Skip to main content

Advertisement

Log in

The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation

  • ORIGINAL PAPER
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Statistical results was added.

References

  1. Balaji R, Duraisamy R, Kumar M (2019) Complications of diabetes mellitus: a review. Drug Invent Today 12(1)

  2. Khan NS, Muaz MH, Kabir A, Islam MN (2019) A machine learning-based intelligent system for predicting diabetes. Int J Big Data Anal Healthcare (IJBDAH) 4(2):1–20

    Article  Google Scholar 

  3. Boulton AJ (2005) Management of diabetic peripheral neuropathy. Clin Diabetes 23(1):9–15

    Article  Google Scholar 

  4. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al (2022) IDF diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119

    Article  PubMed  Google Scholar 

  5. Cho N, Shaw J, Karuranga S, Huang Y, da Rocha FJ, Ohlrogge A et al (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  6. Forlee M (2010) What is the diabetic foot? CME: Your SA J CPD 28(4):152–156

    Google Scholar 

  7. Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic foot ulcers and their recurrence. New Eng J Med 376(24):2367–2375 (Epub 2017/06/15.eng)

    Article  PubMed  Google Scholar 

  8. Pemayun TGD, Naibaho RM, Novitasari D, Amin N, Minuljo TT (2015) Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a hospital-based case–control study. Diabetic Foot Ankle 6(1):29629

    Article  PubMed  Google Scholar 

  9. Fard AS, Esmaelzadeh M, Larijani B (2007) Assessment and treatment of diabetic foot ulcer. Int J Clin Pract 61(11):1931–1938

    Article  CAS  PubMed  Google Scholar 

  10. Apelqvist J, Larsson J (2000) What is the most effective way to reduce incidence of amputation in the diabetic foot? Diabetes Metab Res Rev 16(S1):S75–S83

    Article  PubMed  Google Scholar 

  11. Björk S (2001) The cost of diabetes and diabetes care. Diabetes Res Clin Pract 54(Suppl 1):S13–S18. https://doi.org/10.1016/s0168-8227(01)00304-7

    Article  PubMed  Google Scholar 

  12. Yazdanpanah L, Nasiri M, Adarvishi S (2015) Literature review on the management of diabetic foot ulcer. World J Diabetes 6(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ganguly S, Chakraborty K, Mandal PK, Ballav A, Choudhury S, Bagchi S, Mukherjee S (2008) A comparative study between total contact casting and conventional dressings in the non-surgical management of diabetic plantar foot ulcers. J Indian Med Assoc 106(4):237–239, 244

  14. Everett E, Mathioudakis N (2018) Update on management of diabetic foot ulcers. Ann N Y Acad Sci 1411(1):153–165

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mazini L, Rochette L, Admou B, Amal S, Malka G (2020) Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci 21(4):1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gadelkarim M, Abushouk AI, Ghanem E, Hamaad AM, Saad AM, Abdel-Daim MM (2018) Adipose-derived stem cells: effectiveness and advances in delivery in diabetic wound healing. Biomed Pharmacother 107:625–633

    Article  CAS  PubMed  Google Scholar 

  17. Yao Y, Deng C, Wang B (2018) Advances in the research of influence of diabetes in biological function of adipose-derived stem cells. Zhonghua Shao Shang za zhi= Zhonghua Shaoshang Zazhi= Chinese Journal of Burns 34(9):653–656

    CAS  PubMed  Google Scholar 

  18. Kim SM, Kim YH, Jun YJ, Yoo G, Rhie JW (2016) The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells. Int Wound J 13:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fijany A, Sayadi LR, Khoshab N, Banyard DA, Shaterian A, Alexander M et al (2019) Mesenchymal stem cell dysfunction in diabetes. Mol Biol Rep 46(1):1459–1475

    Article  CAS  PubMed  Google Scholar 

  20. Houreld N (2019) Healing effects of photobiomodulation on diabetic wounds. Appl Sci 9(23):5114

    Article  CAS  Google Scholar 

  21. Ebrahimpour-Malekshah R, Amini A, Zare F, Mostafavinia A, Davoody S, Deravi N et al (2020) Combined therapy of photobiomodulation and adipose-derived stem cells synergistically improve healing in an ischemic, infected and delayed healing wound model in rats with type 1 diabetes mellitus. BMJ Open Diabetes Res Care 8(1):e001033

