Skip to main content
Log in

Factors influencing periprosthetic bone mineral density in total knee arthroplasty: a systematic review

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Following total knee arthroplasty (TKA), there is a significant decline in periprosthetic bone mineral density (BMD), potentially resulting in complications such as prosthetic loosening, periprosthetic fracture, and influencing the postoperative recovery. The objective of this study was to summarize the factors influencing periprosthetic BMD in TKA from existing studies.

Methods

A comprehensive systematic search was performed in 4 databases: Pubmed, Embase, Web of Science, and Cochrane Library. The last search was carried out on October 12, 2023. We used the keywords ‘‘total knee arthroplasty’’, ‘‘bone mineral density’’ and each of them combined with ‘‘tibia’’ and ‘‘femur’’ to identify all relevant articles reporting about potential impact factors influencing the periprosthetic BMD in patients after TKA.

Results

Out of 1391 articles, 22 published from 2001 to 2023 were included in this systematic review. Following eligibility screening, six significant categories affecting periprosthetic BMD were recognized: prosthesis type, design of stem, coating, body weight, cement, and peg distance.

Conclusion

Mobile-bearing prostheses, modular polyethylene design, short stems, cruciform stems, avoidance of bone cement, higher body mass index, titanium nitride coating, and a smaller medial peg distance could potentially benefit periprosthetic BMD. Comprehensive consideration of diverse factors influencing periprosthetic BMD before surgery and collaboration with post-operative drug therapy are essential.

Trial registry: The PROSPERO registration number is CRD42023472030.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Data availability

All data used in this systematic review were published in previous literature. Specifc information, on the data used or the analysis performed, is available upon request from the corresponding author.

References

  1. Katz JN, Arant KR, Loeser RF (2021) Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325:568–578. https://doi.org/10.1001/jama.2020.22171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aletaha D, Smolen JS (2018) Diagnosis and management of rheumatoid arthritis: a review. JAMA 320:1360–1372. https://doi.org/10.1001/jama.2018.13103

    Article  PubMed  Google Scholar 

  3. Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S (2017) Projected increase in total knee arthroplasty in the United States—an alternative projection model. Osteoarthr Cartilage 25:1797–1803. https://doi.org/10.1016/j.joca.2017.07.022

    Article  CAS  Google Scholar 

  4. Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28:1329–1332. https://doi.org/10.1016/j.arth.2013.01.012

    Article  PubMed  Google Scholar 

  5. Petersen MM, Jensen NC, Gehrchen PM, Nielsen PK, Nielsen PT (1996) The relation between trabecular bone strength and bone mineral density assessed by dual photon and dual energy X-ray absorptiometry in the proximal tibia. Calcif Tissue Int 59:311–314. https://doi.org/10.1007/s002239900131

    Article  CAS  PubMed  Google Scholar 

  6. Gundry M, Hopkins S, Knapp K (2017) A review on bone mineral density loss in total knee replacements leading to increased fracture risk. Clin Rev Bone Miner Metab 15:162–174. https://doi.org/10.1007/s12018-017-9238-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prince JM, Bernatz JT, Binkley N, Abdel MP, Anderson PA (2019) Changes in femoral bone mineral density after total knee arthroplasty: a systematic review and meta-analysis. Arch Osteoporos 14:23. https://doi.org/10.1007/s11657-019-0572-7

    Article  PubMed  Google Scholar 

  8. Au AG, James Raso V, Liggins AB, Amirfazli A (2007) Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech 40:1410–1416. https://doi.org/10.1016/j.jbiomech.2006.05.020

    Article  PubMed  Google Scholar 

  9. Rosenthall L (1997) Hip and knee prostheses: evaluation of the natural history of periprosthetic bone changes. Semin Nucl Med 27:346–354. https://doi.org/10.1016/s0001-2998(97)80007-4

    Article  CAS  PubMed  Google Scholar 

  10. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, P. T (2012) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In.

