SHORT COMMUNICATION

Bum J. Kim · Dae Y. Hwang · Tae S. Kang · Jin H. Hwang Chae H. Lim · Hun G. Kang · Jun S. Goo · Mi R. Lee Jung S. Cho · Woong S. Sim · Kab R Chae · Yong K. Kim

Expression of human *CYP1B1/lacZ* fusion gene in ultraviolet-irradiated human keratinocytes

Received: 3 December 2001 / Revised: 28 January 2002 / Accepted: 11 March 2002 / Published online: 24 April 2002 © Springer-Verlag 2002

Keywords CYP1B1 \cdot UVB \cdot Ultraviolet responsive element

The cytochrome P450 enzymes (P450s or CYPs) are a superfamily of hemeproteins that catalyze the monooxygenation of a wide range of endobiotic and xenobiotic substrates. Among members of the superfamily 1, human CYP1B1 (hCY1B1) has been identified in rodent species and in humans [1, 2, 3]. The amino acid sequences in humans, rats, and mice are 80% similar between subfamilies [4], but there are considerable species differences in regulation, metabolic specificity, and tissue-specific expression of CYP1B1 [5]. The cDNA for hCYP1B1 has been isolated from human keratinocytes treated with TCDD [4]. In addition, it has been established that solar ultraviolet (UV) radiation is the major etiological agent in skin cancer development [6, 7]. Wavelengths in the UVB range of the solar spectrum are particularly associated with the induction of skin cancer by producing erythema and burns [8]. Recently, it has been demonstrated that UVB induces the expression of mRNA and protein of endogenous CYP1B1 in the epidermis [9], raising the possibility that the *hCYP1B1* gene is transcriptionally regulated by UVB.

In this study, we sought to determine whether UVB can direct the transcriptional activity of the hCYP1B1/lacZ reporter gene by UVB irradiation of human keratinocytes. In order to test whether the hCYP1B1 gene promoter se-

National Institute of Toxicological Research, Korea FDA, 5 Nokbun-dong Eunpyung-ku, Seoul 122-704, Korea e-mail: kimyongkyu@hanmail.net, Tel.: +82-2-3891835, Fax: +82-2-3801833

W.S. Sim

Department of Biology, Korea University,

5 Anam Sungbuk-ku, Seoul 136-701, Korea

quence is capable of influencing UVB-mediated transcription of the *lacZ* reporter gene, we constructed a fusion gene with this promoter linked to an *E. coli LacZ* gene with an SV40 polyadenylation signal (Fig. 1). The *lacZ* mRNA product (459 bp) is predicted from the *hCYP1B1/lacZ* fusion gene, transcription starting at the *hCYP1B1* promoter and terminating at the polyadenylation signal.

Human keratinocytes were transfected with the *hCYP1B1/ lacZ* fusion gene, and the transfected cells were then exposed to UVB radiation (315 nm) for 1, 2 and 4 h after removal of the petri dish covers. It has been shown that UVB wavelengths in the range 280–320 nm are absorbed by the skin, producing skin cancer [8]. The RNA was isolated for determination of exogenous *lacZ* transcripts, and endogenous β -actin transcripts by RT-PCR (Fig. 2). UVB induced a threefold activation of transcription with a maximum at 1 h, followed by a rapid decline in the levels thereafter.

In parallel with the analysis of mRNA expression, we determined β -galactosidase protein levels by Western blotting of the same cells used for mRNA expression after exposure to UVB radiation for 1, 2 and 4 h. Protein levels of β -galactosidase were almost similar to those of *lacZ* transcripts as shown in Fig. 3A, although the levels did not rapidly decline. The activity of β -galactosidase was also determined using *o*-nitrophenyl- β -D-galactopyranoside in human keratinocytes by the measurement of the formation of galactose and *o*-nitrophenyl which is yellow. As shown in Fig. 3B, β -galactosidase activities in the keratinocytes were slightly induced by 1 h of UVB irradiation compared with the induction in cells not exposed to UVB.

In this study, we clearly showed that UVB exposure of human skin induces hCYP1B1/LacZ fusion gene in the transcripts at the protein level as well as the activity level (Figs. 2 and 3). These results suggest that a UV-responsive element-like (URE-like) element (ULE) within the hCYP1B1 promoter may be the target binding site for an as-yet-unidentified UV-inducible cellular factor. In fact, the ULE (TGACTGGA) within the hCYP1B1 functional promoter (-886 bp to -878 bp) was found with a 3-bp

B.J. Kim \cdot D.Y. Hwang \cdot T.S. Kang \cdot J.H. Hwang \cdot C.H. Lim H.G. Kang \cdot J.S. Goo \cdot M.R. Lee \cdot J.S. Cho \cdot K.R. Chae Y.K. Kim (\boxtimes)

Division of Laboratory Animal Resources,

Fig.1 Construction of hCYP1B1/lacZ fusion gene. A hCYP1B1 promoter. Primers are indicated by straight arrows, and two URE-like element (ULE) are boxed. Dioxinresponse elements are indicated by a single underline and a TATA box by a double underline. The transcription start site is indicated by the rightangled arrow and Sp1 binding sites are indicated by a dotted underline. B The ph1B1/lacZ construct contains the lacZgene fused to the human CYP1B1 promoter and the bacterial *lacZ* gene is placed under the control of the human CYP1B1 promoter

AAGCCAGTACAATTCCTACCTGGTTAACCAGATACATCCCACCTC TTCCCTCGAGTTCGCCCTTCCCCCCGCCTCGTGAA GTCCTTGTTCTCTTAGCTGTCTTGAAAATCCTATGCATCAGCATGTAGGAAAGGGCGCGCCAGGCGGGGAAGCCACCCC -1360 -1280 -1200 -1120 -1040 AGGCGCGACTGT<u>GCGTG</u>CGCAGCCGAGGGTGGTGGCGGCGGCACCC<u>CACG</u>CCAAGGGTGGTGGTGGCCGGCACCCCACC CTCGGCCGCCCCC<u>GCGTG</u>CCAGGTGCCG<mark>TGAGAAGG</mark>GCGGGAGGAGC<u>GGCCG</u>CAGGCAGCCCCAGGGATA<u>TGACTG</u> -960 -880 TAAAGTTCGCCGGAGCGCGGAGATTCGCCTCCTCCTGCCACTCTCCGCCCCGCTCGGGTCCCGCCCCGCTAGCTCCCCCA -800 -720 GGCCCCCCAGTCGCCCCAGCTTGGCTCCCCGCCCTGCGCCAACGGCTTCCATCGCAGCCTGGGCGGCCCCGCGCCCCACC AGCGGGCGGCGCCACCTGGAGTGGCCTCTACGCGGGAAATCTCAGGGCCAGCTGCGCCCCAGGAGCCTTTGTGTGCCCAA -640 -560 -480 -400 GGGGCGGGGCGCGCGCCCAAGTCGAGCGCAGCGGGCCAGGTTGTACCGAGCGTGGTTCTGGGGACACCGTGCGGCC -320 TTGATTGGAGGTGGCTGTGATGAAGCGCGGGTTACCGCACAATGGAAACGTGGGCACCTCCGCTCCCATGAAAGCCTGCTG -240 GTAGAGCTCCGAGGCCGGCCGGTGCGCCTGGACGGGAGTCCGGGTCAAAGCGGCCTGGTGTGCGGCGCGCCCCGCCCCC -160 GCAGGCCCCGCCCTGCCAGGTCGCGCGCGCCCCCCTTCTACCCAGTCC<u>TTAAAA</u>CCCGGAAGGAGCGGGATGGCGCGCTTTG -80

ACTCTGGAGTGGGAGTGGGAGTGGGAGCGAGCGCTTCTGCGACTCCAGTTGTGAGAGCCGCAAGGGCATGGGAATTGACG 81 CCACTCACCGACCCCAGTCTCAATCTCAACGCTGTGAGGAAACCTCGACTTTGCCAGGTCCCCAAGGGCAGCGGGGCTC GGCGAGCGACGCACCCTTCT 161

Lac7

+307

pre

4013

SV40 Poly(A)

Fig.2A, B Expression of hCYP1B1/lacZ fusion gene after exposure to UVB irradiation. Induction of the lacZ gene in the human keratinocytes was determined after exposure to UVB radiation for 1, 2 and 4 h. The β -actin signal served as control. The β -actin transcripts (640 bp) indicate RNA loading. Transcript levels at each time-point were quantified using a Kodak Electrophoresis Documentation and Analysis System 120. The significance of differences in the quantity of RNA (Fig. 3) were determined by one-way analysis of variance (using SPSS version 10.10 software). The values indicated are means \pm SD (n=3), *P<0.02

mismatch on the URE (Fig. 1A). UREs (TGACAACA) are present in human keratinocytes [10] and in polyoma DNA [11]. It will necessary to examine whether this ULE is a target for such factors or a novel factor increasing the transcriptional activity of the hCYP1B1 gene promoter upon UVB irradiation. The gel mobility shift assay could be used to identify UVB-inducible factors binding to ULE within the human CYP1B1 gene promoter. Microsomal CYP1B1 activity was slightly increased (more than 0.8-fold) in UVB-irradiated human keratinocytes compared to identical non-UVB exposed cells.

