Skip to main content

Advertisement

Log in

Flavonoids and their therapeutic applications in skin diseases

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer’s disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:e162750. https://doi.org/10.1155/2013/162750

    Article  CAS  Google Scholar 

  3. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242. https://doi.org/10.1016/j.tplants.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  4. Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457. https://doi.org/10.1104/pp.110.161430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samanta A, Das G, Das S (2011) Roles of flavonoids in plants. Int J Pharm Sci Technol 6:12–35

    Google Scholar 

  6. Williams RJ, Spencer JPE (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52:35–45. https://doi.org/10.1016/j.freeradbiomed.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902. https://doi.org/10.3390/nu2080889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abotaleb M, Samuel SM, Varghese E et al (2018) Flavonoids in cancer and apoptosis. Cancers (Basel) 11:28. https://doi.org/10.3390/cancers11010028

    Article  CAS  PubMed  Google Scholar 

  9. Raj NK, Sripal RM, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33:2

    Google Scholar 

  10. Iwashina T (2013) Flavonoid properties of five families newly incorporated into the order caryophyllales (review). Bull Am Mus Nat Hist 31:25–51

    Google Scholar 

  11. Kim K, Vance TM, Chun OK (2016) Estimated intake and major food sources of flavonoids among US adults: changes between 1999–2002 and 2007–2010 in NHANES. Eur J Nutr 55:833–843. https://doi.org/10.1007/s00394-015-0942-x

    Article  CAS  PubMed  Google Scholar 

  12. Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 8:423–435. https://doi.org/10.3945/an.116.012948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corcoran MP, McKay DL, Blumberg JB (2012) Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 31:176–189. https://doi.org/10.1080/21551197.2012.698219

    Article  PubMed  Google Scholar 

  14. Zhou Y-X, Zhang H, Peng C (2014) Puerarin: a review of pharmacological effects. Phytother Res 28:961–975. https://doi.org/10.1002/ptr.5083

    Article  CAS  PubMed  Google Scholar 

  15. Bhagwat S, Haytowitz DB, Holden JM (2014) USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture, Beltsville, MD, USA

  16. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584. https://doi.org/10.1016/s0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

  17. Pietta P-G (2000) Flavonoids as Antioxidants. J Nat Prod 63:1035–1042. https://doi.org/10.1021/np9904509

    Article  CAS  PubMed  Google Scholar 

  18. Page C (1995) Immunopharmacology of free radical species. Elsevier

    Google Scholar 

  19. Kumar S, Mishra A, Pandey AK (2013) Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement Altern Med 13:120. https://doi.org/10.1186/1472-6882-13-120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brown JE, Khodr H, Hider RC, Rice-Evans CA (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330:1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16:845–850. https://doi.org/10.1016/0891-5849(94)90202-x

    Article  CAS  PubMed  Google Scholar 

  22. Korkina LG, Afanas’ev IB, (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163. https://doi.org/10.1016/s1054-3589(08)60983-7

    Article  CAS  PubMed  Google Scholar 

  23. Pan M-H, Lai C-S, Ho C-T (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15–31. https://doi.org/10.1039/c0fo00103a

    Article  CAS  PubMed  Google Scholar 

  24. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236. https://doi.org/10.1016/0092-8674(95)90405-0

    Article  CAS  PubMed  Google Scholar 

  25. D’Mello P, Gadhwal M, Joshi U et al (2011) Modeling of COX-2 inhibotory activity of flavonoids. Int J Pharm Pharm Sci 3:33–40

    Google Scholar 

  26. Madeswaran A, Umamaheswari M, Asokkumar K et al (2012) In silico docking studies of aldose reductase inhibitory activity of commercially available flavonoids. Bangladesh J Pharmacol 7:266–271. https://doi.org/10.3329/bjp.v7i4.12314

    Article  Google Scholar 

  27. Manthey JA (2000) Biological properties of flavonoids pertaining to inflammation. Microcirculation 7:S29-34

    Article  CAS  PubMed  Google Scholar 

  28. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity*. J Biol Chem 280:5636–5645. https://doi.org/10.1074/jbc.M408177200

    Article  CAS  PubMed  Google Scholar 

  29. Raffa D, Maggio B, Raimondi MV et al (2017) Recent discoveries of anticancer flavonoids. Eur J Med Chem 142:213–228. https://doi.org/10.1016/j.ejmech.2017.07.034

