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Abstract
Central nervous system (CNS) accumulation of fibrillary deposits made of Amyloid β (Aβ), hyperphosphorylated Tau or 
α-synuclein (α-syn), present either alone or in the form of mixed pathology, characterizes the most common neurodegenera-
tive diseases (NDDs) as well as the aging brain. Compelling evidence supports that acute neurological disorders, such as 
traumatic brain injury (TBI) and stroke, are also accompanied by increased deposition of toxic Aβ, Tau and α-syn species. 
While the contribution of these pathological proteins to neurodegeneration has been experimentally ascertained, the cel-
lular and molecular mechanisms driving Aβ, Tau and α-syn-related brain damage remain to be fully clarified. In the last few 
years, studies have shown that Aβ, Tau and α-syn may contribute to neurodegeneration also by inducing and/or promoting 
blood–brain barrier (BBB) disruption. These pathological proteins can affect BBB integrity either directly by affecting key 
BBB components such as pericytes and endothelial cells (ECs) or indirectly, by promoting brain macrophages activation 
and dysfunction. Here, we summarize and critically discuss key findings showing how Aβ, Tau and α-syn can contribute to 
BBB damage in most common NDDs, TBI and stroke. We also highlight the need for a deeper characterization of the role of 
these pathological proteins in the activation and dysfunction of brain macrophages, pericytes and ECs to improve diagnosis 
and treatment of acute and chronic neurological disorders.
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Introduction

Amyloid β (Aβ), Tau and α-synuclein (α-syn) are amyloi-
dogenic proteins forming insoluble fibrillary deposits with 
β-sheet structure in the brain of patients suffering from major 
neurodegenerative disorders (NDDs). Alzheimer's disease 
(AD), the most common among NDDs, is characterized by 
brain accumulation of extracellular Aβ aggregates known as 

plaques and intraneuronal Tau deposits called neurofibrillary 
tangles, that are also found in several other NDDs, includ-
ing frontotemporal dementia, Pick's disease, corticobasal 
degeneration, progressive supranuclear palsy, argyrophilic 
grain disease as well as chronic traumatic encephalopathy, 
a condition where neuronal loss results from repetitive blast 
or concussive injuries [125]. Intraneuronal and intraneuritic 
α-syn aggregates, referred to as Lewy bodies (LB) and Lewy 
neurites, are distinctive features of Parkinson's disease (PD) 
and LB dementia [50]. Moreover, α-syn fibrillary aggregates 
also accumulate in glial cytoplasmic inclusions, which are 
typically observed in oligodendrocyte cells in the brain of 
patients affected by multiple system atrophy.

Aging, genetic variants and/or environmental stressors 
are major risk factors for the deposition of Aβ, hyperphos-
phorylated Tau and α-syn aggregates, and consequently, for 
the onset of the associated NDDs. Moreover, acute brain 
injuries, such as traumatic brain injury (TBI) or ischemia, 
can also trigger the accumulation of these pathological pro-
teins in the brain, potentially leading to the development of 
neurodegeneration [17, 25, 30, 74, 147].
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Although the area affected by different proteinopathies, 
as well as the sites of neurodegeneration, can markedly vary 
among NDDs, TBI and stroke, it is worth considering that 
the coexistence of Aβ, Tau, and α-syn pathologies has been 
frequently observed in these conditions, including the LB 
variant of AD or the recurrent presence of tauopathy in PD 
and LB dementia. This suggests the possibility of a syner-
gistic and toxic interplay of Aβ, Tau and α-syn in promoting 
central nervous system (CNS) damage [120].

Compelling evidence supports that the deposition of Aβ, 
hyperphosphorylated Tau and α-syn not only participates 
in neuronal damage but also in blood-brain barrier (BBB) 
disruption, that is another main common manifestation of 
NDDs, TBI and stroke [11, 34, 37, 55, 130].

The BBB is a complex and finely regulated interface that 
protects CNS neurons by limiting the trafficking of blood 
components to the brain [45, 75]. In acute and chronic 
NDDs, it becomes more permeable to solutes, and allows 
an increase in lymphocyte trafficking and brain infiltra-
tion of innate immune cells [75]. Multiple rodent studies 
have shown that Aβ, Tau and α-syn pathology can disrupt 
brain vascular homeostasis either by directly interacting 
with BBB cell components or by promoting a neuroinflam-
matory state, that can severely perturb BBB permeability 
[11, 33, 34, 37, 77, 132]. The resulting BBB disruption 
can in turn contribute to brain damage by affecting brain 
homeostatic responses. As a representative example, cer-
ebral amyloid angiopathy (CAA) pathology, characterized 

by Aβ accumulation within cerebral blood vessels, has been 
correlated with cerebral atrophy and advancing cognitive 
deterioration and can also precipitate hemorrhagic stroke.

In this review, we summarize and discuss growing evi-
dence supporting the hypothesis that Aβ, Tau and α-syn 
pathology disrupts BBB integrity in acute and chronic neu-
rological disorders through three key cellular subtypes: brain 
macrophages, pericytes and endothelial cells (ECs) with the 
aim to open insightful perspectives for the identification of 
innovative disease biomarkers or therapeutic targets for these 
disabling conditions. Although astrocytes play a critical role 
in the maintenance of BBB integrity, they are outside the 
scope of this review.

