Abdelmawla Ghazala2 · 
Sammar Mohamed Echy3 · Doaa Helmy Moussa1 · Bodo Clemens Melnik4

Received: 13 January 2023 / Revised: 13 January 2023 / Accepted: 23 February 2023 / Published online: 24 March 2023 
© The Author(s) 2023

Abstract
Hypoxia-inducible factor-1α (HIF-1α) is the master transcription factor of glycolysis, Th17 cell differentiation and suppres-
sion of regulatory T cells. In the skin and serum of patients with psoriasis vulgaris, increased expression of HIF-1α has been 
reported, whereas HIF-1α expression in the skin and serum of patients with hidradenitis suppurativa (HS) has not yet been 
studied. The objective of the study is to demonstrate is there a role for HIF-1α in the pathogenesis of hidradenitis suppurativa, 
and its relation to HS severity. Twenty patients suffering from hidradenitis suppurativa were included in the study. Punch 
biopsies were taken from lesional skin for the determination of HIF-1α expression by immunohistochemical staining, and 
HIF-1α gene expression by quantitative reverse transcription real time PCR. Quantification of HIF-1α protein concentration 
was done by enzyme-linked immunosorbent assay. Twenty socio-demographically cross-matched healthy volunteers served 
as controls. We found increased serum levels of HIF-1α. Literature-derived evidence indicates that the major clinical trig-
gering factors of HS, obesity, and smoking are associated with hypoxia and enhanced HIF-1α expression. Pro-inflammatory 
cytokines such as tumor necrosis factor-a via upregulation of nuclear factor � B enhance HIF-1α expression. HIF-1α plays an 
important role for keratinocyte proliferation, especially for keratinocytes of the anagen hair follicle, which requires abundant 
glycolysis providing sufficient precursors molecules for biosynthetic pathways. Metformin via inhibition of mTORC1 as well 
as adalimumab attenuate HIF-1α expression, the key mediator between Th17-driven deviated immunity and keratinocyte 
hyperproliferation. In accordance with psoriasis, our study identifies HS as an HIF-1α-driven inflammatory skin disease and 
offers a new rationale for the prevention and treatment of HS by targeting HIF-1a overexpression.
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Introduction

Hidradenitis suppurativa (HS) is a chronic disabling inflam-
matory skin disease characterized by painful, deeply seated 
nodules, abscesses, sinuses, and scars with yet uncertain 
etiopathogenesis [1, 2]. The majority of HS patients are 
sporadic cases, whereas familial HS has accounted for 
3.2–35.8% of HS patients, respectively [3, 4]. Clinical 
experience indicates that HS is triggered by environmen-
tal insults in genetically predisposed individuals. Obesity 
and cigarette smoking are among the most important trig-
gering factors [5]. Increased activity of mechanistic target 
of rapamycin complex 1 (mTORC1) has been observed in 
the skin of HS [6], psoriatic epidermis [7, 8], obesity and 
diabetes mellitus [9, 10], and is regarded as a potential link 
between deviations of metabolism and immunity in HS 
[11–13]. Notably, hypoxia-inducible factor-1a (HIF-1a ) is 
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a downstream effector of mTORC1 [14]. Overactivation 
of mTORC1 drives Th17 cell-induced expression of inter-
leukin 17 (IL-17) [15, 16]. The IL-17 pathway plays a key 
role in the pathogenesis of HS and psoriasis [17–21]. HS 
is characterized by dysregulation of Th17 and regulatory T 
(Treg) cells [21], also observed in other autoimmune comor-
bidities of HS [19]. Notably, HIF-1α directly promotes Th17 
development through transcriptional activation of retinoic 
acid-related orphan receptor γt (RORγt), a key transcription 
factor that drives the differentiation of Th17 cells [22, 23]. In 
contrast, HIF-1α restricts the differentiation and function of 
Treg cells through binding to FoxP3 targeting it for degrada-
tion [22, 23]. HIF-1α plays a pivotal role in metabolic repro-
gramming in inflammation [24] and controls the activation 
of macrophages, neutrophils and dendritic cells, creating a 
pro-inflammatory microenvironment within autoinflamma-
tory lesions [25].