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fridoni M, Kouhkheil R, Abdollhifar MA, Amini A, Ghatrehsamani M, Ghoreishi SK et al (2019) Improvement in infected wound healing in type 1 diabetic rat by the synergistic effect of photobiomodulation therapy and conditioned medium. J Cell Biochem 120(6):9906–9916

    Article  CAS  PubMed  Google Scholar 

  23. Kohno K, Koya-Miyata S, Harashima A, Tsukuda T, Katakami M, Ariyasu T et al (2021) Inflammatory M1-like macrophages polarized by NK-4 undergo enhanced phenotypic switching to an anti-inflammatory M2-like phenotype upon co-culture with apoptotic cells. J Inflamm 18(1):1–14

    Article  Google Scholar 

  24. Barros MHM, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 8(11):e80908

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sharifian Z, Bayat M, Alidoust M, Farahani RM, Bayat M, Rezaie F et al (2014) Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med Sci 29(3):1227–1235

    Article  PubMed  Google Scholar 

  26. Hankenson K, Zimmerman G, Marcucio R (2014) Biological perspectives of delayed fracture healing. Injury 45:S8–S15

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Girolamo L, Sartori MF, Albisetti W, Brini AT (2007) Osteogenic differentiation of human adipose-derived stem cells: comparison of two different inductive media. J Tissue Eng Regener Med 1(2):154–157 (Epub 2007/11/27. eng)

    Article  Google Scholar 

  28. Fallahnezhad S, Piryaei A, Darbandi H, Amini A, Ghoreishi SK, Jalalifirouzkouhi R et al (2018) Effect of low-level laser therapy and oxytocin on osteoporotic bone marrow-derived mesenchymal stem cells. J Cell Biochem 119(1):983–997

    Article  CAS  PubMed  Google Scholar 

  29. Mostafavinia A, Amini A, Ghorishi SK, Pouriran R, Bayat M (2016) The effects of dosage and the routes of administrations of streptozotocin and alloxan on induction rate of type1 diabetes mellitus and mortality rate in rats. Lab Anim Res 32(3):160–165 (Epub 2016/10/13. eng)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ et al (2018) The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 119(7):5788–5797

    Article  CAS  PubMed  Google Scholar 

  31. Park I-S, Mondal A, Chung P-S, Ahn JC (2015) Prevention of skin flap necrosis by use of adipose-derived stromal cells with light-emitting diode phototherapy. Cytotherapy 17(3):283–292

    Article  CAS  PubMed  Google Scholar 

  32. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N et al (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mostafavinia A, Amini A, Sajadi E, Ahmadi H, Rezaei F, Ghoreishi SK et al (2022) Photobiomodulation therapy was more effective than photobiomodulation plus arginine on accelerating wound healing in an animal model of delayed healing wound. Lasers Med Sci 37(1):403–415

    Article  PubMed  Google Scholar 

  34. Galkowska H, Wojewodzka U, Olszewski WL (2006) Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regener 14(5):558–565

    Article  Google Scholar 

  35. Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191

    Article  PubMed  PubMed Central  Google Scholar 

  36. Falanga V (2005) Wound healing and its impairment in the diabetic foot. The Lancet 366(9498):1736–1743

    Article  Google Scholar 

  37. Gibran NS, Jang Y-C, Isik FF, Greenhalgh DG, Muffley LA, Underwood RA et al (2002) Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. J Surg Res 108(1):122–128

    Article  CAS  PubMed  Google Scholar 

  38. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18

    Article  CAS  PubMed  Google Scholar 

  39. Hersant B, Sid-Ahmed M, Braud L, Jourdan M, Baba-Amer Y, Meningaud J-P et al (2019) Platelet-rich plasma improves the wound healing potential of mesenchymal stem cells through paracrine and metabolism alterations. Stem Cells Int. https://doi.org/10.1155/2019/1234263

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL (2013) Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng Part C Methods 19(6):473–478

    Article  CAS  PubMed  Google Scholar 

  41. Trzyna A, Banaś-Ząbczyk A (2021) Adipose-derived stem cells secretome and its potential application in “stem cell-free therapy.” Biomolecules 11(6):878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J et al (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52(1):79–86

    Article  PubMed  Google Scholar 

  43. Golchin A, Farahany TZ, Khojasteh A, Soleimanifar F, Ardeshirylajimi A (2019) The clinical trials of mesenchymal stem cell therapy in skin diseases: an update and concise review. Curr Stem Cell Res Ther 14(1):22–33