Organization of the BBB

The BBB represents the main interface between the brain 
and the external environment, as it restricts the transporta-
tion of molecules and regulates the trafficking of immune 
cells between circulation and brain parenchyma. It is a spe-
cialized configuration of the cerebral vasculature, compris-
ing ECs enclosed by the endothelial basement membrane, 
where pericytes, whose extensive cytoplasmic processes 
wrap around ECs, are embedded (Fig. 1). Astrocyte endfeet, 
which also secrete their own basement membrane, constitute 
the most external layer of the BBB [45] (Fig. 1). In arteries 
and arterioles, the pericytes embedded in the endothelial 

Fig. 1  Schematic representation of the different cellular components of the BBB at arterioles and capillaries



Acta Neuropathologica          (2024) 147:39  Page 3 of 15    39 

basement membrane are surrounded by the vascular smooth 
muscle cells (VSMCs), that are distanced from astrocyte 
endfeet by the perivascular space, also known as Wirchow-
Robin space, where perivascular macrophages (PvMΦ) 
reside (Fig. 1). A similar BBB organization can be found 
in veins, where VSMCs are organized in a thinner layer. In 
capillaries, the pericytes, embedded in the endothelial base-
ment membrane closely interfaced with glia limitans, leave 
no perivascular space [122] (Fig. 1). PvMΦ, together with 
meningeal and choroid plexus macrophages, are commonly 
referred to as CNS (or border)-associated macrophages 
(CAMs) and can participate in maintaining BBB integrity 
by scavenging harmful molecules deriving from the blood-
stream, cerebrospinal fluid (CSF) or CNS and promoting 
efficient immune surveillance [47].

Altogether, the above-cited BBB components participate 
in protecting the CNS and in orchestrating the physiological 
functions of the BBB, including the regulation of cerebral 
blood flow (CBF) (Fig. 1).

Cerebrovascular ECs have distinctive characteristics 
when compared to their counterparts outside the brain as 
they are strictly joined by tight junctions, express low levels 
of leukocyte adhesion molecules, exhibit low rates of micro-
pinocytosis and caveolar transcytosis, and possess a plethora 
of substrate-specific transport systems. These mechanisms 
regulate the influx of essential nutrients into the brain or the 
efflux of unwanted substances into the bloodstream [45, 71]. 
Moreover, these cells secrete a peculiar glycocalyx consist-
ing of a closely knitted network of glycosaminoglycans that 
coat the luminal surface of blood vessels ensuring elevated 
luminal surface coverage and low permeability [45].

The endothelial and astrocyte basement membranes, 
crucial in determining BBB permeability to leukocytes, are 
composed of an extracellular highly organized amorphous 
matrix of structural proteins including collagen IV fam-
ily proteins, nidogens, heparan sulfate proteoglycans and 
laminins [52]

Pericytes, originating from both the neural crest and mes-
oderm during development [40, 78], reside in the endothe-
lial basement membrane within microvessel walls, including 
capillaries, veins, venules and arterioles. Studies indicated 
that 40–80% of brain ECs are covered by pericytes, vary-
ing with brain region, species, and analysis method [51, 
107]. Pericytes are believed to play an important role in 
BBB maintenance, the regulation of capillary diameter, and 
angiogenesis [19]. VSMCs, situated in large-diameter ves-
sels such as arteries and veins, serve similar functions to 
pericytes in stabilizing vasculature morphology and func-
tions. Pericytes and ECs co-produce the basement mem-
brane and establish adherens and gap junctions between each 
other [133]. Adherens junctions connect the cytoskeletons 
of the two cell types, mediating contact inhibition through 
contractile forces. Meanwhile, gap junctions interconnect 

their cytoplasms, facilitating the passage of metabolites and 
ionic currents.

Astrocyte endfeet interdigitates and overlaps, providing 
nearly complete coverage of the BBB and forming its outer-
most layer. Additionally, astrocytes produce substances that 
affect BBB integrity such as angiotensin II, angiopoietin-1 
or sonic hedgehog, that in turn affect ECs homeostasis [140, 
142].

Finally, it is worth mentioning that microglial cells, the 
most widespread brain macrophages derived from haemat-
opoietic precursors that migrate from the yolk sac into the 
CNS parenchyma [49], serve as the brain’s primary line of 
defence past the BBB. They play a crucial role in innate 
immune responses within the CNS. Juxtavascular microglia 
also interact with vascular areas lacking astrocyte endfeet 
and can control vascular architecture and BBB permeability 
in both health and disease [93].

ECs, pericytes and macrophages 
in the maintenance of BBB integrity 
and regulation of CBF

Brain ECs are primarily involved in the development and 
maintenance of the BBB and interact with other cells of 
the so-called neurovascular unit, a specialized cluster of 
cellular and extracellular components including neurons, 
astrocytes, ECs, VSMCs, pericytes and extracellular matrix. 
The neurovascular unit detects the needs of neuronal sup-
ply and triggers necessary responses such as vasodilation or 
vasoconstriction, to regulate CBF and BBB function [96]. In 
particular, the interplay between ECs, pericytes, PvMΦ and 
microglia has a crucial role in regulating the BBB in both 
healthy and diseased brain [117].