HIF-1α is the master transcription factor of hypoxia and 
glycolysis [26, 27]. Glycolysis is the preferred source of 
energy and biosynthetic precursor availability for highly pro-
liferating cells including Th17 cells [28], psoriatic keratino-
cytes [29, 30] and anagen hair follicle cells [31–33]. Perile-
sional skin of HS shows mild psoriasiform hyperplasia [34]. 
Excessive proliferation of outer root sheath keratinocytes has 
been observed in HS [35, 36].

Upregulated expression of HIF-1α has been detected in 
the skin and serum of patients with psoriasis [37, 38] and 
other Th17-mediated inflammatory diseases [25]. In accord-
ance with HS, obesity and smoking are aggravating fac-
tors promoting psoriasis [39, 40]. Therefore, we wondered 
whether HIF-1α is also overexpressed in the skin and serum 
of patients with HS and whether HIF-1α may link obesity 
and smoking to Th17 cell-driven dysregulations of immunity 
and infundibular keratinocyte hyperproliferation.

Materials and methods

Patients

This study included 20 patients suffering from hidradenitis 
suppurativa and 20 socio-demographically cross-matched 
healthy controls. All participants were recruited from the 
Dermatology Outpatient Clinic of the Alexandria Main Uni-
versity Hospital. Approval by ethical committee as well as 
written informed consent was obtained from all patients and 
controls. All procedures were in accordance with the ethical 
standards of the institutional and/or national research com-
mittee and the 1964 Declaration of Helsinki and registered 
with IRB No.: 00012098, FWA No.: 00018699. Patients 
with other concomitant lesions in the diseased area, patients 

who were receiving therapy for HS during the last 6 months, 
pregnant and lactating females were excluded. Patients were 
subjected to a full history, general medical and dermatologi-
cal examination. Severity of HS was graded by the Hurley 
system: stage I: solitary or multiple, isolated abscess for-
mation without scarring or sinus tracts; stage II: recurrent 
abscesses, single or multiple widely separated lesions, with 
sinus tract formation; stage III: diffuse or broad involvement, 
with multiple interconnected sinus tracts and abscesses [41].

Skin biopsy

The procedure was explained to all patients. One 5 mm 
punch biopsy (for the immunohisto-chemical study) and 
two 2.5 mm punch biopsies (for ELISA and PCR) were 
taken from lesional skin of the patients. Three 5 mm punch 
biopsies of normal skin were taken from control subjects 
who were undergoing surgical procedure in the groin region 
recruited from the plastic surgery department.

Histopathology and immunohistochemistry

All specimens were prepared for immunohistochemical stain-
ing using mouse anti-human monoclonal HIF-1α antibody 
[42]. The immunohistochemical staining was performed 
using the labeled streptavidin–biotin complex method. Pri-
mary antibody: HIF-1α-antibody (Affinity biosciences cat # 
AF1009), streptavidin–HRP conjugate (Epredia™ UltraVi-
sion Quanto Detection HRP DAB–Cat# TL-060-QHD) was 
prepared according to the manufacturer’s instructions, DAB 
working solution was prepared from the submitted DAB 
stock solution (Epredia™ UltraVision Quanto Detection HRP 
DAB–Cat# TL-060-QHD) in a 1 mg/ml concentration. HIF-1α 
positivity was considered when both nuclear and cytoplasmic 
staining were identified. Computed image analysis using 
Leica Application Suite 4.12.0 (Leica Microsystems CMS, 
GmbH) for semi-quantification of the number of positively 
stained inflammatory cells in the entire tissue biopsy in rela-
tion to the total number of inflammatory cells was calculated 
and expressed as a percentage. The overall staining intensities 
with HIF-1α monoclonal antibodies were scored using digi-
tal image analysis with a computer-assisted light microscope. 
The image of each slide was captured using a 400 × objective 
lens. Images were viewed and recorded using an Olympus 
microscope (Olympus, Centre Valley, PA, U.S.A.) equipped 
with a spot digital camera (Spot Imaging Solutions, Sterling 
Heights, MI, U.S.A.) and MATLAB software (MathWorks, 
Natlick, MA, U.S.A.). The mean values of each reaction were 
based on the mean pixel number. The integrity of the color 
intensity was based on grey-level transition probabilities in 
digitized images from dark to light. The overall intensity of 
staining of slides stained with HIF-1α monoclonal antibody 
was scored according to nuclear or cytoplasmic expression 
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into 0 if staining intensity was < 10%, + 1 if staining intensity 
was 10% ≤ 30%, + 2 if 31% ≤ 50% and + 3 if > 50% staining 
intensity [37].

Enzyme‑linked immunosorbent assay

For serum preparation, the whole blood was collected and 
allowed to clot by leaving it undisturbed at room temperature. 
This took 10–20 min. The clot removed by centrifuging at 
2000–3000 rpm for 20 min. Skin biopsies were preserved at 
− 80 °C. After determination of sample weight and addition of 
PBS, pH 7.4, samples were homogenized by hand or grinders 
and finally centrifuged for 3 min at a speed of 10,000 r.p.m. to 
remove the supernatant. The ELISA kit (Abcam, ab171571) 
was for the determination of HIF-1α protein concentrations 
in serum and tissue. Antibodies labelled with enzyme were 
added for an incubation time of 60 min at 37 °C. After washing 
the plates and addition of Chromogen solution A, B, optical 
density (OD) values were measured for calculation of HIF-1α 
protein concentrations of the samples [37].

Quantitative reverse transcription real‑time PCR

Total RNA was extracted from 10 mg skin tissue after lysis and 
homogenization, using silicate gel technique provided by the 
RNeasy Mini Kit (Qiagen) [43]. The concentration and purity 
of RNA were measured at 260, 280 and 230 nm using Nano 
Drop 2000c spectrophotometer (Thermo Scientific, USA). A 
ratio of A260/A280 = 1.8–2.1 and A260/A230 = 1.8–2.1 indi-
cates highly pure RNA. Total RNA was reverse transcribed 
into cDNA using high-capacity reverse transcriptase kit 
(Applied Biosystems™, USA, catalog no. 4368814). To detect 
HIF-1α gene expression in tissue samples, primers had been 
matched to the mRNA sequences of the target genes (NCBI 
Blast software). GADPH was used as housekeeping gene 
[44]. The PCR amplification was performed in a 25 µl reac-
tion volume including SYBR green PCR Master Mix (Applied 
Biosystems) using ABI 7900 sequence detector (Applied Bio-
systems). The reaction was performed with 10 min of initial 
stage to activate the DNA polymerase, followed by 40 cycles 
at 95 °C for 15 s and 60 °C for 1 min. Single product formation 
was confirmed by melting point analysis and comparative CT 
method was used to calculate relative gene expression with 
GADPH as an endogenous control. For statistical analysis of 
the CT values, 2−ΔΔCT method was applied for each specific 
primer and real-time PCR [45].

Results

Patient data

The group of HS patients included 15 males and 5 females. 
Their mean age was 26.10 ± 6.10 years while the controls 
included 14 males and 6 females. Their mean age was 
25.65 ± 4.59 years. There was no significant difference 
regarding sex and age. The mean duration of the disease 
was 12.0 ± 9.86 months. Patients had significantly higher 
BMI compared to controls. The mean BMI in the HS group 
was 29.49 ± 4.56 kg/m2, while BMI in the control group was 
26.74 ± 3.10 kg/m2 (Table 1). With regard to Hurley stage, 
25% (5 patients) were of stage I, 45% (9 patients) of stage 
II and 30% (6 patients) of stage III. HS clinical staging was 
found to have a significant relation to the duration of HS and 
BMI of the patients but no significant relation to sex, age, or 
smoking (Table 2).