    Article  CAS  PubMed  Google Scholar 

  30. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panche A, Chandra S, Diwan A, Harke S (2015) Alzheimer’s and current therapeutics: a review. Asian J Pharm Clin Res 8:14–19

    CAS  Google Scholar 

  32. Jäger AK, Saaby L (2011) Flavonoids and the CNS. Molecules 16:1471–1485. https://doi.org/10.3390/molecules16021471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perry EK, Tomlinson BE, Blessed G et al (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2:1457–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J of Pharm Res 7:1089–1099. https://doi.org/10.4314/tjpr.v7i3.14693

    Article  Google Scholar 

  35. Fisher GJ, Wang Z, Datta SC et al (2009) Pathophysiology of premature skin aging induced by ultraviolet light. In: http://dx.doi.org.proxy-hs.researchport.umd.edu/https://doi.org/10.1056/NEJM199711133372003. http://www.nejm.org/doi/https://doi.org/10.1056/NEJM199711133372003. Accessed 11 Nov 2021

  36. Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T (2019) A Review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 11:474. https://doi.org/10.3390/nu11020474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mnich CD, Hoek KS, Virkki LV et al (2009) Green tea extract reduces induction of p53 and apoptosis in UVB-irradiated human skin independent of transcriptional controls. Exp Dermatol 18:69–77. https://doi.org/10.1111/j.1600-0625.2008.00765.x

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Zheng Y, Cheng X et al (2017) The anti-photoaging effect of antioxidant collagen peptides from silver carp (Hypophthalmichthys molitrix) skin is preferable to tea polyphenols and casein peptides. Food Funct 8:1698–1707. https://doi.org/10.1039/c6fo01499b

    Article  CAS  PubMed  Google Scholar 

  39. Lee KO, Kim SN, Kim YC (2014) Anti-wrinkle effects of water extracts of teas in hairless mouse. Toxicol Res 30:283–289. https://doi.org/10.5487/TR.2014.30.4.283

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lim J-Y, Kim O-K, Lee J et al (2014) Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice. Nutr Res Pract 8:398–403. https://doi.org/10.4162/nrp.2014.8.4.398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong Y-H, Jung EY, Shin K-S et al (2013) Tannase-converted green tea catechins and their anti-wrinkle activity in humans. J Cosmet Dermatol 12:137–143. https://doi.org/10.1111/jocd.12038

    Article  PubMed  Google Scholar 

  42. Janjua R, Munoz C, Gorell E et al (2009) A two-year, double-blind, randomized placebo-controlled trial of oral green tea polyphenols on the long-term clinical and histologic appearance of photoaging skin. Dermatol Surg 35:1057–1065. https://doi.org/10.1111/j.1524-4725.2009.01183.x

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Gao A, Jiang N et al (2016) Protective effect of curcumin against acute ultraviolet B irradiation-induced photo-damage. Photochem Photobiol 92:808–815. https://doi.org/10.1111/php.12628

    Article  CAS  PubMed  Google Scholar 

  44. Rauter AP, Ennis M, Hellwich K-H et al (2018) Nomenclature of flavonoids (IUPAC Recommendations 2017). Pure Appl Chem 90:1429–1486. https://doi.org/10.1515/pac-2013-0919

    Article  CAS  Google Scholar 

  45. Vostálová J, Tinková E, Biedermann D et al (2019) Skin protective activity of silymarin and its flavonolignans. Molecules 24:1022. https://doi.org/10.3390/molecules24061022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Afaq F, Mukhtar H (2006) Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermatol 15:678–684. https://doi.org/10.1111/j.1600-0625.2006.00466.x

    Article  CAS  PubMed  Google Scholar 

  47. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV Radiation and the Skin. Int J Mol Sci 14:12222–12248. https://doi.org/10.3390/ijms140612222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Conney AH, Wang ZY, Huang MT et al (1992) Inhibitory effect of green tea on tumorigenesis by chemicals and ultraviolet light. Prev Med 21:361–369. https://doi.org/10.1016/0091-7435(92)90043-h

    Article  CAS  PubMed  Google Scholar 

  49. Sevin A, Oztaş P, Senen D et al (2007) Effects of polyphenols on skin damage due to ultraviolet A rays: an experimental study on rats. J Eur Acad Dermatol Venereol 21:650–656. https://doi.org/10.1111/j.1468-3083.2006.02045.x