Pericytes are critical for proper vascular development 
and stabilization by tightly wrapping around brain ECs and 
engaging in close functional interactions with them [19]. 
The depletion of pericytes, whether during development or 
in adulthood, has been observed to increase vascular per-
meability and disrupt barrier function at least partially by 
decreasing the expression of tight junction proteins (TJPs) 
and promoting leukocyte adhesion to ECs, thus highlighting 
the importance of pericytes in maintaining an intact BBB 
[4, 26]. Indeed, co-culturing ECs with pericytes in labora-
tory settings has been shown to enhance the expression of 
TJPs [26]. Additionally, pericyte contractility influences ECs 
sprouting and cell cycle progression, indicating their role in 
controlling endothelial proliferation and angiogenesis [36].

On the other hand, pericytes, like VSMCs, respond to 
vasoconstrictor and vasodilator signals, enabling them to 
contract and relax accordingly [51]. This dynamic behav-
ior allows pericytes to control the diameter of capillar-
ies although their role in CBF regulation has not been 
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extensively corroborated. In summary, pericytes play a 
multifaceted role in vascular development, the maintenance 
of the BBB and the regulation of vascular functions through 
their interactions with ECs.

Brain macrophages are essential sentinels in the immune 
response as they become activated under brain injury or 
immunological stimuli [47] and the resulting neuroinflam-
mation can contribute to neurodegeneration both directly as 
well as by impairing the BBB [56, 102, 118, 135]. Discern-
ing the different roles of PvMΦ and vascular-associated 
microglia in BBB function has been challenging as they 
share cellular markers, such as Iba1 and CX3CR1, and 
produce similar inflammatory mediators. However, CAMs 
can be distinguished from microglia by their location in 
brain leptomeningeal and perivascular space and expres-
sion of the mannose receptor CD206, CD163 and Lyve1 
[35]. Though the injection of clodronate liposomes in the 
ventricles and cisterna magna was reported to selectively 
deplete PvMΦ and meningeal macrophages, respectively 
[35, 106], technically it is difficult to achieve without 
affecting to some extent also parenchymal microglia or the 
other CAMs. More recently, the combination of single-
cell RNA sequencing, time-of-flight mass cytometry and 
single-cell spatial transcriptomics with fate mapping and 
advanced immunohistochemistry has opened the possibil-
ity to identify distinctive transcriptomic profiles of CAMs 
[115].

It has long been known that cytokines and reactive oxygen 
species (ROS) produced by macrophages and microglia dur-
ing inflammatory conditions can induce BBB damage and 
immune cell infiltration. Vessel-associated microglia, CAMs 
and ECs act in concert to regulate BBB tightness, angio-
genesis and CBF in health and disease [27]. For instance, 
in the steady-state conditions PvMΦ can promote BBB 
integrity in vitro and in vivo [57]. Depletion of microglia/
macrophages in the striatum decreases the integrity of blood 
vessels and increases the levels of inflammatory cytokines 
[53]. Both macrophages and parenchymal microglia have 
also been shown to promote angiogenesis, especially in 
tumor conditions [14]. Perivascular microglia play a det-
rimental role following stroke either indirectly, through the 
production of pro-inflammatory cytokines and chemokines 
which in turn promote ECs activation, or directly by inter-
acting with ECs and engulfing them, thus leading to ves-
sel disintegration [69]. In contrast to macrophages, juxta-
vascular microglia have been reported to produce Claudin 
5, a member of TJPs, to physically interact with ECs and 
promote vessel injury repair during systemic inflammation 
[56]. However, during sustained inflammation, activated 
microglia phagocytose astrocytic endfeet, thus contributing 
to BBB damage [56].

Much remains unknown regarding signalling path-
ways involved in the interaction between cerebral ECs and 

microglia/macrophages in various neurological disorders. 
Given the anatomical proximity of PvMΦ to ECs of brain 
vessels and the increasing evidence for the role of these cells 
in neurodegenerative diseases, it is worth speculating that 
they play an even superior role in BBB integrity. Therefore, 
more future studies on the interplay between PvMΦ and ECs 
in the brain are warranted.

Finally, a reciprocal modulatory interaction between 
pericytes and microglia has also been highlighted [94]. For 
instance, microglia can control pericyte maturation, number 
and apoptosis [48, 141]. On the other hand, pericytes can 
control microglial function, homeostasis and motility by 
releasing cytokines, such as interleukin 6, and chemokines 
including C-X3-C Motif Chemokine Ligand 1, Monocyte 
chemoattractant protein-1, interleukin 8, and C–C Motif 
Chemokine Ligand 5 [124].

These findings support that the interplay between ECs, 
pericytes and microglia/macrophages plays a crucial role 
in maintaining BBB homeostasis and integrity and sug-
gests that insults impacting these different cell populations, 
including the acute and progressive accumulation of patho-
logical proteins, can perturb their reciprocal inter-regulatory 
function resulting in brain vascular damage.

The contribution of Aβ, Tau and α‑syn to BBB 
damage in NDDs

Numerous studies have emphasized the effect of Aβ, Tau 
and α-syn pathology on BBB integrity. In particular, evi-
dence from experimental models has highlighted that these 
pathological proteins not only cause BBB damage through 
the activation of brain macrophages that in turn promote 
neuroinflammation but also affect ECs and pericyte function. 
Below, we summarize the main findings describing the effect 
of Aβ, Tau and α-syn on the BBB through the modulation of 
the interplay between brain macrophages, ECs and pericytes.