Immunohistochemical detection of HIF‑1α 
in lesional HS skin

Stain intensity in the HS group (35% score + 1, 35% 
score + 2, 30% score + 3) was significantly higher compared 
to the control group (20% score 0; 80% score + 1) (Table 1). 
Figure 1 and Table 2 show the representative of immuno-
histochemical expression of HIF-1α in relation to Hurley 
staging (Fig. 1a–e). An increased HIF-1α immune staining 
of the inflammatory infiltrate could be observed in relation 
to Hurley stage, while Fig. 1f represents immunohistochemi-
cal expression of HIF-1α in controls.

HIF‑1α protein concentration in lesional HS skin

The cutaneous HIF-1α protein in lesional skin of HS patients 
(3205.4 ± 473.2 pg/ml) was significantly increased com-
pared to healthy controls (1727.3 ± 482.4 pg/ml) (p < 0.001) 
(Table 1). There was a statistically significant correlation 
between grading of the stain intensity (Table 3) and Hurley 
staging of HS (Table 4) and HIF-1α serum level (p < 0.001) 
(Fig. 2c).

Serum concentrations of HIF‑1α

The mean serum HIF-1α levels in HS patients 
(5149.1 ± 587.6 pg/ml) was significantly increased compared 
to the control group (2580.4 ± 562.8 pg/ml) (p < 0.001) 
(Table 1). There was also a positive correlation between 
HIF-1α serum levels with Hurley staging of HS (Table 4) as 
well as HIF-1α protein expression (Fig. 2c) and immunohis-
tochemical expression in skin biopsies (Table 3).
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Table 1   Comparison between HS patients and controls according to grading of the stain intensity and HIF-1α expression

p: p value for comparing between the studied groups
SD standard deviation, t Student’s t test, χ2 Chi-square test, MC Monte Carlo
*Statistically significant at p ≤ 0.05

Patients
(n = 20)

Control
(n = 20)

Test of sig. p

Grading of the stain intensity
 0 0 (0%) 4 (20%) χ2 = 20.554* MCp < 0.001*
  + 1 7 (35%) 16 (80%)
  + 2 7 (35%) 0 (0%)
  + 3 6 (30%) 0 (0%)

HIF-1α serum protein concentration (pg/ml)
 Mean ± SD 5149.1 ± 587.6 2580.4 ± 562.8 t = 14.118*  < 0.001*
 Median (Min.–Max.) 4992.8 (4267–6124) 2454.5 (1813–3685)

HIF-1α tissue protein concentration (pg/ml)
 Mean ± SD 3205.4 ± 473.2 1727.3 ± 482.4 t = 9.782*  < 0.001*
 Median (Min.–Max.) 3319 (2421–4074) 1809.5 (703.5–2322)
HIF1A gene expression
 Mean ± SD 0.25 ± 0.16 0.85 ± 0.09 t = 14.698*  < 0.001*
 Median (Min.–Max.) 0.23 (0.03–0.52) 0.85 (0.70–0.98)

Table 2   Relation between HS stage and different parameters in patients’ group (n = 20)

p: p value for comparing between different stages
SD standard deviation, F F for one-way ANOVA test, H H for Kruskal–Wallis test, χ2 Chi-square test, MC Monte Carlo
*Statistically significant at p ≤ 0.05

HS stage Test of sig. p

Stage I
(n = 5)

Stage II
(n = 9)

Stage III
(n = 6)

Sex
 Male 4 (80%) 5 (55.6%) 6 (100%) χ2 = 3.476 MCp = 0.147
 Female 1 (20%) 4 (44.4%) 0 (0%)

Age (years)
 Mean ± SD 25.80 ± 6.06 26.33 ± 7.81 26.0 ± 3.79 F = 0.012 0.988
 Median (Min.–Max.) 22.0 (21.0–35.0) 27.0 (13.0–38.0) 25.5 (20.0–31.0)

Duration (month)
 Mean ± SD 2.20 ± 0.84 8.78 ± 4.38 25.0 ± 4.52 H = 16.424*  < 0.001*
 Median (Min.–Max.) 2.0 (1.0–3.0) 7.0 (5.0–18.0) 24.0 (18.0–30.0)

Smoking
 Non-smoker 1 (20%) 5 (55.6%) 0 (0%) χ2 = 5.082 0.057
 Smoker 4 (80%) 4 (44.4%) 6 (100%)