  11. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA (2011) The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  12. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  13. Lonner JH, Klotz M, Levitz C, Lotke PA (2001) Changes in bone density after cemented total knee arthroplasty—influence of stem design. J Arthroplasty 16:107–111. https://doi.org/10.1054/arth.2001.16486

    Article  CAS  PubMed  Google Scholar 

  14. Petersen MM, Gehrchen PM, Østgaard SE, Nielsen PK, Lund B (2005) Effect of hydroxyapatite-coated tibial components on changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: a prospective randomized study using dual-energy x-ray absorptiometry. J Arthroplasty 20:516–520. https://doi.org/10.1016/j.arth.2004.09.041

    Article  PubMed  Google Scholar 

  15. Saari T, Uvehammer J, Carlsson LV, Regnér L, Kärrholm J (2006) Posterior stabilized component increased femoral bone loss after total knee replacement. 5-year follow-up of 47 knees using dual energy X-ray absorptiometry. Knee 13:435–439. https://doi.org/10.1016/j.knee.2006.08.002

    Article  PubMed  Google Scholar 

  16. Saari T, Uvehammer J, Carlsson L, Regnér L, Kärrholm J (2007) Joint area constraint had no influence on bone loss in proximal tibia 5 years total knee replacement. J Orthop Res 25:798–803. https://doi.org/10.1002/jor.20358

    Article  PubMed  Google Scholar 

  17. Hernandez-Vaquero D, Garcia-Sandoval MA, Fernandez-Carreira JM, Gava R (2008) Influence of the tibial stem design on bone density after cemented total knee arthroplasty: a prospective seven-year follow-up study. Int Orthop 32:47–51. https://doi.org/10.1007/s00264-006-0280-y

    Article  PubMed  Google Scholar 

  18. Minoda Y, Ikebuchi M, Kobayashi A, Iwaki H, Inori F, Nakamura H (2010) A cemented mobile-bearing total knee replacement prevents periprosthetic loss of bone mineral density around the femoral component: a matched cohort study. J Bone Joint Surg Series B 92:794–798. https://doi.org/10.1302/0301-620X.92B6.23159

    Article  CAS  Google Scholar 

  19. Minoda Y, Kobayashi A, Iwaki H, Ikebuchi M, Inori F, Takaoka K (2010) Comparison of bone mineral density between porous tantalum and cemented tibial total knee arthroplasty components. J Bone Joint Surg 92:700–706. https://doi.org/10.2106/JBJS.H.01349

    Article  PubMed  Google Scholar 

  20. Minoda Y, Kobayashi A, Ikebuchi M, Iwaki H, Inori F, Nakamura H (2013) Porous tantalum tibial component prevents periprosthetic loss of bone mineral density after total knee arthroplasty for five years-a matched cohort study. J Arthroplasty 28:1760–1764. https://doi.org/10.1016/j.arth.2013.03.031

    Article  PubMed  Google Scholar 

  21. Järvenpää J, Soininvaara T, Kettunen J, Miettinen H, Kröger H (2014) Changes in bone mineral density of the distal femur after total knee arthroplasty: a 7-year DEXA follow-up comparing results between obese and nonobese patients. Knee 21:232–235. https://doi.org/10.1016/j.knee.2013.03.004

    Article  PubMed  Google Scholar 

  22. Mau-Moeller A, Behrens M, Felser S, Bruhn S, Mittelmeier W, Bader R, Skripitz R (2015) Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. BioMed Res Int. https://doi.org/10.1155/2015/418168

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tjørnild M, Søballe K, Hansen PM, Holm C, Stilling M (2015) Mobile- vs. fixed-bearing total knee replacement. Acta Orthop 86:208–214. https://doi.org/10.3109/17453674.2014.968476

    Article  PubMed  PubMed Central  Google Scholar 

  24. Winther N, Jensen C, Petersen M, Lind T, Schrøder H, Petersen M (2016) Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty. Prospective Randomized Study Int Orthopaed 40:285–294. https://doi.org/10.1007/s00264-015-2852-1

    Article  Google Scholar 

  25. Ishii Y, Noguchi H, Sato J, Ishii H, Todoroki K, Toyabe SI (2017) Association between body weight and proximal tibial bone mineral density after bilateral total knee arthroplasty. Knee 24:1153–1159. https://doi.org/10.1016/j.knee.2017.06.012

    Article  PubMed  Google Scholar 

  26. Rathsach Andersen M, Winther N, Lind T, Schrøder HM, Petersen MM (2019) Bone remodeling of the proximal tibia after uncemented total knee arthroplasty: secondary endpoints analyzed from a randomized trial comparing monoblock and modular tibia trays—2 year follow-up of 53 cases. Acta Orthop 90:479–483. https://doi.org/10.1080/17453674.2019.1637178