Aβ, Tau and α‑syn pathology as damage‑associated 
molecular patterns (DAMPs) triggering brain 
macrophage activation

Since in the brain of patients affected by NDDs Aβ, Tau 
and α-syn are continuously generated, failure to remove 
them results in chronic neuroinflammation that, in addition 
to contributing to neuronal damage, further increases BBB 
permeability and vascular dysfunction [54, 102, 148]. Amy-
loidogenic proteins can initiate a sterile immune response by 
acting as DAMPs that activate pattern recognition receptors, 
such as toll-like receptors (TLRs), on cerebral myeloid cells 
[54, 148].

Soluble parenchymal Aβ (and other amyloids) can drain 
into the perivascular space [63], where it encounters PvMΦ. 
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Macrophages, as the resident immune cells within the vascu-
lature, are professional phagocytes and can efficiently engulf 
amyloid aggregates. High amyloid load and cellular stress 
can impair phagocytosis function, leading to macrophage 
cell death and exacerbating CAA pathology [143]. Moreo-
ver, a recent study has shown that PvMΦ regulates the flow 
rate of CSF, which decreases with aging, further reducing 
the rate of amyloid clearance [35].

The degree of the pro-inflammatory factor release 
depends on the receptors involved. Receptors like scavenger 
receptor (SR)-A, SR-BI and triggering receptor expressed 
on myeloid cells 2 promote the uptake of extracellular amy-
loid deposits without eliciting a significant inflammatory 
response, whereas TLR2/4 and CD36 stimulation induces 
the production of neurotoxic cytokines and ROS via nuclear 
factor κB (NFκB) and NLRP3-ASC-inflammasome path-
ways, thus promoting neuronal and vascular degeneration 
[54, 64, 131]. Reduction in SR-A and SR-BI impairs PvMΦ 
function and enhances CAA [83, 131], while CD36 defi-
ciency in PvMΦ is protective in transgenic mouse models 
[135].

In addition, post-mortem and experimental studies have 
shown that neurons with Tau pathology are surrounded by 
reactive microglia/macrophages [8, 9], suggesting that intra-
neuronal pathological Tau also activates brain macrophages. 
Indeed, neurons with Tau filaments expose abnormally high 
levels of phosphatidylserine triggering opsonin milk-fat-
globule EGF-factor-8-mediated phagocytosis by microglia, 
that in turn become hypofunctional [15, 16]. Phagocytosed 
Tau has also been reported to trigger inflammatory activa-
tion via polyglutamine binding protein 1 cyclic GMP-AMP 
synthase-Stimulator of interferon genes-NFκB pathway [66].

Other evidence supports that the NLRP3 inflammasome 
pathway can be induced by fibrillary α-syn or by α-syn-
pathology-dependent dopaminergic failure, which results in 
the reduction of microglia dopamine D1 and D2 receptor 
stimulation and consequent microglia activation [105, 126].

By compromising BBB permeability and increasing the 
expression and binding affinity of intercellular adhesion 
molecule 1 and vascular cell adhesion molecule 1 on ECs, 
pathological protein-related neuroinflammatory cascades 
also contribute to the recruitment, activation and extravasa-
tion into the parenchyma of peripheral immune cells, includ-
ing neutrophils and T cells, into the brain [104, 144, 145]. In 
turn, the accumulation of peripheral leukocytes in the blood 
vessels and perivascular space can decrease blood circula-
tion and increase BBB leakage, thus further contributing to 
brain damage [10, 24].

In support of the key role of neuroinflammation in T cell 
recruitment there is evidence indicating that the brain areas 
exhibiting marked neuroinflammation and microglial activa-
tion in post-mortem PD brains frequently show the presence 
of leukocytes next to MHCII-positive astrocytes in proximity 

to blood vessels [61, 111]. Another study described that 
CAMs are localized in close proximity to T cells in post-
mortem PD brains and showed that these cells act as the 
main antigen-presenting cells necessary to initiate a CD4 T 
cell recruitment and neuroinflammation in response to α-syn 
accumulation [118]. Similar findings have been described in 
post-mortem brains of AD and LB dementia patients, where 
significant T lymphocyte recruitment to both grey and white 
matter has been reported [3, 134].

Collectively, these observations support that Aβ, Tau and 
α-syn pathology act as main DAMPs for brain-macrophage 
activation-related BBB disruption.

Impact of Aβ, Tau and α‑syn pathology on ECs

The exact origin of Aβ depositions in the vasculature is not 
fully understood yet, but evidence suggests that neurons and 
astrocytes are the main sources, with subsequent spread-
ing or movement towards the vasculature for clearance [39]. 
However, recent findings also support that ECs may contrib-
ute to the production of Aβ and CAA [128].