    Article  CAS  PubMed  Google Scholar 

  50. Camouse MM, Domingo DS, Swain FR et al (2009) Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp Dermatol 18:522–526. https://doi.org/10.1111/j.1600-0625.2008.00818.x

    Article  PubMed  Google Scholar 

  51. Lu YP, Lou YR, Li XH et al (2000) Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light-induced increases in epidermal wild-type p53, p21(WAF1/CIP1), and apoptotic sunburn cells in SKH-1 mice. Cancer Res 60:4785–4791

    CAS  PubMed  Google Scholar 

  52. Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11:2376. https://doi.org/10.3390/nu11102376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bush JA, Cheung KJ, Li G (2001) Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271:305–314. https://doi.org/10.1006/excr.2001.5381

    Article  CAS  PubMed  Google Scholar 

  54. Jiang A-J, Jiang G, Li L-T, Zheng J-N (2015) Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells. Mol Biol Rep 42:267–275. https://doi.org/10.1007/s11033-014-3769-2

    Article  CAS  PubMed  Google Scholar 

  55. Phillips J, Moore-Medlin T, Sonavane K et al (2013) Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice. Otolaryngol Head Neck Surg 148:797–803. https://doi.org/10.1177/0194599813476845

    Article  PubMed  Google Scholar 

  56. Bridgeman BB, Wang P, Ye B et al (2016) Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention. Cell Signal 28:460–468. https://doi.org/10.1016/j.cellsig.2016.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kiraly AJ, Soliman E, Jenkins A, Van Dross RT (2016) Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot Essent Fatty Acids 104:44–53. https://doi.org/10.1016/j.plefa.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  58. Mirzoeva S, Tong X, Bridgeman BB et al (2018) Apigenin inhibits UVB-induced skin carcinogenesis: the role of thrombospondin-1 as an anti-inflammatory factor. Neoplasia 20:930–942. https://doi.org/10.1016/j.neo.2018.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Das S, Das J, Samadder A et al (2013) Efficacy of PLGA-loaded apigenin nanoparticles in Benzo[a]pyrene and ultraviolet-B induced skin cancer of mice: mitochondria mediated apoptotic signalling cascades. Food Chem Toxicol 62:670–680. https://doi.org/10.1016/j.fct.2013.09.037

    Article  CAS  PubMed  Google Scholar 

  60. Singh RP, Tyagi AK, Zhao J, Agarwal R (2002) Silymarin inhibits growth and causes regression of established skin tumors in SENCAR mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis 23:499–510. https://doi.org/10.1093/carcin/23.3.499

    Article  CAS  PubMed  Google Scholar 

  61. Pan M-H, Li S, Lai C-S et al (2012) Inhibition of citrus flavonoids on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. Food Sci Hum Wellness 1:65–73. https://doi.org/10.1016/j.fshw.2012.09.001

    Article  Google Scholar 

  62. Carvalho MTB, Araújo-Filho HG, Barreto AS et al (2021) Wound healing properties of flavonoids: a systematic review highlighting the mechanisms of action. Phytomedicine 90:153636. https://doi.org/10.1016/j.phymed.2021.153636

    Article  CAS  PubMed  Google Scholar 

  63. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Curcumin as a wound healing agent. Life Sci 116:1–7. https://doi.org/10.1016/j.lfs.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  64. Kim J, Park S, Jeon B-S et al (2016) Therapeutic effect of topical application of curcumin during treatment of radiation burns in a mini-pig model. J Vet Sci 17:435–444. https://doi.org/10.4142/jvs.2016.17.4.435

    Article  PubMed  PubMed Central  Google Scholar 

  65. McKelvey KJ, Appleton I (2012) Epicatechin gallate improves healing and reduces scar formation of incisional wounds in type 2 diabetes mellitus rat model. Wounds 24:55–57

    PubMed  Google Scholar 

  66. Kim H, Kawazoe T, Han D-W et al (2008) Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen 16:714–720. https://doi.org/10.1111/j.1524-475X.2008.00422.x

    Article  PubMed  Google Scholar 

  67. Jaiswal M, Gupta A, Agrawal AK et al (2013) Bi-layer composite dressing of gelatin nanofibrous mat and poly vinyl alcohol hydrogel for drug delivery and wound healing application: in-vitro and in-vivo studies. J Biomed Nanotechnol 9:1495–1508. https://doi.org/10.1166/jbn.2013.1643

