Skip to main content

Advertisement

Log in

Discovery of a traditional Chinese herbal combination for the treatment of atopic dermatitis: saposhnikoviae radix, astragali radix and cnidium monnieri

  • ORIGINAL PAPER
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a skin disease characterized by pruritus. The present study aimed to discover a herbal combination with anti-allergic and anti-inflammatory activities to treat AD. First, the anti-allergic and anti-inflammatory activities of herbs were evaluated by RBL-2H3 degranulation and HaCaT inflammatory models. Subsequently, the optimal proportion of herbs was determined by uniform design-response surface methodology. The effectiveness and synergistic mechanism was further verified. Cnidium monnieri (CM) suppressed β-hexosaminidase (β-HEX) release, saposhnikoviae radix (SR), astragali radix (AR), and CM inhibited the release of IL-8 and MCP-1. The optimal proportion of herbs was SR∶AR∶CM = 1: 2: 1. The in vivo experiments results indicated that the topical application of combination at high (2 ×) and low (1 ×) doses improved dermatitis score and epidermal thickness, and attenuated mast cell infiltration. Network pharmacology and molecular biology further clarified that the combination resisted AD by regulating the MAPK, JAK signaling pathways, and the downstream cytokines such as IL-6, IL-1β, IL-8, IL-10, and MCP-1. Overall, the herbal combination could inhibit inflammation and allergy, improving AD-like symptoms. The present study discovers a promising herbal combination, worthy of further development as a therapeutic drug for AD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article, and further details are available from the corresponding author upon request.

Abbreviations

AD:

Atopic dermatitis

TCM:

Traditional Chinese medicine

β-HEX:

β-Hexosaminidase

SR:

Saposhnikoviae radix

CM:

Cnidium monnieri

AR:

Astragali radix

DNCB:

2,4-Dinitrofluorobenzene

IgE:

Immunoglobulin E

IL-8:

Interleukin-8

DNCB:

2,4-Dinitrochlorobenzene

MCP-1:

Monocyte chemoattractant protein-1

KF:

Ketotifen fumarate

References

  1. Yew YW, Thyssen JP, Silverberg JI (2019) A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics. J Am Acad Dermatol 80(2):390–401

    Article  PubMed  Google Scholar 

  2. Weidinger S, Novak N (2016) Atopic dermatitis. Lancet 387(10023):1109–1122

    Article  PubMed  Google Scholar 

  3. Misery L (2017) Burden of atopic dermatitis in adults. Ann Dermatol Venereol 144:S23–S28

    Article  Google Scholar 

  4. Misery L (2020) Burden of atopic dermatitis in children and adolescents. Ann De Dermatol et de Venereol 147(11):11S31-11S36

    Article  CAS  Google Scholar 

  5. Tsianakas A, Stander S (2016) Dupilumab: a milestone in the treatment of atopic dermatitis. Lancet 387(10013):4–5

    Article  PubMed  Google Scholar 

  6. Chiricozzi A et al (2020) Topical corticosteroids for pediatric atopic dermatitis: thoughtful tips for practice. Pharmacol Res 158:104878

    Article  CAS  PubMed  Google Scholar 

  7. Hussain Z et al (2017) Phytotherapeutic potential of natural herbal medicines for the treatment of mild-to-severe atopic dermatitis: a review of human clinical studies. Biomed Pharmacother 93:596–608

    Article  PubMed  Google Scholar 

  8. Zhou MM et al (2017) Recent pharmaceutical evidence on the compatibility rationality of traditional Chinese medicine. J Ethnopharmacol 206:363–375

    Article  PubMed  Google Scholar 

  9. Werfel T et al (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138(2):336–349

    Article  CAS  PubMed  Google Scholar 

  10. Tsakok T et al (2019) Atopic dermatitis: the skin barrier and beyond. Br J Dermatol 180(3):464–474

    Article  CAS  PubMed  Google Scholar 

  11. Modena BD, Dazy K, White AA (2016) Emerging concepts: mast cell involvement in allergic diseases. Transl Res 174:98–121