The results are affected by endogenous β -galactosidase activity in the keratinocytes used, but the introduction of a bacterial foreign β -galactosidase encoded by the *lacZ*

1 h 2 h 4 h 0 h ◆125-kDa Set 1 in 5 **B-galactosidase proteins** P<0.01 4 Relative level of 3 2 1 0.5 B P<0.01 β-galactosidase activity 0 10 70 50 50 70 0 0 h 1 h 2 h 4 h

Fig. 3A, B Expression of β -galactosidase protein and β -galactosidase activity after exposure to UVB irradiation. A Protein (50 μ g) from each sample was loaded for Western blot analysis. Nitrocellulose membrane was incubated with β-galactosidase primary antibody (Chemicon) at a dilution of 1:1000 in 2% powdered nonfat milk. Additional incubation was performed with horseradish peroxidase-conjugated goat α -rabbit IgG (GenTest) at a dilution of 1:1000 in 2% milk as a secondary antibody. The values indicated are means±SD (n=3), *P<0.01. **B** Protein was assayed for β -galactosidase activity by fluorescence detection. The values indicated are means \pm SD (n=3), *P<0.01

gene may have little effect on the enhanced activity of β -galactosidase because of the background activity in human keratinocytes. The hCYP1B1 promoter-activating system fused to a *lacZ* coding sequence should be of great utility for several reasons. The hCYP1B1 promoter contains a ULE binding to UV-regulated factor (URF) in UVB-irradiated cells. It would necessary to clone this novel gene for URF which would be present in UV-irradiated human keratinocytes. When it is cloned, an in vitro bioassay system expressing URF interacting with ULE within the hCYP1B1 promoter and *hCYP1B1/LacZ* fusion genes could be directly developed allowing the testing of UV sensitivity and possible carcinogens.

References

- Savas U, Bhattacharrya KK, Christo M, Alexander DL, Jefcoate CR (1994) Mouse cytochrome P450EF, representative of a new 1B subfamily of cytochrome P456, Cloning, sequence determination, and tissue expression. J Biol Chem 269:14905– 14911
- Sutter TR, Tang YM, Hayes CL, Wo YY, Jabs EW, Li X, Yin H, Cody CW, Greenlee WF (1994) Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem 269:13092–13099
- 3. Tang WM, Wo Y-YP, Stewart J, Hawkins AL, Griffin CA, Sutter TR, Greenlee WF (1996) Isolation and characterization of the human cytochrome P450CYP1B1 gene. J Biol Chem 271:28324–28330

- 4. Walker NJ, Gastel JA, Costa LT, Clark GC, Lucier GW, Sutter TR (1995) RatCYP1B1: an adrenal cytochrome P450 that exhibits sex development expression in livers and kidneys of TCDD-treated animals. Carcinogenesis 16:1319–1327
- Murray GI, Melvin WT, Greenlee WF, Burke MD (2001) Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol 41:297–316
- Urbach F (1978) Welcome and introduction: evidence and epidemiology of ultraviolet-induced cancers in man. Natl Cancer Inst Monogr 50:5–10
- DGruijl FR, Fobes PD (1981) UV-induced skin cancer in a hairless mouse model. Bioessays 17:651–660
- Young AR (1990) Cumulative effects of ultraviolet radiation on the skin cancer and photoaging. Semin Dermatol 9:25–31
- 9. Katiyar SK, Matsui MS, Mukhtar H (2000) Ultraviolet-B exposure of human skin induces cytochrome P450 1A1 and 1B1. J Invest Dermatol 114:328–333
- Yang Y-M, Rutberg SE, Foils PG, Ronal Z (1993) Expression pattern of proteins that bind to the ultraviolet-responsive element (TGACAACA) in human keratinocyte. Mol Carcinog 7:36–43
- 11. Rutberg SE, Yang YM, Ronai Z (1992) Functional role of the ultraviolet light responsive element (URE; TGACAACA) in the transcription and replication of polyoma DNA. Nucleic Acids Res 20:4305–4310