    Article  CAS  PubMed  Google Scholar 

  68. Li M, Xu J, Shi T et al (2016) Epigallocatechin-3-gallate augments therapeutic effects of mesenchymal stem cells in skin wound healing. Clin Exp Pharmacol Physiol 43:1115–1124. https://doi.org/10.1111/1440-1681.12652

    Article  CAS  PubMed  Google Scholar 

  69. Wound healing can be improved by (—)‐epigallocatechin gallate through targeting Notch in streptozotocin‐induced diabetic mice-Huang-2019-The FASEB Journal - Wiley Online Library. https://faseb.onlinelibrary.wiley.com/doi/full/https://doi.org/10.1096/fj.201800337R. Accessed 6 Dec 2021

  70. Kar AK, Singh A, Dhiman N et al (2019) Polymer-assisted in situ synthesis of silver nanoparticles with epigallocatechin gallate (EGCG) impregnated wound patch potentiate controlled inflammatory responses for brisk wound healing. Int J Nanomed 14:9837–9854. https://doi.org/10.2147/IJN.S228462

    Article  CAS  Google Scholar 

  71. Gomathi K, Gopinath D, Rafiuddin Ahmed M, Jayakumar R (2003) Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24:2767–2772. https://doi.org/10.1016/S0142-9612(03)00059-0

    Article  CAS  PubMed  Google Scholar 

  72. Rajamanickam M, Kalaivanan P, Sivagnanam I (2013) Antibacterial and wound healing activities of quercetin-3-O-A-L-rhamnopyranosyl-(16)-β-d-glucopyranoside isolated from Salvia leucantha

  73. Gopalakrishnan A, Ram M, Kumawat S et al (2016) Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J Exp Biol 54:187–195

    CAS  PubMed  Google Scholar 

  74. Vedakumari WS, Ayaz N, Karthick AS et al (2017) Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—fabrication, characterization and in vivo analysis. Eur J Pharm Sci 97:106–112. https://doi.org/10.1016/j.ejps.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  75. Ahmed OM, Mohamed T, Moustafa H et al (2018) Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmaco 101:58–73. https://doi.org/10.1016/j.biopha.2018.02.040

    Article  CAS  Google Scholar 

  76. Choudhary A, Kant V, Jangir BL, Joshi VG (2020) Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur J Pharmacol 880:173172. https://doi.org/10.1016/j.ejphar.2020.173172

    Article  CAS  PubMed  Google Scholar 

  77. Fu J, Huang J, Lin M et al (2020) Quercetin promotes diabetic wound healing via switching macrophages from M1 to M2 polarization. J Surg Res 246:213–223. https://doi.org/10.1016/j.jss.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  78. Ajmal G, Bonde GV, Thokala S et al (2019) Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing. Artif Cells Nanomed Biotechnol 47:228–240. https://doi.org/10.1080/21691401.2018.1548475

    Article  CAS  PubMed  Google Scholar 

  79. Marini H, Polito F, Altavilla D et al (2010) Genistein aglycone improves skin repair in an incisional model of wound healing: a comparison with raloxifene and oestradiol in ovariectomized rats. Br J Pharmacol 160:1185–1194. https://doi.org/10.1111/j.1476-5381.2010.00758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tie L, An Y, Han J et al (2013) Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J Nutr Biochem 24:88–96. https://doi.org/10.1016/j.jnutbio.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  81. Park E, Lee SM, Jung I-K et al (2011) Effects of genistein on early-stage cutaneous wound healing. Biochem Biophys Res Commun 410:514–519. https://doi.org/10.1016/j.bbrc.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  82. Eo H, Lee H-J, Lim Y (2016) Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem Biophys Res Commun 478:1021–1027. https://doi.org/10.1016/j.bbrc.2016.07.039

    Article  CAS  PubMed  Google Scholar 

  83. Sun L, Liu Z, Wang L et al (2017) Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release 254:44–54. https://doi.org/10.1016/j.jconrel.2017.03.385

    Article  CAS  PubMed  Google Scholar 

  84. Xian D, Guo M, Xu J et al (2021) Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Rep 26:134–146. https://doi.org/10.1080/13510002.2021.1962094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No external funding was used in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AK conceived the idea for the manuscript. EZM analyzed the literature and drafted the manuscript. All the authors edited the manuscript.

Corresponding author

Correspondence to Amor Khachemoune.

Ethics declarations

Conflict of interest

EZM and AK declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, E.Z., Khachemoune, A. Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res 315, 321–331 (2023). https://doi.org/10.1007/s00403-022-02395-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02395-3

Keywords

Navigation