Aβ exerts both direct or indirect effects on ECs within 
brain microvasculature by altering the distribution of TJPs, 
promoting ECs death, elevating oxidative stress and induc-
ing proinflammatory cytokine production in glial cells [130, 
145]. Aβ accumulation adversely affects brain vessel walls, 
leading to BBB damage and potential hemorrhage in CAA 
mouse models and human patients [42, 55]. In vitro studies 
have shown that Aβ exposure disrupts actin organization and 
induces apoptosis in ECs [129]. Furthermore, CAA patients 
and amyloid precursor protein (APP)-overexpressing mice 
exhibit decreased TJPs expression and increased levels of 
matrix metalloproteinases (MMPs) [55]. The presence of Aβ 
also hampers endothelial nitric oxide synthase/heat shock 
protein 90 interaction [80] and promotes the formation of 
von Willebrand factor (VWF) fibers, which contribute to 
inflammatory and thrombogenic responses in brain vessels 
[121]. These findings highlight the detrimental effects of Aβ 
deposition on vessel walls, including ECs impairment, com-
promised BBB and alterations in inflammatory and throm-
bogenic responses. All these mechanisms can contribute to 
the impairment of neurovascular control.

The accumulation of Tau oligomers in cerebral microves-
sels has been reported in human AD, LB dementia and 
progressive supranuclear palsy patients [22]. Microbleeds 
have been detected in the brains of patients affected by 
frontotemporal dementia [28] and cerebrovascular inflam-
mation has been associated with Tau pathology in Guam 
parkinsonism dementia and chronic bilirubin encephalopa-
thy. In these cases, areas with significant accumulation of 
neurofibrillary tangles exhibited upregulation of adhesion 
molecules, disruption of TJPs, morphological alterations in 
brain microvessels, including thickening of the vessel wall, 
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vessel lumen reduction as well as increased in collagen-type 
IV content per vessel [84]. Still, Tau pathology is associ-
ated with small vessel disease [70] and immune cells traf-
ficking across the BBB also appears to be modulated by 
neurofibrillary pathology in Tauopathies [85]. In P301S 
transgenic mice, brain microvascular ECs uptake soluble 
pathogenic Tau oligomers from the extracellular space, 
which over time accumulate within ECs further leading to 
mitochondrial damage and ECs senescence [60]. Aged Tau-
overexpressing mice were found to develop cortical blood 
vessel changes such as abnormal spiralling morphologies 
and reduced diameters in parallel to increased vessel density 
[10]. These changes were accompanied by alteration in cor-
tical CBF and increased expression of angiogenesis-related 
genes such as Vegfa, Serpine1, and Plau in CD31-positive 
ECs [10], hinting that Tau pathological changes in neurons 
can impact brain ECs biology, thus altering the integrity of 
brain microvasculature. This observation is corroborated by 
the fact that other lines of Tau transgenic mice exhibit pro-
gressive BBB leakage with IgG, T cell, and red blood cell 
infiltration that is prevented by Tau depletion [11].

Numerous studies support that α-syn can differentially 
impact on ECs homeostasis as previously reviewed [13]. 
For instance, transgenic expression of the human A53T 
mutated form of the protein in mouse brains decreases the 
expression of TJPs resulting in increased vascular perme-
ability and also leads to the accumulation of oligomeric α-
syn in activated astrocytes that release vascular endothelial 
growth factor (VEGF) A and nitric oxide [81], key regula-
tors of ECs homeostasis. Moreover, toxic forms of α-syn can 
modulate ECs function by limiting the release of inflamma-
tory cytokines and adhesion molecules from their secretory 
granules or downregulating the expression of TJPs [72, 79]. 
This has been recently confirmed in an innovative human 
brain-on-a-chip model of the substantia nigra and contain-
ing dopaminergic neurons, astrocytes, microglia, pericytes, 
and microvascular brain ECs cultured under fluid flow and 
exposed to synthetic α-syn preformed fibrils [103]. By using 
this model, authors found that α-syn synthetic fibrils impair 
BBB permeability by directly interacting with ECs and alter-
ing the expression of vascular channels, TJPs and other key 
genes involved in BBB homeostasis, including extracellular 
proteases of the Serpin family and collagens.

Impact of Aβ, Tau and α‑syn pathology on pericytes

Pericyte degeneration is associated with Aβ deposition 
[137], facilitating the progression of neurodegenerative 
pathology [114]. Consistently, a correlation between Aβ 
accumulation and pericyte loss in patients with NDDs 
and transgenic mouse models has been demonstrated [91, 
114]. Interestingly, though Aβ42 is commonly considered 
more cytotoxic than Aβ40 due to its aggregation-prone 

nature, Aβ40 has been found to exert similar effects on 
pericytes. In patients with AD, a decreased population of 
NG2-positive pericytes in the hippocampus was observed, 
negatively correlating with Aβ40 levels. In vitro experi-
ments revealed that exposure to Aβ40 monomers enhanced 
pericyte viability and proliferation while reducing caspase 
3/7 activity. However, exposure to fibril-enriched Aβ40 
resulted in decreased pericyte viability and proliferation, 
along with increased caspase 3/7 activity [119]. These 
findings suggest that Aβ40 may serve as a key regulator 
of the pericyte population in the brain, both in disease 
and in healthy conditions. The loss of pericytes reduces 
TJPs expression in ECs, compromising BBB integrity and 
increasing Aβ load in the brain [107].

Similarly, a study on a human-induced pluripotent stem 
cell-derived BBB model comprising astrocytes, ECs and 
pericytes suggested that pericytes play a key role in the 
intravascular accumulation of Aβ [12].

