
Vol.:(0123456789)

Acta Neuropathologica          (2024) 147:21  
https://doi.org/10.1007/s00401-023-02677-8

ORIGINAL PAPER

Temporal change of DNA methylation subclasses between matched 
newly diagnosed and recurrent glioblastoma

Richard Drexler1  · Robin Khatri2,3 · Ulrich Schüller4,5,6 · Alicia Eckhardt5,6,7 · Alice Ryba1 · Thomas Sauvigny1 · 
Lasse Dührsen1 · Malte Mohme1 · Tammo Ricklefs1 · