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Abstract
Background  Lateral collateral ligament (LCL) tears are frequently observed in fractures and dislocations of the elbow. 
Recent biomechanical evidence suggests that additional ligament augmentation may improve repair stability. The aim of 
this biomechanical in-vitro study was to compare the resistance of a locking suture repair of the LCL with a ligament aug-
mentation technique.
Material and methods  Eight fresh frozen cadaveric elbows were evaluated for stability against varus/posterolateral rotatory 
forces (3 Nm). A strain gauge (µm/m; negative values) was placed at the origin and insertion of the lateral ulnar collateral 
ligament (LUCL) and cyclic loading was performed for 1000 cycles. We analyzed three distinct scenarios: (A) native LCL, 
(B) locking transosseou suture repair of the LCL, (C) simple LCL repair with additional ligament augmentation of the LUCL.
Results  The mean measured strain was − 416.1 µm/m (A), − 618 µm/m (B) and − 288.5 µm/m (C) with the elbow flexion 
at 90°; the strain was significantly higher in scenario B compared to C (p = .01). During the cyclic load (1000) the mean 
measured strain was − 523.1 µm/m (B) and − 226.3 µm/m (C) with the elbow flexion at 60°; the strain was significantly 
higher in scenario B compared to C (p = .01). No significant difference between the first and the last cycles was observed 
(p = .09; p = .07). One failure of the LCL repair was observed after 1000 cycles; none of the ligament augmentations failed.
Conclusion  Ligament augmentation (C) provides higher resistance compared to the native LCL (A) and to the locking suture 
repair technique (B). Both techniques, however, hold up during 1000 cycles. While ligament augmentation might enhance 
the primary stability of the repair, future clinical studies have to show whether this increase in resistance leads to negative 
effects like higher rates of posttraumatic elbow stiffness.
Level of evidence  Basic science study, biomechanics.
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Introduction

Lateral collateral ligament (LCL) injuries are frequent elbow 
pathologies in elbow trauma. The elbow is the second most 
dislocated joint of the upper extremity after the shoulder 
[1]. In case of ligamentous dislocations, LCL injuries are 
most frequently accompanied lesions. Simple ligamentous 

lesions can be treated conservatively [2]. However, there 
is a subset of patients who experience recurrent instability 
or subluxation; a posterolateral rotatory instability (PLRI) 
could result [3–5]. PLRI of the elbow is associated with 
an insufficient lateral collateral ligament complex (LCL) 
[6–9]. When surgical treatment is performed, LCL repair is 
crucial to avoid persisting posterolateral rotatory instabil-
ity. Recently, ligament augmentation techniques have gained 
popularity [2, 9–19].

Besides primary repair and autograft or allograft recon-
structions, the use of ligament brace techniques has been 
studied and reported to be stronger biomechanically [1, 10, 
13–15, 19–21]. The goal of all these procedures is an ana-
tomic reconstruction of the LCL for restoration of functional 

 *	 Nadine Ott 
	 Nadine.ott@uk-koeln.de

1	 Department of Trauma and Orthopedic Surgery, University 
Hospital Cologne and Faculty of Medicine, University 
of Cologne, Kerpener Street 62, 50937 Cologne, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00402-022-04337-0&domain=pdf


858	 Archives of Orthopaedic and Trauma Surgery (2023) 143:857–863

1 3

elbow stability and ligament repair with a locking transosse-
ous suture is still preferred by many surgeons [22].

However, to the Authors knowledge, there have been no 
biomechanical in-vitro study that evaluated the use of addi-
tional ligament augmentation and this LCL repair according 
to the locking transosseous suture technique [22] compared 
to the native LCL. Therefore, the present study aimed to 
analyze the resistance of primary repair, additional ligament 
augmentation of LCL and the native LCL after 1000 cycles 
rotational load.

Material and methods

Specimen preparation

For this biomechanical study, nine fresh frozen cadaveric 
elbows from 3 male and 6 female donors were available. The 
mean age at the time of death was 73 (min. 65, max. 91, SD 
12 years). The specimens were stored at − 20 °C and thawed 
at room temperature 12–14 h before dissection and biome-
chanical testing. Fluoroscopic and clinical examinations 
were performed to exclude specimens with osteoarthritis or 
signs of previous surgery and trauma. The soft tissue of the 
proximal humerus and the forearm was preserved.

Strain of the LUCL was measured indirectly via strain 
gauges. A strain gauge (4-wire; 350 Ohm; Vishay Inc., Mal-
vern, PA, USA) was fixed on top of a custom-made sen-
sor (Steel, Dx 51) with M-Bond (Vishay Inc., Malvern, PA, 
USA); the sensor takes the form of a omega. The form of 
the omega allows the efficient transfer of the applied force 
through the strain gauge (Fig. 1A). While the measurement 
the deformation of the sensor was transferred through the 
strain gauge. A calibration of each strain gauge was per-
formed. Axial deformation was transferred through the strain 

gauges and therewith resulted in a deflection of the measur-
ing device, which was digitally documented via a software 
in µm/m (MGCplus Fa. HBM, Darmstadt, Germany). To 
reduce measurement errors, a 4-wire strain gauge was used.

The sensor augmented with a strain gauge (4-wire 120 Ω, 
Vishay Inc., Malvern, PA, USA) was fixed along the course 
of the LUCL with the help of threaded k-wires placed at the 
origin and insertion of the LUCL (Fig. 1B). Posterolateral 
rotation of the forearm resulted in a deformation of the sen-
sor and the sensor transferred the applied force through the 
strain gauge.

Scenario A

In scenario A, the ligaments and the fascia of the forearm 
remained intact. After testing the specimens in the intact 
state, a lateral Kocher approach was performed and the 
LCL along with the common extensor origin were sharply 
detached from the distal humerus.

Scenario B

In scenario B, a locking suture repair of the LCL was per-
formed, modified according to the technique published in 
Green’s chapter [22]: first, two suture anchors (FASTak, 
2.4 mm, Arthrex Inc., Naples, FL, USA) were placed in 
the center of rotation of the capitulum and in the lateral 
supracondylar ridge. A locking suture was then placed in the 
LUCL from proximal to distal over the course of 3 cm with 
one suture limb of the suture anchor placed in the center of 
rotation. On the way back, the radial collateral ligament and 
the annular ligament were incorporated in the repair to close 
the interval between the RCL and the LUCL. A sliding knot 
was performed to secure the LCL back to its origin while 
holding the elbow in 90° of flexion and in full pronation. The 

Fig. 1   The titanium omega augmented with a strain gauge, SG, 
(4-wire 120 Ω, Vishay Inc., Malvern, PA, USA) was fixed at the ori-
gin (Org) and insertion (Ins) of the LUCL (A). A posterolateral rota-
tory instability with ulno-humeral displacement resulted in a defor-

mation of the fixed omega. By fluoroscopy the anatomical position 
was verified (B); in each scenario closure of the fascia overlying the 
Kocher interval was performed (PDS 0, Ethicon Inc., Bridgewater, 
NJ, USA)
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second suture anchor was used for refixation of the common 
extensor origin with a mattress suture (Fig. 2). Closure of the 
fascia overlying the Kocher interval was performed (PDS 0, 
Ethicon Inc., Bridgewater, NJ, USA).

Scenario C

In scenario C, two drill holes were employed: one in the 
capitulum at the center of rotation; and another in the 
proximal ulna directly posterior to the supinator crest and 
approximately 1 cm distal to the articular surface of the 
radial head. A suture anchor loaded with a suture tape 
(3.5 mm PEEK SwiveLock anchor; FiberTape®, Arthrex 
Inc., Naples, FL, USA) was inserted in the distal drill 
hole. The lateral capsule was closed with interrupted 2–0 
sutures. The suture tape was then spanned over the lateral 

capsule. The entry point of the tape into the humeral bone 
tunnel was marked with a pen. In the next step, fixation 
of the tape was performed by inserting a second suture 
anchor into the distal humerus with respect to the pen 
marking in order not to over-tighten the augmentation. 
The remaining suture ends of the suture tape were used 
to repair the LCL and the common extensor origin back 
to bone with a simple suture. The tape was then spanned 
over the LUCL with elbow at 30° flexion and a pronated 
forearm. To control the tight, the sutures were marked at 
the laser line. The anchor was placed at the marked sutures 
and fixed at the proximal drill hole (Fig. 3). Identically to 
scenario B, the fascia was closed.

To keep the measurements errors low, a 4-wire strain 
gauge was used.

Fig. 2   Lateral Kocher approach was performed; extensor carpi ulnaris 
(ECU), aconeus muscle (AC), anular ligament (AL); humeral isomet-
ric point was located by identifying the intersection point in which 
the lateral condyle is bisected by a line from the center of the radial 
head (RH) both in 90° of flexion and extension (A). In contrast to 
the technique described in Green’s chapter [22], we have used two 
2.4  mm FASTak (Fa. Arthrex). The first was placed at the axis of 
motion (the center of the arc of curvature of the capitulum; CC) (B) 

and the second placed posterior to the lateral supracondylar ridge; 
LSR (C). Suture passers are placed to facilitate the repair. A locking 
suture technique is employed to gain a secure hold of LUCL (D). The 
interval between radial collateral and LUCL and the annular ligament 
(AL) are closed at this suture is brought back to the lateral epicon-
dyle (E). The ligament sutures are pulled into the FASTak in the dis-
tal humerus with maintaining the forearm in pronation and avoiding 
varus forces while tying the sutures (F)
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Biomechanical testing set‑up

The humeral shaft was secured to a custom-made testing 
fixture with two mounting clamps. The hinged testing fixture 
allowed for movement of the elbow joint from 60° to 90° 
and was mounted onto a servohydraulic universal testing 
machine (ZwickRoell; Ulm, Germany). A mounting bolt was 
securely fixed to the lateral side of the ulnar shaft 10 cm 
distal to the center of rotation. A synthetic wire connected 
the bolt to the mobile traverse of the testing machine. Reels 
were used for deflection of the wire. Thereby, upward move-
ment of the mobile traverse resulted in posterolateral rota-
tory/varus force, depending on wire deflection (Fig. 4). This 
biomechanical testing set-up was used in previous studies 
[8, 9, 23]. Stability in each scenario was evaluated with the 
elbow in 60° and 90° of flexion.

A maximal rotational moment of 3 Nm at 0.5 Hz was 
applied. Each scenario was performed with elbow flexion at 
60° and 90° with 10 rotational cycles. In scenario B and C, 
the strain was measured with elbow flexion at 60° through 
1000 rotational cycles. The resulting deformation of the sen-
sor was transferred through the strain gauge (µm/m). This 
testing method was designed to simulate the immediate 
postoperative period when failure is most likely to occur by 
repetitive movements. By performing temporary arthrodesis 
of the distal radio- ulnar joint with two 2.0-mm Kirschner 

Fig. 3   two drill holes were employed: one in the capitulum at the 
center of rotation (CC); and another in the proximal ulna (PU) 
directly posterior to the supinator crest and approximately 1  cm 
distal to the articular surface of the radial head (RH) (A). A suture 
anchor loaded with a suture tape (3.5 mm PEEK SwiveLock anchor; 
FiberTape®, Arthrex Inc., Naples, FL, USA) was inserted in the dis-
tal drill hole. The lateral capsule was closed with interrupted 2–0 
sutures. The suture tape was then spanned over the lateral capsule 
(B). The entry point of the tape into the humeral bone tunnel was 

marked with a pen. In the next step, fixation of the tape was per-
formed by inserting a second suture anchor into the distal humerus 
with respect to the pen marking (black star) in order not to over-
tighten the augmentation (C) The remaining suture ends of the suture 
tape were used to repair the LCL and the common extensor origin 
back to bone with a simple suture. The tape was then spanned over 
the LUCL with elbow at 30° flexion and a pronated forearm. To con-
trol the tight, the sutures were marked at the laser line (D)

Fig. 4   upward movement of the mobile traverse (red arrows) resulted 
in posterolateral rotatory/varus force, depending on wire deflection 
(yellow star). This biomechanical testing set-up has been used by pre-
vious study [8, 9, 23]
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wires, measurements could be obtained in supination. The 
specimen remained in the identically biomechanical test-
ing set-up for each scenario. Thereby, measurement errors 
between each scenario were kept low. The repair techniques 
were performed by the senior author (L.P.M.).

In our biomechanical testing set-up, negative values of 
the strain gauge resulted in a deformation of the used omega.

Statistical analysis

The data collected were analyzed using the SPSS statisti-
cal program. Normal distribution was tested by Kolmog-
orov–Smirnov. A t test and ANOVA-test was performed 
to detect any statistically significant differences. We used 
descriptive statistics to summarize the means and standard 
deviations. The level of significance was defined as a p value 
of < 0.05.

Ethical considerations

The local ethics committee approved this work and informed 
consent was obtained from each volunteer included in this 
study (Ethical Committee of the Medical Faculty of the Uni-
versity of Cologne—VT (No: 20-1369). This study followed 
the guidelines for experimental investigation with human 
subject required by our institution.

Results

Table 1 and Fig. 5 summarized the main results.
The mean measured strain was −  416.1  µm/m (A), 

− 618 µm/m (B) and − 288.5 µm/m (C) with the elbow flex-
ion at 90°; the strain was significantly higher in scenario B 
compared to C (p = 0.01). During the cyclic load the mean 
measured strain was − 523.1 µm/m (B) and − 226.3 µm/m 
(C) with the elbow flexion at 60°; the strain was significantly 
higher in scenario B compared to C (p = 0.01). No significant 
difference between the first and the last cycles were observed 
(p = 0.09; p = 0.07). In scenario B, one failure after 1000 
cycles was observed. The suture was closed, the ligament 
sutures which were pulled back to the FASTak lost their 
tightness.

In scenario C, no failure of the ligament augmentation 
was detected.

90° of elbow flexion

In scenario A, the mean measured strain was − 416.1 µm/m 
(min. 84 µm/m; max. − 950 µm/m, SD 315.4 µm/m). In 
scenario B, the mean measured strain was − 618 µm/m (min. 
177 µm/m; max. − 1065 µm/m, SD 325.6 µm/m) and in sce-
nario C, the mean measured strain was − 288.5 µm/m (min. 
− 11 µm/m; max. − 740 µm/m, SD 243.9 µm/m).

60° of elbow flexion

In scenario A, the mean measured strain was − 399 µm/m 
(min. − 100 µm/m; max. − 770 µm/m; SD 219 µm/m) dur-
ing 10 cycles. In scenario B, in the first cycles of 1000 
cycles the strain was -523.1  µm/m (min. −  170  µm/m; 
max. − 660 µm/m; SD 149.6 µm/m) and in the last cycles 
it was − 404.3 µm/m (min. − 85 µm/m; max. − 760 µm/m, 
SD 232.9 µm/m). In scenario C, in the first cycles of 1000 
cycles the strain was − 226.3 µm/m (min. − 6 µm/m; max. 
− 680 µm/m; SD 244.8 µm/m) and in the last cycles it was 
− 278 µm/m (min. − 65 µm/m; max. − 650 µm/m, SD 
217.5 µm/m).