Moreover, Aβ has been discovered to induce pericyte-
mediated constriction of brain capillaries through the upreg-
ulation of endothelin-1 release, which is mediated by the 
overproduction of ROS [98]. In vitro studies further support 
that exposure to Aβ oligomers leads to the development of 
a hypercontractile phenotype in pericytes [58]. Increased 
constriction of brain microvessels by hypercontractile peri-
cytes likely contributes to the reduction in CBF observed 
in NDDs.

Other evidence indicates that following repeated head 
trauma in mice both types of mural cells, pericytes and 
VSMCs, uptake recombinant human tau more efficiently as 
compared to astrocytes and ECs [100]. Interestingly, other 
studies support that VSMCs undergo significant phenotypic 
changes and acquire an inflammatory phenotype under AD-
like conditions, coinciding with Tau hyperphosphorylation 
[2]. Although evidence regarding Tau pathology in pericytes 
is limited, it can be hypothesised that this pathological pro-
tein may similarly impact both mural cell types.

Finally, recent studies have shed light on the significant 
involvement of pericytes in α-syn pathology. In vitro inves-
tigations have demonstrated that pericytes can contribute 
to the clearance of α-syn aggregates by internalizing and 
degrading them [32, 127]. However, under conditions of 
additional cellular stress, this process can lead to increased 
production of ROS in pericytes, ultimately resulting in their 
apoptosis [127]. Other cell culture studies showed that 
monomeric α-syn can lead to BBB dysfunction through 
activated brain pericytes releasing inflammatory mediators 
such as interleukin 1β, interleukin 6, tumor necrosis factor-α, 
monocyte chemotactic protein-1 and MMP-9 [34]. Addition-
ally, studies utilizing primary brain pericytes obtained from 
individuals with PD have shown the formation of tunneling 
nanotubes, which are membranous channels composed 
of F-actin and facilitate the transfer and spread of α-syn 
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between cells [31]. These findings highlight the complex 
involvement of pericytes in α-syn pathology, which appears 
to encompass both beneficial and detrimental effects.

The contribution of Aβ, Tau and α‑syn to BBB 
damage in stroke

Stroke patients have a high risk of developing cognitive 
decline or parkinsonism, suggesting that pathological 
protein accumulation induced by brain ischemia can sig-
nificantly contribute to neurodegeneration. Clinical studies 
highlighted a significant risk of developing dementia symp-
toms and progressive cognitive decline after ischemic and 
hemorrhagic strokes [89]. Post-stroke dementia commonly 
manifests in patients, particularly as they age, and post-mor-
tem analysis of stroke patients' brain samples has revealed 
the presence of Aβ deposition [65]. Animal models have also 
shown increased Aβ deposition and CAA pathology follow-
ing stroke, suggesting a potential role of Aβ in post-stroke 
dementia development [46]. One proposed mechanism is the 
disruption and dysfunction of the BBB after stroke, impair-
ing the clearance of Aβ from the brain to the circulation [46]. 
Chronic cerebral hypoperfusion dysregulates the expression 
of low-density lipoprotein receptor-related protein 1 and 
receptor for advanced glycation endproducts, key mediators 
of Aβ transport across the BBB and out of the brain, thus 
leading to Aβ accumulation in the vessel walls and paren-
chyma [5]. Additionally, the glymphatic system, the brain’s 
waste disposal system [95] which can also mediate Aβ clear-
ance, may also be affected after stroke, contributing to Aβ 
buildup [44]. However, a recent review integrating data from 
clinical and pre-clinical studies has revealed inconsistencies 
in the relationship between post-stroke Aβ deposition and 
cognitive impairment, observed in both human patients and 
rodent models [101].

Conversely, Aβ accumulation itself can increase the risk 
and severity of stroke [59, 110]. Deposits of Aβ in the vas-
culature can lead to VSMCs loss and destabilize vessel wall, 
elevating the risk of hemorrhagic stroke [138]. CAA pathol-
ogy exacerbated ischemic damage in a mouse model [90]. 
More evidence is necessary to gain a better understanding 
of the relationship between Aβ accumulation and stroke, 
as well as how Aβ may influence the progression of both 
conditions.

Recent findings support that α-syn and hyperphospho-
rylated Tau accumulation mediates and promotes stroke-
induced brain damage and possibly contributes to post-
stroke cognitive impairment [73, 97, 116, 136]. Positron 
emission tomography/magnetic resonance imaging studies 
have indeed shown that neurofibrillary tangles can form after 
ischemic stroke and spread in the peri-ischemic brain paren-
chyma, while total Tau levels in the CSF positively associate 

with measures of brain atrophy one-year post-stroke [62]. 
The levels of oligomeric and Ser129-phosphorylated α-syn, 
which are considered possible pathological biomarkers for 
PD, are increased in red blood cells from acute ischemic 
stroke patients [139]. Furthermore, it has been described 
that α-syn accumulation promotes glycogen synthase kinase 
(GSK)-3β-mediated phosphorylation of Tau following tran-
sient focal ischemia in mice [87].