    Article  CAS  PubMed  Google Scholar 

  12. Albanesi C (2010) Keratinocytes in allergic skin diseases. Curr Opin Allergy Clin Immunol 10(5):452–456

    Article  CAS  PubMed  Google Scholar 

  13. Goleva E, Berdyshev E, Leung DYM (2019) Epithelial barrier repair and prevention of allergy. J Clin Investig 129(4):1463–1474

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fitzgerald KA, Kagan JC (2020) Toll-like Receptors and the Control of Immunity. Cell 180(6):1044–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289–301

    Article  CAS  PubMed  Google Scholar 

  16. Proksch E, Brasch J (2012) Abnormal epidermal barrier in the pathogenesis of contact dermatitis. Clin Dermatol 30(3):335–344

    Article  PubMed  Google Scholar 

  17. Lotia S et al (2013) Cytoscape app store. Bioinformatics 29(10):1350–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bindea G et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  PubMed  Google Scholar 

  20. Davis RR et al (2021) Structural insights into JAK2 inhibition by ruxolitinib, fedratinib, and derivatives thereof. J Med Chem 64(4):2228–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiu J, Grine K (2016) Complementary and alternative treatment for allergic conditions. Prim Care 43(3):519

    Article  PubMed  Google Scholar 

  22. Kreiner J et al (2017) Saposhnikoviae divaricata: a phytochemical, pharmacological, and pharmacokinetic review. Chin J Nat Med 15(4):255–264

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang EB et al (2019) Comparison of aerial parts of Astragalus membranaceus and Astragali Radix based on chemical constituents and pharmacological effects. Food Hydrocolloids 30(1):1046–1066

    CAS  Google Scholar 

  24. Li YM et al (2015) Cnidium monnieri: a review of traditional uses, phytochemical and ethnopharmacological properties. Am J Chin Med 43(5):835–877

    Article  CAS  PubMed  Google Scholar 

  25. Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43(1):29–40

    Article  CAS  PubMed  Google Scholar 

  26. Park JH et al (2020) Combretum quadrangulare extract attenuates atopic dermatitis-like skin lesions through modulation of MAPK signaling in BALB/c mice. Molecules 25(8):2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodrigues MA, Torres T (2020) JAK/STAT inhibitors for the treatment of atopic dermatitis. J Dermatol Treat 31(1):33–40

    Article  CAS  Google Scholar 

  28. Leung DYM et al (2004) New insights into atopic dermatitis. J Clin Investig 113(5):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guttman-Yassky E, Krueger JG, Lebwohl MG (2018) Systemic immune mechanisms in atopic dermatitis and psoriasis with implications for treatment. Exp Dermatol 27(4):409–417

    Article  PubMed  Google Scholar 

  30. Peng W, Novak N (2015) Pathogenesis of atopic dermatitis. Clin Exp Allergy 45(3):566–574

    Article  CAS  PubMed  Google Scholar 

  31. Kaesler S et al (2014) Toll-like receptor 2 ligands promote chronic atopic dermatitis through IL-4-mediated suppression of IL-10. J Allergy Clin Immunol 134(1):92

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82073996).

Author information

Authors and Affiliations

Authors

Contributions

YR: Conceptualization, Visualization, Writing—Original Draft. QW: Data curation, Validation. CL: Investigation. JZ: Formal analysis. ZW: Validation. YL: Software. YZ: Supervision, Writing—Review and Editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanling Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Wu, Q., Liu, C. et al. Discovery of a traditional Chinese herbal combination for the treatment of atopic dermatitis: saposhnikoviae radix, astragali radix and cnidium monnieri. Arch Dermatol Res 315, 1953–1970 (2023). https://doi.org/10.1007/s00403-023-02575-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-023-02575-9

Keywords

Navigation