BMI (kg/m2)
 Mean ± SD 24.08 ± 1.68 28.67 ± 1.44 35.23 ± 1.82 F = 66.950*  < 0.001*
 Median (Min.–Max.) 23.2 (22.6–26.0) 28.2 (26.8–31.1) 35.35 (32.8–37.1)

Grading of the stain intensity
  + 1 5 (100%) 2 (22.2%) 0 (0%) χ2 = 24.295* MCp < 0.001*
  + 2 0 (0%) 7 (77.8%) 0 (0%)
  + 3 0 (0%) 0 (0%) 6 (100%)
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Lesional HIF1α gene expression

Relative gene expression of HIF1A was lower in the HS 
group (0.25 ± 0.16) compared to controls (0.85 ± 0.09) 
(p < 0.001) (Table 1). Notably, HIF1A gene expression 

showed a negative correlation to both HIF-1α protein expres-
sion in the skin (p < 0.001) (Fig. 2a) and HIF-1α serum lev-
els (p < 0.001) (Fig. 2b).

Fig. 1   Immunohistochemical expression of HIF-1α in inflammatory 
cells in correlation to Hurley staging. a-e The grade of stain intensity 
in the inflammatory infiltrate is increased with the increase in Hurly 
staging. f Immunohistochemical expression of HIF-1α in controls. 
a HIF-1α expression in skin biopsy from patient with HS stage I of 
Hurley system showing grade 0 stain intensity of the inflammatory 
infiltrate (< 10%). b HIF-1α expression in skin biopsy from patient 
with HS stage I of Hurley system showing grade + 1 stain intensity 

of the inflammatory infiltrate (10% ≤ 30%). c HIF-1α expression in 
skin biopsy from patient with HS Hurley stage II exhibits grade + 2 
stain intensity of the inflammatory infiltrate (31% ≤ 50%). d HIF-1α 
expression in skin biopsy from HS patient with Hurley stage III 
shows grade + 3 stain intensity of the inflammatory infiltrate (> 50%). 
e HIF-1α in HS Hurley stage III of shows grade + 3 stain intensity in 
the deep dermis

Table 3   Relation between grading of the HIF-1α stain intensity with HIF-1α expression in patient’s group (n = 20)

p: p value for comparing between different grading
SD standard deviation, F F for one-way ANOVA test
*Statistically significant at p ≤ 0.05

HIF-1α expression Grading of the stain intensity F P

 + 1
(n = 7)

 + 2
(n = 7)

 + 3
(n = 6)

HIF-1α serum protein concentration (pg/ml)
 Mean ± SD 4598.5 ± 228.3 5062.5 ± 247.2 5892.5 ± 279.2 43.650*  < 0.001*
 Median (Min.–Max.) 4649 (4267–4973) 4994.5 (4731–5425) 6014.5 (5432–6124)

HIF-1α tissue protein concentration(pg/ml)
 Mean ± SD 2725.6 ± 292.8 3239.4 ± 188.0 3725.3 ± 239.4 27.206*  < 0.001*
 Median (Min.–Max.) 2629 (2421–3254) 3324 (2828–3351) 3596 (3547–4074)
HIF1A gene expression
 Mean ± SD 0.42 ± 0.12 0.23 ± 0.04 0.08 ± 0.05 27.752*  < 0.001*
 Median (Min.–Max.) 0.49 (0.24–0.52) 0.23 (0.16–0.28) 0.09 (0.03–0.14)
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Discussion Our study is the first investigation showing increased 
expression of HIF-1a in lesional skin of HS patients. In 
normal human skin, HIF-1a protein expression is low and 

Table 4   Relation between HS stage and HIF-1α expression in patients’ group (n = 20)

p: p value for comparing between different grading
SD standard deviation, F F for one-way ANOVA test
*Statistically significant at p ≤ 0.05

HIF-1α expression HS stage F p

Stage I
(n = 5)

Stage II
(n = 9)

Stage III
(n = 6)

