Skip to main content

Advertisement

Log in

Association study indicates combined effect of interleukin-10 and angiotensin-converting enzyme in basal cell carcinoma development

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cytokines involved in inflammatory and immune response have been associated with risk for development of basal cell carcinoma (BCC). In this study, three functional DNA polymorphisms affecting gene expression were investigated in 54 BCC patients and 111 healthy controls: interleukin-1b (IL-1b) +3953C/T, interleukin-10 (IL-10) − 1082G/A and angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphisms. Significant increase of the variant alleles was observed in IL-10 − 1082G (P = 0.019) and in ACE D (P = 0.003) in BCC patients in comparison to controls. Multivariate logistic regression models evaluated the contribution of homozygous and heterozygous variant polymorphisms to the risk for BCC development. The studied polymorphisms influencing the expression of IL-10 and ACE genes were recognized as potential predictive factors for BCC. These findings suggest a possible molecular mechanism leading to BCC development that is likely to involve the activation of angiotensin receptors in combination with increased plasma levels of IL-10 in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ager EI, Neo J, Christophi C (2008) The renin-angiotensin system and malignancy. Carcinogenesis 29:1675–1684

    CAS  PubMed  Google Scholar 

  2. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    CAS  PubMed  Google Scholar 

  3. Barber MD, Powell JJ, Lynch SF, Fearon KC, Ross JA (2000) A polymorphism of the interleukin-1 beta gene influences survival in pancreatic cancer. Br J Cancer 83:1443–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Benndorf R, Boger RH, Ergun S, Steenpass A, Wieland T (2003) Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ Res 93:438–447

    CAS  PubMed  Google Scholar 

  5. Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE (2011) Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci 121:297–303

    CAS  Google Scholar 

  6. Boulland M-L, Meignin V, Leroy-Viard K, Copie-Bergman C, Brière J, Touitou R et al (1998) Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol 153:1229–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burke F, Relf M, Negus R, Balkwill F (1996) A cytokine profile of normal and malignant ovary. Cytokine 8:578–585

    CAS  PubMed  Google Scholar 

  8. Carter DM, Lin AN (1993) Basal cell carcinoma. In: Fitzpatrick TM, Eisen AZ, Wolff K, et al. (eds) Dermatology in General Medicine, 4th edn. McGraw-Hill, New York, pp 840–847

    Google Scholar 

  9. Chow L, Rezmann L, Catt KJ, Louis WJ, Frauman AG, Nahmias C, Louis SN (2009) Role of the renin-angiotensin system in prostate cancer. Mol Cell Endocrinol 302:219–229

    CAS  PubMed  Google Scholar 

  10. Chung FM, Yang YH, Chen CH, Lin CC, Shieh TY (2005) Angiotensin-converting enzyme gene insertion/deletion polymorphism is associated with risk of oral precancerous lesion in betel quid chewers. Br J Cancer 93:602–606

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma C-y, Lin Yin MD (2016) Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion. Neural Regen Res 11:1102–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crowson AN (2006) Basal cell carcinoma: biology, morphology and clinical implications. Mod Pathol 19(Suppl 2):127–147

    Google Scholar 

  13. Crowson AN, Magro CM, Kadin M et al (1996) Differential expression of bcl-2 oncogene in human basal cell carcinoma. Hum Pathol 27:355–359

    CAS  PubMed  Google Scholar 

  14. Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifró W, Miteva K, Kaschina E, Thiel A, Imboden H, Wang J, Steckelings U, Steinhoff G, Unger T, Li J (2010) Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol 185:6286–6293

    CAS  PubMed  Google Scholar 

  15. Dhande I, Ma W, Hussain T (2015) Angiotensin AT2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens Res 38:21–29

    CAS  PubMed  Google Scholar 

  16. Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    CAS  PubMed  Google Scholar 

  17. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    CAS  PubMed  Google Scholar 

  18. Elamin I, Zecević RD, Vojvodić D, Medenica L, Pavlović MD (2008) Cytokine concentrations in basal cell carcinomas of different histological types and localization. Acta Dermatovenerol Alp Pannonica Adriat 17(2):55–59

    PubMed  Google Scholar 

  19. Elaraj DM, Weinreich DM, Varghese S, Puhlmann M, Hewitt SM, Carroll NM, Feldman ED, Turner EM, Alexander HR (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 12:1088–1096

    CAS  PubMed  Google Scholar 

  20. Freitas-Silva M, Pereira D, Coelho C, Bicho M, Lopes C, Medeiros R (2004) Angiotensin I-converting enzyme gene insertion/deletion polymorphism and endometrial human cancer in normotensive and hypertensive women. Cancer Genet Cytogen 155:42–46