Table 1   summarized the main 
results; measured strain in 
µm/m in scenario A–C and the 
position of the elbow with p 
values

Scenario p value

A (strain in µm/m) B (strain in µm/m) C (strain in µm/m) A/B B/C A/C

Position of the elbow
 Flexion at 90° − 416.1 − 618 − 288 .03 .07 .34
 Flexion at 60°
  First 10 of 1000 − 399 − 523.1 − 226.3 .07 .01 .08
  Last 10 of 1000 − 404.2 − 278 .12

Fig. 5   overview of the results, y-axis presents the measured strain 
(µm/m) in scenario A (native), B (repair) and C (ligament augmenta-
tion) (x-axis)
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Discussion

The most important finding of our study is, that ligament 
augmentation of the LUCL shows significant less displace-
ment compared to the native LCL and the locking suture 
repair technique [22]. After 1000 cycles no failures in the 
ligament augmentation group was observed. The ulno-
humeral displacement by the deformation of the omega was 
not increased significantly during the 1000 loading cycles. 
In the repair group, macroscopic loosening of the locking 
suture was observed in one case following cyclic loading.

As mentioned previously, Melbourne et al. [19] showed 
that suture tape augmentation of the LUCL is associated 
with significantly higher load to failure than repair or recon-
struction alone. They described a protective effect of the 
ligament augmentation on the underlying repaired ligament. 
This can be confirmed by the results of the present study.

Recently, Ellwein et al. [14] observed a higher load to 
failure after LUCL repair with additional ligament brac-
ing than repair alone. In the present study, a load to failure 
was not performed. We used the strain gauge to evaluate 
the ulno-humeral displacement by the deformation of the 
omega continuously during 1000 cycles. Comparing the 
measured strain at the first 10 and the last 10 of 1000 
cycles, no significant difference could be observed in the 
internal brace and the repair group.

Greiner et al. [21] published the clinical results after 
LUCL repair augmented with ligament bracing. Seven-
teen patients with acute or subacute posterolateral elbow 
instability as a result of dislocation or fracture dislocation 
were treated with open LUCL refixation and non-absorb-
able suture tape augmentation. The elbows were actively 
mobilized immediately after the operation and a maximum 
bracing period of 3 days. All patients were without recur-
rent instability at the time of follow-up. Despite rehab, 
range of motion was not very good at ten months. Patients 
in this study had a mean extension lag of 10°. While the 
re-operation rate was low. Their postoperative time to full 
mobilization was significantly lower than of other LUCL 
studies. Taking their observations, LUCL repair with liga-
ment augmentation might shorten rehabilitation based on 
a resistance. However, Fraser et al. have shown that LCL 
repair using transosseous sutures is a useful technique to 
restore initial elbow kinematics [24].

Future research will need to clarify whether ligament 
augmentation leads to higher rates of postoperative elbow 
stiffness due to the augmentation, however, the LCL repair 
as well as the ligament augmentation hold up during 1000 
cycles. Although, an increased displacement after 1000 
cycle was measured in the ligament augmentation group. 
Our results have shown greater resistance in the ligament 
augmentation group.

Compared to the native LCL, the resistance of the liga-
ment augmentation might be higher. So, it remains unknown 
whether higher resistance due to the increased rigidity of the 
repair might result in higher rates of postoperative elbow stiff-
ness. Consequently, it may be not useful to perform additional 
ligament augmentation in every case of elbow instability. In 
our clinical experience, the decision for repair alone or addi-
tional augmentation was based on the severity of instability 
and the accompanied lesions.

The present study has several limitations. Firstly, the small 
sample size may pose the risk of a type two error. Due to 
the difficulty of procuring suitable cadaveric specimens, this 
problem is commonly encountered in biomechanical research. 
Another inherent weakness of cadaveric biomechanical studies 
is the age of the specimens relative to the patient population of 
interest. Finally, the study conditions do not accurately recreate 
the physiological reality that the studies portend to examine. 
However, to our knowledge, this is the first study which has 
remained all the soft tissues. The last drawback of the present 
study the cyclic loading (1000) just being performed in a sin-
gle elbow position and single degree of freedom.

Conclusion

Ligament augmentation provides higher resistance compared 
to the native LCL and to the locking suture repair technique. 
Both techniques, however, hold up during 1000 cycles. While 
ligament augmentation might enhance the primary stability 
of the repair, future clinical studies have to show whether this 
increase in resistance leads to negative effects like higher rates 
of posttraumatic elbow stiffness.
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