HIF-1α serum protein concentration (pg/ml)
 Mean ± SD 4505.6 ± 174.2 5011.0 ± 247.6 5892.5 ± 279.2 47.163*  < 0.001*
 Median (Min.–Max.) 4580 (4267–4654) 4991 (4688.5–5425) 6014.5 (5432–6124)

HIF-1α tissue protein concentration (pg/ml)
 Mean ± SD 2573.8 ± 129.29 3209.6 ± 188.6 3725.3 ± 239.4 48.197*  < 0.001*
 Median (Min.–Max.) 2529 (2421–2764) 3314 (2828–3351) 3596 (3547–4074)
HIF1A gene expression
 Mean ± SD 0.48 ± 0.07 0.23 ± 0.04 0.08 ± 0.05 89.706*  < 0.001*
 Median (Min.–Max.) 0.52 (0.36–0.52) 0.24 (0.16–0.28) 0.09 (0.03–0.14)

Fig. 2   Correlations between HIF-1α skin protein, serum and gene 
expression. a Correlation between HIF-1α protein levels in HS skin 
and HIF-1α gene expression. b Correlation between HIF-1α gene vs. 

HIF-1α serum in patients’ group. c Correlation between HIF-1α pro-
tein vs. HIF-1α serum expression levels in patients’ group
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focal in the epidermis in contrast to hair follicles, seba-
ceous glands, and sweat glands, where HIF-1α is abun-
dantly expressed [37]. Upregulated expressions of HIF-1α 
has been detected in psoriasis vulgaris [37, 38, 46–48] and 
other autoinflammatory diseases related to Th17-mediated 
inflammation [25, 49–51]. HIF-1α plays a pivotal role in 
Th17 cell differentiation [22, 23]. HS exhibits hyperpro-
liferation of ORS keratinocytes [35, 36] and is associated 
with Th17-mediated autoimmunity [17–19, 52, 53].

HIF-1a is the key transcription factor of glycolysis [54, 
55], which is required for accelerated cell proliferation 
[26]. HIF-1α-induced glycolysis has been associated with 
keratinocyte proliferation in psoriasis vulgaris [29, 30, 47]. 
Notably, the human hair follicle is intensively engaged in 
aerobic glycolysis [32, 33] and exhibits high expression of 
HIF-1a [37]. The pathogenic role of HIF-1a in HS is sup-
ported by our observation of increased expression of HIF-1a 
in lesional skin of HS associated with a positive correla-
tion with Hurley staging (Table 2). In analogy to psoriasis 
[38], we found also significantly elevated serum levels of 
HIF-1a in our HS patients compared to healthy controls. In 
psoriasis, high serum levels of HIF-1α showed a correlation 
with overexpression of IL-6 [38]. IL-6 via STAT3 signaling 
enhances HIF-1a expression [22].

In psoriasis, human dermal microvascular endothelial 
cells display increased angiogenesis and migration [56]. In 
the dermis of lesional HS areas with chronic inflammation, 
increased neovascularization has also been observed [57, 
58]. Enhanced vascular endothelial growth factor (VEGF) 
expression has been reported in psoriasis and HS [59]. HIF-1 
is a master regulator of angiogenesis and participates in vas-
culature formation by synergistic correlations with other 
proangiogenic factors including VEGF [60].

Translational evidence indicates that overexpression of 
HIF-1 signaling is related to obesity and smoking, key clini-
cal triggering factors of HS. Increased oxygen consumption 
of adipocytes in obesity has been shown to enhance HIF-1α 
expression [61]. In contrast to elevated HIF-1α protein levels 
in patients with HS, we observed reduced HIF-1α mRNA 
levels, an unexpected finding that, however, fits well to 
observations in human endothelial cells exposed to chronic 
hypoxia that progressively decreases HIF-1α mRNA while 
HIF-1α protein levels rapidly peak after hours and then 
slowly decay [62, 63]. Noteworthy, microRNA-21 (miR-
21) is upregulated in adipose tissue of obese and diabetic 
subjects [64–66]. A significant overexpression of miR-21, 
miR-155, miR-223, miR-31, miR-125b, and miR-146a has 
been observed in lesional HS skin compared to healthy 
controls [67]. Intriguingly, miR-21 targets and thus attenu-
ates the expression of VHL mRNA [68–71]. MiR-146a is 
upregulated by NFκ B and targets 3´UTRs of signaling pro-
teins of innate immune responses [72] as well as HIF-1α 
mRNA [73]. MiR-148a is another upregulated miR related 

to obesity and diabetes [74–78]. Notably, HIF1AN, the gene 
encoding FIH-1, is a direct target of miR-148a, miR-31 and 
miR-125 that all inhibit HIF-1a transactivation (TargetScan-
Human, release 8.0).