    CAS  Google Scholar 

  21. Friis S, Sorensen HT, Mellemkjaer L, McLaughlin JK, Nielsen GL, Blot WJ, Olsen JH (2001) Angiotensin-converting enzyme inhibitors and the risk of cancer: a population-based cohort study in Denmark. Cancer 92:2462–2470

    CAS  PubMed  Google Scholar 

  22. Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M (2002) Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 294:441–447

    CAS  PubMed  Google Scholar 

  23. Gastl GA, Abrams JS, Nanus DM, Oosterkamp R, Silver J, Liu F et al (1993) Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer 55:96–101

    CAS  PubMed  Google Scholar 

  24. Goldberg LH (1996) Basal cell carcinoma. Lancet 347:663–667

    CAS  PubMed  Google Scholar 

  25. Goldstein AM, Bale SJ, Peck GL et al (1993) Sun exposure and basal cell carcinoma in the nevoid basal cell carcinoma syndrome. J Am Acad Dermatol 29:34–41

    CAS  PubMed  Google Scholar 

  26. Goto Y, Ando T, Nishio K, Ishida Y, Kawai S, Goto H, Hamajima N (2005) The ACE gene polymorphism is associated with the incidence of gastric cancer among H. pylori seropositive subjects with atrophic gastritis. Asian Pac J Cancer Prev 6:464–467

    PubMed  Google Scholar 

  27. Haiman C, Henderson S, Bretsky P, Kolonel L, Henderson B (2003) Genetic variation in angiotensin I-converting enzyme (ACE) and breast cancer risk: The multiethnic cohort. Cancer Res 63:6984–6987

    CAS  PubMed  Google Scholar 

  28. Itakura E, Huang R-R, Wen D-R, Paul E, Wünsch PH, Cochran AJ (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol 24:801–809

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaijzel EL, Dongen H, Bakker AM, Breedveld FC, Huizinga TWJ, Verweij CL (2002) Relationship of polymorphisms of the interleukin-1 gene cluster to occurrence and severity of rheumatoid arthritis. Tissue Antigens 59:122–126

    CAS  PubMed  Google Scholar 

  30. Khorooshi R, Tofte-Hansen EU, Tygesen C, Montanana-Rosell R, Limburg HL, Marczynska J, Asgari N, Steckelings UM, Owens T (2019) Angiotensin AT2 receptor-induced interleukin-10 attenuates neuromyelitis optica spectrum disorder-like pathology. Mult Scler 9:1352458519860327

    Google Scholar 

  31. Komori A, Yatsunami J, Suganuma M, Okabe S, Abe S, Sakai A, Sasaki K, Fujiki H (1993) Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation. Cancer Res 53:1982–1985

    CAS  PubMed  Google Scholar 

  32. Krüger-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Hüls C, Blankenstein T et al (1994) Expression of interleukin 10 in human melanoma. Br J Cancer 70:1182–1185

    PubMed  PubMed Central  Google Scholar 

  33. Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248:171–183

    CAS  PubMed  Google Scholar 

  34. Lacour JP (2002) Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146(Suppl 61):17–19

    CAS  PubMed  Google Scholar 

  35. Li C, Li H, Jiang K, Li J, Gai X (2014) TLR4 signaling pathway in mouse Lewis lung cancer cells promotes the expression of TGF-β1 and IL-10 and tumor cells migration. Biomed Mater Eng 24:869–875

    CAS  PubMed  Google Scholar 

  36. Lin MT, Storer B, Martin PJ, Tseng LH, Gooley T, Chen PJ, Hansen JA (2003) Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N Engl J Med 349:2201–2210

    CAS  PubMed  Google Scholar 

  37. Mantovani A, Muzio M, Garlanda C, Sozzani S, Allavena P (2001) Macrophage control of inflammation: negative pathways of regulation of inflammatory cytokines. Novartis Found Symp 234:120–131 (discussion 131-5)

    CAS  PubMed  Google Scholar 

  38. Medeiros R, Vasconcelos A, Costa S, Pinto D, Lobo F, Morais A, Oliveira J, Lopes C (2004) Linkage of angiotensin I-converting enzyme gene insertion/deletion polymorphism to the progression of human prostate cancer. J Pathol 202:330–335

    CAS  PubMed  Google Scholar 

  39. Meenagh A, Williams F, Ross OA, Patterson C, Gorodezky C, Hammond M, Leheny WA, Middleton D (2002) Frequency of cytokine polymorphisms in populations from Western Europe, Africa, Asia, the Middle East and South America. Hum Immunol 63:1055–1061

    CAS  PubMed  Google Scholar 

  40. Miller SJ (1991) Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 24:1–13

    CAS  PubMed  Google Scholar 

  41. Miller SJ (1991) Biology of basal cell carcinoma (Part II). J Am Acad Dermatol 24:161–175

    CAS  PubMed  Google Scholar 

  42. Olbryt M (2012) Role of tumor microenvironment in the formation and progression of skin melanoma. Postepy Hig Med Dosw (Online) 67:413–432