Reinforcing the relevance of Tau and α-syn in stroke, 
it has been observed that Tau and α-syn knockout mice 
exhibit significantly smaller brain damage after transient 
focal ischemia when compared to wild-type mice [73, 82, 
87]. Moreover, reducing Tau hyperphosphorylation with 
GSK-3β inhibitors such as nimodipine or by the administra-
tion of glucosamine, which by promoting O-GlcNAcylation 
antagonizes phosphorylation, has shown neuroprotective 
effects in rodent models of ischemia [20, 87]. Additionally, 
task-specific training rehabilitation and an enriched environ-
ment improved functional deficits and reduced Tau-phos-
phorylation and neuroinflammation in the phototrombotic 
ischemia rat model [67], suggesting that brain plasticity 
mechanisms may modulate Tau pathology following brain 
ischemia. Finally, it has been described that chronic cerebral 
hypoperfusion in a rat model of post-stroke dementia aggra-
vated cognitive impairment and Tau hyperphosphorylation 
by interfering with Tau clearance through the glymphatic 
system [6]. This aligns with previous findings showing that 
chronic cerebral hypoperfusion can enhance Tau hyperphos-
phorylation and impair autophagy in an AD mouse model 
[108], suggesting that ischemia may perturb the mechanisms 
of pathological Tau elimination.

Hence, though the exact contribution of Tau and α-syn 
accumulation to post-ischemic vascular damage remains to 
be determined, these findings indicate that α-syn accumula-
tion and Tau hyperphosphorylation significantly contribute 
to post-stroke secondary brain damage and may be possibly 
considered novel therapeutic targets for stroke therapy. It 
can be inferred that given the significant role of these pro-
teins in the modulation of microglia/macrophage and BBB 
cell activation, their accumulation can significantly impact 
vascular injury thus warranting further studies on this topic.

The contribution of Aβ, Tau and α‑syn to BBB 
damage in TBI

TBI has immediate and devastating effects, often trigger-
ing long-term neurodegeneration involving proteins like Aβ, 
Tau, and α-syn. Studies support that a history of TBI is a 
risk factor for AD in males [43]. The pathological connec-
tion between TBI and AD is supported by the observation 
of increased Aβ plaques and soluble Aβ species in brain 
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tissue following TBI [29]. Similar acute Aβ accumulations 
accompanied by neuronal death and memory impairment 
have been reported in APP-transgenic mice subjected to 
TBI [123].

Moreover, traumatic axonal injury, a common pathology 
seen after TBI, provides a potential mechanism for Aβ pro-
duction. The prevailing hypothesis suggests that the abun-
dant APP, which accumulates in damaged axons, undergoes 
aberrant cleavage to form Aβ, subsequently aggregating as 
Aβ plaques [68]. The accumulation of Aβ not only leads to 
axonal degeneration but also induces neuronal inflammation 
and neuronal death, thereby contributing to the progression 
of long-term neurodegenerative diseases.

Several research reports showed the occurrence of patho-
logical hyperphosphorylated Tau accumulation and spread-
ing following TBI, while the ratio between phosphorylated 
and total Tau in plasma serves as a peripheral biomarker of 
acute and chronic TBI [112]. In particular, it has been pro-
posed that neuroinflammation and Tau pathology mutually 
participate in inducing cognitive decline following TBI [23]. 
Tau/Aβ-induced BBB damage is also believed to initiate a 
deleterious feed-forward loop contributing to TBI-associated 
vascular damage [109]. Indeed, markers of vascular injury 
have been associated with hyperphosphorylated Tau pathol-
ogy in chronic traumatic encephalopathy [74]. Furthermore, 
post-mortem studies on the brain of a former professional 
boxer diagnosed with chronic traumatic encephalopathy and 
comorbid schizophrenia showed that areas with extensive 
accumulation of hyperphosphorylated Tau protein exhibited 
BBB damage with a decrease in Claudin 5 and enhanced 
extravasation of endogenous blood components such as 
fibrinogen and IgG [41]. This finding aligns with previous 
studies on patients affected by dementia pugilistica, which 
showed microvascular damage in association with Tau 
pathology [86].

It has been reported that α-syn is also increased in the 
post-mortem brain of subjects with TBI [1, 21] as well as 
in the CSF of TBI patients [92]. This increase in α-syn fol-
lowing TBI might explain the elevated risk of subsequently 
developing PD [1, 18] and has been corroborated by animal 
studies [21]. Evidence showing that lentivirus-mediated 
downregulation of α-syn reduces neuroinflammation and 
promotes functional recovery in rats with spinal cord injury 
[146] also supports that α-syn can contribute to inflamma-
tion-associated vascular damage in TBI.

Conclusions and authors’ perspectives

Impairment of the BBB occurs in many neurological dis-
orders, including acquired brain injury conditions such 
as stroke or TBI, as well as NDDs such as amyloidosis, 
tauopathies and synucleinopathies. In these conditions, 

blood vessels are usually damaged secondary to the patho-
logical insult as a result of the activation of the intrinsic 
cellular mechanisms of neuroinflammation. BBB damage 
mainly occurs as a result of alterations in TJPs expression, 
the activation state of ECs, pericytes and astrocytes or 
impaired angiogenesis [99]. These processes can be trig-
gered by brain inflammation or can be directly initiated by 
the accumulation of pathological proteins. As highlighted 
in this review, Aβ, Tau and α-syn can contribute to brain 
vascular damage mainly by inducing brain macrophage 
activation or by affecting pericytes and ECs (Fig. 2). This 
is further supported by findings showing a correlation 
between vascular risk and Aβ and Tau load in individuals 
with cognitive decline [76]. Additionally, conditions like 
CAA can lead to diffuse ischemic brain injury and predis-
poses individuals to hemorrhagic stroke or intracranial and 
subarachnoid hemorrhage [59, 110].