Chronic cigarette (CS) smoke exposure induces systemic 
hypoxia [79] CS extract also increased the expression of 
miR-21 and HIF-1a in human bronchial epithelial (HBE) 
cells [80]. HBE cells release miR-21-enriched exosomes 
after CS exposure enhancing HIF-1α signaling via target-
ing pVHL [81, 82]. Further evidence confirms that CS acti-
vates HIF-1a [83, 84]. Nicotine increased HIF-1a expression 
in non-small cell lung cancer cells [85]. Benzo(a)pyrene, a 
component of CS extract [86], enhances the binding abil-
ity of HIF-1α to HIF-1β protein [87]. CS and hypoxia both 
increase oxidative stress and produce reactive oxygen spe-
cies, which induce autoreactive pro-inflammatory T cells 
and reduce Treg cell activity [88].

Interestingly, vitamin D deficiency has been repeat-
edly confirmed in HS patients and has been related to dis-
ease severity [89–93]. Vitamin D has inhibitory effects on 
mTORC1 [94, 95] which promotes the synthesis of HIF-1a 
[14]. Vitamin D supplementation downregulated mTORC1 
activity and lowered HIF-1a mRNA levels in CD4 + T cell 
subsets of high-fat-diet-induced obese mice [96]. Of note, 
vitamin D/VDR signaling enhances the transcription of 
VHL [97].

Pro-inflammatory cytokines, such as IL-17A, tumor 
necrosis factor-a (TNF-a ), and predominantly IL-1β are 
markedly increased in HS lesional skin [98]. IL-1β upregu-
lates HIF-1a and HIF-1a-dependent gene expression [99, 
100]. Inhibition of IL-1 by anakinra showed therapeutic 
effects in severe HS [101]. In HepG2 cells, IL-1β had no 
effect on reporter gene expression in normoxia, whereas 
during hypoxia IL-1β amplified HIF-1 reporter gene activ-
ity by 25% compared with hypoxia alone [102]. HIF-1a has 
been identified as target gene of NF-κ B linking hypoxia, 
inflammation and oxidative stress [103–106]. NF-k B upreg-
ulated via TNFa directly enhances the expression of HIF-1β 
mRNA and protein in an evolutionarily conserved manner 
[107]. It has recently been demonstrated in experimental 
autoimmune encephalomyelitis (EAE) that IL-17A recruits 
IL-1β-secreting myeloid cells that prime pathogenic γδT17 
and Th17 cells [108], whereas mice with HIF-1α-deficient 
T cells are resistant to induction of Th17-dependent EAE 
[23]. These data underline an intimate crosstalk between 
pro-inflammatory cytokines and HIF-1 signaling, which may 
also have an impact on HS pathogenesis.

Single-cell RNA sequencing reveals cellular and tran-
scriptional changes associated with M1 macrophage polari-
zation in HS related to increased expression of HIF-1a [109]. 
HIF-1a plays a key role in the induction of macrophage gly-
colysis and activation of pro-inflammatory M1 polarization 
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[110]. In M1 polarized macrophages, HIF-1a is responsible 
for sustanined production of IL-1β [111].

Recent evidence indicates that glycolysis is coordinated 
by both Notch and HIF-1a signaling [112]. Notch intracel-
lular domain (ICD) enhances recruitment of HIF-1 a to its 
target promoters [113]. HIF-1α stabilizes Notch signal-
ing [114–116]. Overexpressed Notch/PI3K/AKT [3] and 
mTORC1 signaling in HS [6] may thus further enhance 
HIF-1-mediated gene regulation in HS.