    Article  CAS  PubMed  Google Scholar 

  44. Kosaric N, Kiwanuka H, Gurtner GC (2019) Stem cell therapies for wound healing. Expert Opin Biol Ther 19(6):575–585

    Article  CAS  PubMed  Google Scholar 

  45. Tarte K, Gaillard J, Lataillade J-J, Fouillard L, Becker M, Mossafa H et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood J Am Soc Hematol 115(8):1549–1553

    CAS  Google Scholar 

  46. Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M et al (2020) Photobiomodulation plus adipose-derived stem cells improve healing of ischemic infected wounds in type 2 diabetic rats. Sci Reports 10(1):1206. (PubMed PMID: 31988386. Pubmed Central PMCID: PMC6985227 Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; BeWell Global Inc, Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc, Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc, Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc, Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc, Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Laser therapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc, Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc, Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc, Bee Cave, TX; Mitonix, Newark, DE. We declare that other authors: Mohammad Bayat, Ali Moradi, Fatemeh Zare, Ataroalsadat Mostafavinia, Reza Kouhkheil, Sobhan Safaju, Amirhossein Shahbazi, Malihe Habibi, Seyed Mahmoud Hashemi, Abdollah Amini, Mohammad-Amin Abdollahifar, Seyed Kamran Ghoreishi, and Sufan Chien, don’t have any conflict of interest at all. Epub 2020/01/29. Eng)

  47. Hassan WU, Greiser U, Wang W (2014) Role of adipose-derived stem cells in wound healing. Wound Repair Regener 22(3):313–325

    Article  Google Scholar 

  48. Fossett E, Khan W (2012) Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells Int 2012

  49. Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sheykhhasan M, Qomi RT, Kalhor N, Mehdizadeh M, Ghiasi M (2015) Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian J Orthop 49(5):561–568

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li L, Chen X, Wang WE, Zeng C (2016) How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int. https://doi.org/10.1155/2016/9682757

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tang J, Herda AA, Kern TS (2014) Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. Br J Ophthalmol 98(8):1013–1015

    Article  PubMed  Google Scholar 

  53. Petz FDFC, Felix JVC, Roehrs H, Pott FS, Stocco JGD, Marcos RL et al (2020) Effect of photobiomodulation on repairing pressure ulcers in adult and elderly patients: a systematic review. Photochem Photobiol 96(1):191–199

    Article  CAS  PubMed  Google Scholar 

  54. Zadik Y, Arany PR, Fregnani ER, Bossi P, Antunes HS, Bensadoun R-J et al (2019) Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 27(10):3969–3983

    Article  PubMed  Google Scholar 

  55. Ahmadi H, Amini A, Fadaei Fathabady F, Mostafavinia A, Zare F, Ebrahimpour-Malekshah R et al (2020) Transplantation of photobiomodulation-preconditioned diabetic stem cells accelerates ischemic wound healing in diabetic rats. Stem Cell Res Ther 11(1):494 (Epub 2020/11/27. eng)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S et al (2019) Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol B 201:111658 (Epub 2019/11/12. eng)

    Article  CAS  PubMed  Google Scholar 

  57. Mostafavinia A, Ahmadi H, Amini A, Roudafshani Z, Hamblin MR, Chien S et al (2021) The effect of photobiomodulation therapy on antioxidants and oxidative stress profiles of adipose derived mesenchymal stem cells in diabetic rats. Spectrochimica acta Part A 262:120157 (Epub 2021/07/17. eng)

    Article  CAS  Google Scholar 

  58. Brown AP, Citrin DE, Camphausen KA (2008) Clinical biomarkers of angiogenesis inhibition. Cancer Metastasis Rev 27(3):415–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Movafagh S, Crook S, Vo K (2015) Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 116(5):696–703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported in part by Dr. Anwarul Hasan, and also by NIH grants no R44DK133065, and no R44DK105692.

Author information

Authors and Affiliations

Authors

Contributions

“MB,” wrote the manuscript. “REM, HA, FR, SF, AS” performed the methods,” AM” performed statistical tests and provided figures. “AA, SH, and AH” added their comments to the manuscript. All authors reviewed the manuscript”.

Corresponding authors

Correspondence to Anwarul Hasan or Mohammad Bayat.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Ethical approval

Medical Ethics Department of the School of Medicine at Shahid Beheshti University of Medical Sciences confirmed the experimentation (file no: IR.SBMU.MSP.REC.1398.394).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpour-Malekshah, R., Amini, A., Mostafavinia, A. et al. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res 315, 1717–1734 (2023). https://doi.org/10.1007/s00403-023-02563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-023-02563-z

Keywords

Navigation