Given the pivotal role exerted by the BBB in the main-
tenance of brain homeostasis and in CNS protection, it is 
predicted that BBB dysfunction can more or less severely 
contribute to the onset and progression of brain damage in 
neurological disorders. Consistently, BBB disruption has 
been associated with severe and detrimental outcomes in 
the context of many neurological disorders [99].

Since BBB injury is relevant in many CNS disorders, 
identifying novel therapeutic targets to counteract BBB 
dysfunction is crucial and compelling. In this framework, 
we propose that targeting Aβ, Tau and α-syn pathology 
constitutes an attractive therapeutic avenue to limit BBB 
damage in NDDs. From the manyfold studies on NDDs 
we know that using Aβ, Tau and α-syn immunotherapy 
or gene-silencing therapy raises concerns about potential 
protein-depleting detrimental effects and the risk of fur-
ther vascular damage. In general, the re-establishment of 
the physiological function of these proteins may be more 
beneficial than clearing them from the brain, as this would 
also imply a loss of their physiological function. Never-
theless, targeting these proteins in the context of the acute 
phases of stroke or TBI may be evaluated as a possible 
option to attenuate vascular injury. For instance, though 
immunization may be problematic in the context of acute 
brain injury, gene silencing by antisense oligonucleotide 
(ASO) administration may be a valuable strategy to reduce 
the burden of toxic forms of Aβ, Tau and α-syn in stroke or 
TBI. Since some gene silencing approaches have reached 
clinical trial [38] and many other are in preclinical devel-
opment, their repurposing may be easily achievable in the 
next few years.

Moreover, the levels of pathological proteins in the 
peripheral fluids of patients following acute brain injury may 
serve as potential prognostic biomarkers for these disabling 
conditions. This implies that current diagnostic assays allow-
ing the assessment of Aβ, total and phosphorylated Tau or 
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α-syn in amyloidosis, Tauopathies and synucleinopathies 
should also be re-evaluated in this context.

On the other hand, it may be feasible that some of the 
innovative therapeutic approaches proposed for acute brain 
injury, such as pro-angiogenic therapy, that is under evalu-
ation in the treatment of stroke [113], may be useful to 
limit BBB damage in the context of neurodegenerative 
disorders with pathological protein accumulation. On this 

line, it has been found that VEGF therapy, which amelio-
rated post-ischemic brain damage following brain ischemia 
in gerbils [7] can also exert neuroprotective effects in PD 
models [88].

Though we need to deepen our understanding of the 
molecular underpinnings linking pathological Aβ, Tau 
or α-syn burden to BBB dysfunction, exploring their 
interplay may offer novel insightful perspectives for the 

Fig. 2  Overview of the impact of Aβ, Tau and α-syn on ECs, brain 
macrophages and pericytes. Aβ oligomers and fibrils can enter in ECs 
producing their activation and damaging TJPs eventually resulting in 
ECs death. While extracellular Tau fibrillary aggregates can damage 
TJPs, Tau oligomers can also enter ECs and induce their activation 
that in turn can produce ECs senescence, thus altering vessel mor-
phology and causing blood flow stalling. ECs can uptake α-syn fibrils 
and oligomers that can interfere with ECs function, including VWF 
release. Extracellular Aβ, Tau and α-syn fibrillary aggregates and 
oligomers have been found to activate brain macrophages mainly by 
acting as DAMPs. Intracellular Tau aggregates can also produce a 
peculiar neuronal pro-inflammatory phenotype with Phosphatidylser-
ine (PtdSer) membrane exposure that stimulates their phagocytosis by 
microglial cells, which consequently become hypofunctional. Brain 
macrophage activation induced by Aβ, Tau, and α-syn leads to oxi-
dative stress, generating reactive oxygen species (ROS) and produc-

ing pro-inflammatory cytokines. This cascade of events subsequently 
impacts ECs, contributing to compromised BBB integrity. Addition-
ally, pro-inflammatory cytokines derived from activated brain mac-
rophages and ECs may stimulate ECs expression of intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 
1 (VCAM-1), thus attracting leukocyte adhesion from circulation. Aβ, 
Tau and α-syn can also differentially affect pericytes. Aβ can induce 
pericyte degeneration with subsequent loss of vascular support. Aβ 
also stimulates pericyte contraction by promoting endothelin release, 
thus impacting CBF. Tau monomers can enter pericytes stimulating 
their activation and dysfunction following repeated head trauma. Peri-
cytes can be activated by extracellular α-syn aggregates accumula-
tion and by the uptake of high levels of monomeric α-syn, which can 
then be transmitted between pericytes through tunnelling nanotubes 
(TNTs). In turn, pericytes can become hypofunctional and there is a 
loss of their trophic support on ECs
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diagnosis and treatment of acute and chronic neurological 
disorders.
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