Infundibular hyperkeratosis with subsequent follicular 
plugging in intertriginous skin areas may result in ductal 
hypoxia, an HIF-1a-induced comedogenic mechanism earlier 
suggested in acne pathogenesis [117, 118]. In fact, hyper-
baric oxygen treatment (HBOT) improves HS and enhances 
the efficacy of adalimumab and ustekinumab [119–121]. In 

selected experimental models, HBOT decreased the expres-
sion of HIF-1a [122–124].

There is recent interest in the antidiabetic drug met-
formin for the treatment of HS [125–130]. Metformin not 
only attenuates the activity of mTORC1 [131] but down-
regulates the expression of HIF-1a [132–137]. Inhibition of 
mTORC1 by rapamycin (sirolimus) as well improved the 
clinical course of HS [138].

Taken together, our study provides evidence for increased 
lesional HIF-1a protein expression in patients with HS that 
correlates with Hurley stage (Tables 2, 4). In accordance 
with the autoimmune pathogenesis of psoriasis [37], we 
observed increased HIF-1a protein expression in HS, which 
both share enhanced HIF-1a and IL-17 signaling (Fig. 3). 
There is compelling evidence that HIF-1a is a dysregulated 
master transcription factor of HS pathogenesis explaining 

Fig. 3   Illustrates HIF-1a signaling in hidradenitis suppurativa (HS) 
and potential pharmacological targeting of HIF1-� in HS. a HIF-
1-mediated gene expression is induced after formation of the heter-
odimer complex of HIF-1α and HIF-1� (aryl hydrocarbon receptor 
nuclear translocator ARNT). The HIF-1α/HIF-1� complex binds 
to hypoxia response elements (HREs) to regulate gene expression 
(Gunton, 2020; Ke and Costa, 2006; Ruas and Poellinger, 2005; 
Semenza et  al., 2006). HIF-1α plays a crucial role in oxygen sens-
ing (Fandrey et  al., 2006; Huang et  al., 1996; Ratcliffe et  al., 1998; 
Schofield and Ratcliffe, 2004; Zagórska and Dulak, 2004). In the 
presence of oxygen, HIF-1α is hydroxylated by prolyl hydroxylase 
domain proteins, which function as oxygen sensors to regulate HIF 
degradation mediated by von Hippel-Lindau (VHL) protein that tar-

gets HIF-1α to ubiquitination (Ruas and Poellinger, 2005; Semenza 
et al., 2006; Yuan et al., 2003). Factor inhibiting HIF-1 (FIH-1) inhib-
its HIF-1α transactivation (Mahon et  al., 2001; Wang et  al., 2014). 
Obesity induces hypoxia and mTORC1 increasing HIF-1α expres-
sion. b Adalimumab and anakinra attenuate NFkB-mediated HIF-1 
signaling. Metformin via suppression of mTORC1 attenuates HIF-1a 
translation. Hyperbaric oxygen reduces hypoxia. Vitamin D enhances 
the expression of VHL, which promotes HIF-1a degradation. c HIF-
1a activates the expression of retinoic acid-related orphan receptor γt 
(RORγt), which promotes Ht17 cell differentiation and inhibits FoxP3 
attenuating the activity of regulatory T cells (Treg). HIF-1a-stimu-
lated glycolysis enhances keratinocyte proliferation
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(1) enhanced HIF-1a-driven glycolysis with keratinocyte 
hyperproliferation, (2) increased HIF-1a/RORγt-mediated 
Th17 cell differentiation with increased IL-17 production, 
(3) reduced Treg cell differentiation by HIF-1a-mediated 
degradation of FoxP3, (4) HS aggravation by obesity and 
smoking, key trigger factors of HS that increase HIF signal-
ing. Apparently, lesional imbalances HIF-1 signaling are at 
the center of disturbed infundibular keratinocyte and Th17 
cell proliferation in the pathogenesis of HS. Pharmacologi-
cal targeting of HIF-1a may be a promising approach to man-
age HS as already suggested for psoriasis and other autoim-
mune disorders [48, 50, 139, 140].
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