    Article  PubMed  PubMed Central  Google Scholar 

  27. Minoda Y, Kobayashi A, Ikebuchi M, Iwaki H, Inori F, Nakamura H (2020) Periprosthetic loss of bone mineral density after cementless porous tantalum and cemented total knee arthroplasties: a mean of 11-year concise follow-up of a previous report. J Arthroplasty 35:3156–3160. https://doi.org/10.1016/j.arth.2020.06.014

    Article  PubMed  Google Scholar 

  28. Nivbrant NO, Khan RJK, Fick DP, Haebich S, Smith E (2020) Cementless versus cemented tibial fixation in posterior stabilized total knee replacement a randomized trial. J Bone Joint Surg 102:1075–1082. https://doi.org/10.2106/JBJS.19.01010

    Article  PubMed  Google Scholar 

  29. Breddam Mosegaard S, Rytter S, Madsen F, Odgaard A, Søballe K, Stilling M (2021) Two-year fixation and ten-year clinical outcomes of total knee arthroplasty inserted with normal-curing bone cement and slow-curing bone cement: a randomized controlled trial in 54 patients. Knee 33:110–124. https://doi.org/10.1016/j.knee.2021.08.027

    Article  PubMed  Google Scholar 

  30. Dyreborg K, Winther N, Lind T, Flivik G, Mørk Petersen M (2021) Evaluation of different coatings of the tibial tray in uncemented total knee arthroplasty. a randomized controlled trial with 5 years follow-up with RSA and DEXA. Knee 29:208–215. https://doi.org/10.1016/j.knee.2021.02.002

    Article  PubMed  Google Scholar 

  31. Linde KN, Rytter S, Soballe K, Madsen F, Langdahl B, Stilling M (2022) Component migration, bone mineral density changes, and bone turnover markers in cementless and cemented total knee arthroplasty: a prospective randomized RSA study in 53 patients with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 30:3100–3113. https://doi.org/10.1007/s00167-022-06860-4

    Article  PubMed  Google Scholar 

  32. Minoda Y, Ikebuchi M, Kobayashi A, Iwaki H, Nakamura H (2022) A cemented mobile-bearing total knee prosthesis prevents peri-prosthetic bone mineral density loss around the femoral component: a consecutive follow-up at a mean of 11 years. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 30:734–739. https://doi.org/10.1007/s00167-021-06448-4

    Article  Google Scholar 

  33. Minoda Y, Ikebuchi M, Kobayashi A, Sugama R, Ohta Y, Takemura S, Yamamoto N, Nakamura H (2022) Medial peg position of cementless porous tantalum tibial component affects bone mineral density around the prosthesis after total knee arthroplasty: 2-year follow-up study. Knee 34:55–61. https://doi.org/10.1016/j.knee.2021.11.005

    Article  PubMed  Google Scholar 

  34. Lee DW, Ro DH, Han HS, Lee MC (2023) Titanium alloy knee implant is associated with higher bone density over cobalt chromium: a prospective matched-pair case-control study. Clin Orthop Surg 15:581–588. https://doi.org/10.4055/cios22082

    Article  PubMed  Google Scholar 

  35. Abulhail S, Hameed S, Abousamhadaneh M, Al Haneedi G, Al Ateeq Aldosari M (2022) Trabecular metal monoblock versus modular tibial trays in total knee arthroplasty: meta-analysis of randomized control trials. Int Orthop 46:2509–2516. https://doi.org/10.1007/s00264-022-05553-4

    Article  PubMed  Google Scholar 

  36. Liu Y, Zeng Y, Wu Y, Li M, Xie H, Shen B (2021) A comprehensive comparison between cementless and cemented fixation in the total knee arthroplasty: an updated systematic review and meta-analysis. J Orthop Surg Res 16:176. https://doi.org/10.1186/s13018-021-02299-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Migliorini F, Maffulli N, Cuozzo F, Pilone M, Elsner K, Eschweiler J (2022) No difference between mobile and fixed bearing in primary total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 30:3138–3154. https://doi.org/10.1007/s00167-022-07065-5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dong Y, Yan Y, Zhou J, Zhou Q, Wei H (2023) Evidence on risk factors for knee osteoarthritis in middle-older aged: a systematic review and meta analysis. J Orthop Surg Res 18:634. https://doi.org/10.1186/s13018-023-04089-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kerkhoffs GM, Servien E, Dunn W, Dahm D, Bramer JA, Haverkamp D (2012) The influence of obesity on the complication rate and outcome of total knee arthroplasty: a meta-analysis and systematic literature review. J Bone Joint Surg Am 94:1839–1844. https://doi.org/10.2106/jbjs.K.00820