    Google Scholar 

  43. Palli D, Saieva C, Luzzi I, Masala G, Topa S, Sera F, Gemma S, Zanna I, Errico MD, Zini E, Guidotti S, Valeri A, Fabbrucci P, Moretti R, Testai E, Giudice G, Ottini L, Matullo G, Dogliotti E, Gomez-Miguel MJ (2005) Interleukin-1 gene polymorphisms and gastric cancer risk in a high-risk Italian population. Am J Gastroenterol 100:1941–1948

    CAS  PubMed  Google Scholar 

  44. Papaggelopoulos J, Angelopoulou A, Avgoustidis D, Koronellos N, Derka S, Vassiliou S, Yapijakis C (2019) Association of polymorphisms in the genes of angiotensinogen and angiotensin receptors with risk for basal cell carcinoma. Anticancer Res 39:5525–5530

    CAS  PubMed  Google Scholar 

  45. Pociot F, Molvig J, Wogensen L, Worsaae H, Nerup J (1992) A Taq I polymorphism in the human interleukin-1 beta (1L–1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 22:396–402

    CAS  PubMed  Google Scholar 

  46. Porrello ER, Pfleger KD, Seeber RM, Qian H, Oro C, Abogadie F, Delbridge LM, Thomas WG (2011) Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cell Signal 23:1767–1776

    CAS  PubMed  Google Scholar 

  47. Rocken C, Lendeckel U, Dierkes J, Westphal S, Carl-McGrath S, Peters B, Krüger S, Malfertheiner P, Roessner A, Ebert MP (2005) The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res 11:2526–2530

    PubMed  Google Scholar 

  48. Sato T, Terai M, Tamura Y, Alexeev V, Mastrangelo MJ, Selvan SR (2011) Interleukin-10 in the tumor microenvironment: a target for anticancer immunotherapy. Immunol Res 51:170–182

    CAS  PubMed  Google Scholar 

  49. Snoussi K, Strosberg AD, Bouaouina N, Ben Ahmed S, Chouchane L (2005) Genetic variation in pro-inflammatory cytokines (interleukin-1 beta, interleukin-1 alpha and interleukin-6) associated with the aggressive forms, survival, and relapse prediction of breast carcinoma. Eur Cytokine Netw 16:253–260

    CAS  PubMed  Google Scholar 

  50. Sobjanek M, Zabłotna M, Bień E, Gleń J, Sokołowska-Wojdyło M, Ruckemann-Dziurdzińska K, Nowicki R (2016) Clinical significance of IL-2 and IL-10 gene polymorphisms and serum levels in patients with basal-cell carcinoma. Biomark Med 10:185–195

    CAS  PubMed  Google Scholar 

  51. Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    PubMed  Google Scholar 

  52. Takamatsu M, Yamauchi M, Maezawa Y, Saito S, Maeyama S, Uchikoshi T (2000) Genetic polymorphisms of interleukin-1, in association with the development of alcoholic liver disease in Japanese patients. Am J Gastrenterol 95:1305–1311

    CAS  Google Scholar 

  53. Thomas WG (1999) Regulation of angiotensin II type 1 (AT1) receptor function. Regul Pept 79:9–23

    CAS  PubMed  Google Scholar 

  54. Vairaktaris E, Yiannopoulos A, Vylliotis A, Yapijakis C, Derka S, Vassiliou S, Nkenke E, Serefoglou Z, Ragos V, Tsigris C, Vorris E, Critselis E, Avgoustidis D, Neukam FW, Patsouris E (2006) Strong association of interleukin-6 -174 G[C promoter polymorphism with increased risk of oral cancer. Int J Biol Markers 21:246–250

    CAS  PubMed  Google Scholar 

  55. Vairaktaris E, Yapijakis C, Tsigris C, Vassiliou S, Derka S, Nkenke E, Spyridonidou S, Vylliotis A, Vorris E, Ragos V, Neukam FW, Patsouris E (2007) A) Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with increased risk for oral cancer. Acta Oncol 46:1097–1102

    CAS  PubMed  Google Scholar 

  56. Vairaktaris E, Serefoglou Z, Yapijakis C, Stathopoulos P, Vassiliou S, Derka S, Nkenke E, Vylliotis A, Ragos V, Neukam FW, Patsouris E (2007) B) The interleukin-1 beta gene polymorphism +3953 C/T is not associated with risk for oral cancer. Anticancer Res 27:3981–3986

    CAS  PubMed  Google Scholar 

  57. Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, Vassiliou S, Nkenke E, Vylliotis A, Wiltfang J, Avgoustidis D, Critselis E, Neukam FW, Patsouris E (2007) C) The interleukin-8 (-251A/T) polymorphism is associated with increased risk for oral squamous cell carcinoma. Eur J Surg Oncol 33:504–507

    CAS  PubMed  Google Scholar 

  58. Vairaktaris E, Yannopoulos A, Vassiliou S, Serefoglou Z, Vylliotis A, Nkenke E, Critselis E, Avgoustidis D, Yapijakis C, Neukam FW, Patsouris E (2007) D) Strong association of interleukin-4 (-590 C/T) polymorphism with increased risk for oral squamous cell carcinoma in Europeans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:796–802

    PubMed  Google Scholar 

  59. Vairaktaris E, Yapijakis C, Serefoglou Z, Avgoustidis D, Critselis E, Spyridonidou S, Vylliotis A, Derka S, Vassiliou S, Nkenke E, Patsouris E (2008) A) Gene expression polymorphisms of interleukins-1 beta, -4, -6, -8, -10, and tumor necrosis factors-alpha, -beta: regression analysis of their effect upon oral squamous cell carcinoma. J Cancer Res Clin Oncol 134:821–832

    CAS  PubMed  Google Scholar 

  60. Vairaktaris E, Yapijakis C, Serefoglou Z, Derka S, Vassiliou S, Nkenke E, Vylliotis A, Spyridonidou S, Neukam FW, Schlegel KA, Patsouris E (2008) B) The interleukin-10 (-1082A/G) polymorphism is strongly associated with increased risk for oral squamous cell carcinoma. Anticancer Res 28:309–314

    CAS  PubMed  Google Scholar 

  61. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100:2645–2650

    CAS  PubMed  Google Scholar 

  62. Wilkening S, Hemminki K, Rudnai P, Gurzau E, Koppova K, Kumar R, Försti A (2006) Case control study in basal cell carcinoma of the skin: single nucleotide polymorphisms in three interleukin promoters pre-analysed in pooled DNA. Br J Dermatol 155:1139–1144

    CAS  PubMed  Google Scholar 

  63. Wu L, Chen X, Zhao J, Martin B, Zepp JA, Ko JS, Gu C, Cai G, Ouyang W, Sen G, Stark GR, Su B, Vines CM, Tournier C, Hamilton TA, Vidimos A, Gastman B, Liu C, Li X (2015) A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis. J Exp Med 212:1571–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu N, Sun H, Sun Q, Cui M, Jiang R, Cong X (2018) Associations between IL-10 polymorphisms and susceptibility to melanoma, basal cell carcinoma, and squamous cell carcinoma: a meta-analysis. Genet Test Mol Biomarkers. https://doi.org/10.1089/gtmb.2018.0172

    Article  PubMed  Google Scholar 

  65. Yapijakis C, Koronellos N, Spyridonidou S, Vylliotis A, Avgoustidis D, Goutas N, Vlachodimitropoulos D, Vairaktaris E (2013) Association of angiotensin-converting enzyme gene insertion/deletion polymorphism with decreased risk for basal cell carcinoma. Arch Dermatol Res 305:333–339

    CAS  PubMed  Google Scholar 

  66. Yilmaz V, Yentur SP, Saruhan-Direskeneli G (2005) IL-12 and IL-10 polymorphisms and their effects on cytokine production. Cytokine 30:188–194

    CAS  PubMed  Google Scholar 

  67. Yoshiji H, Yoshii J, Ikenaka Y, Noguchi R, Yanase K, Tsujinoue H, Imazu H, Fukui H (2002) Suppression of the renin-angiotensin system attenuates vascular endothelial growth factor-mediated tumor development and angiogenesis in murine hepatocellular carcinoma cells. Int J Oncol 20:1227–1231

    CAS  PubMed  Google Scholar 

  68. Zhang Z, Liu W, Jia X, Gao Y, Hemminki K, Lindholm B (2004) Use of pyrosequencing to detect clinically relevant polymorphisms of genes in basal cell carcinoma. Clin Chim Acta 342:137–143

    CAS  PubMed  Google Scholar 

  69. Zhu X, McKenzie CA, Forrester T, Nickerson DA, Broeckel U, Schunkert H, Doering A, Jacob HJ, Cooper RS, Rieder MJ (2000) Localization of a small genomic region associated with elevated ACE. Am J Hum Genet 67:1144–1153

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Papakosta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koronellos, N., Yapijakis, C., Katoulis, A. et al. Association study indicates combined effect of interleukin-10 and angiotensin-converting enzyme in basal cell carcinoma development. Arch Dermatol Res 313, 373–380 (2021). https://doi.org/10.1007/s00403-020-02113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-020-02113-x

Keywords

Navigation