    Article  PubMed  PubMed Central  Google Scholar 

  40. Qiao D, Li Y, Liu X, Zhang X, Qian X, Zhang H, Zhang G, Wang C (2020) Association of obesity with bone mineral density and osteoporosis in adults: a systematic review and meta-analysis. Public Health 180:22–28. https://doi.org/10.1016/j.puhe.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  41. Banci L, Balato G, Salari P, Baldini A (2023) Systematic review and meta-analysis of ceramic coated implants in total knee arthroplasty. Comparable mid-term results to uncoated implants. Knee Surg Sports Traumatol Arthrosc 31:839–851. https://doi.org/10.1007/s00167-021-06775-6

    Article  PubMed  Google Scholar 

  42. Horváth T, Hanák L, Hegyi P, Butt E, Solymár M, Szűcs Á, Varga O, Thien BQ, Szakács Z, Csonka E, Hartmann P (2020) Hydroxyapatite-coated implants provide better fixation in total knee arthroplasty a meta-analysis of randomized controlled trials. PLoS One 15:e0232378. https://doi.org/10.1371/journal.pone.0232378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delsmann MM, Schmidt C, Mühlenfeld M, Jandl NM, Boese CK, Beil FT, Rolvien T, Ries C (2022) Prevalence of osteoporosis and osteopenia in elderly patients scheduled for total knee arthroplasty. Arch Orthop Trauma Surg 142:3957–3964. https://doi.org/10.1007/s00402-021-04297-x

    Article  PubMed  Google Scholar 

  44. Soltanihafshejani N, Bitter T, Verdonschot N, Janssen D (2023) The effect of periprosthetic bone loss on the failure risk of tibial total knee arthroplasty. J Orthop Res. https://doi.org/10.1002/jor.25642

    Article  PubMed  Google Scholar 

  45. Sessa G, Costarella L, Puma Pagliarello C, Di Stefano A, Sessa A, Testa G, Pavone V (2019) Bone mineral density as a marker of hip implant longevity: a prospective assessment of a cementless stem with dual-energy X-ray absorptiometry at twenty years. Int Orthop 43:71–75. https://doi.org/10.1007/s00264-018-4187-1

    Article  PubMed  Google Scholar 

  46. Fonseca H, Moreira-Gonçalves D, Coriolano HJ, Duarte JA (2014) Bone quality: the determinants of bone strength and fragility. Sports Med 44:37–53. https://doi.org/10.1007/s40279-013-0100-7

    Article  PubMed  Google Scholar 

  47. Shi M, Chen L, Wu H, Wang Y, Wang W, Zhang Y, Yan S (2018) Effect of bisphosphonates on periprosthetic bone loss after total knee arthroplasty: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 19:177. https://doi.org/10.1186/s12891-018-2101-z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Suzuki T, Sukezaki F, Shibuki T, Toyoshima Y, Nagai T, Inagaki K (2018) Teriparatide administration increases periprosthetic bone mineral density after total knee arthroplasty: a prospective study. J Arthroplasty 33:79–85. https://doi.org/10.1016/j.arth.2017.07.026

    Article  PubMed  Google Scholar 

  49. Murahashi Y, Teramoto A, Jimbo S, Okada Y, Kamiya T, Imamura R, Takashima H, Watanabe K, Nagoya S, Yamashita T (2020) Denosumab prevents periprosthetic bone mineral density loss in the tibial metaphysis in total knee arthroplasty. Knee 27:580–586. https://doi.org/10.1016/j.knee.2019.12.010

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LD22C060002 and National Natural Science Foundation of China under Grant No. 82274547.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Haojing Zhou and Lei Chen. The first draft of the manuscript was written by Haojing Zhou and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoqian Chen or Peijian Tong.

Ethics declarations

Conflict of interest

Haojing Zhou, Lei Chen, Hai Su, Yichen Gong, Guoqian Chen, Peijian Tong declare that they have no conflict of interest.

Ethical approval

This systematic review did not require approval from the local medical research ethics committee.

Informed consent

This systematic review did not require informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 41 KB)

Supplementary file 2 (PDF 323 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, L., Su, H. et al. Factors influencing periprosthetic bone mineral density in total knee arthroplasty: a systematic review. Arch Orthop Trauma Surg 144, 2273–2281 (2024). https://doi.org/10.1007/s00402-024-05308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-024-05308-3

Keywords

Navigation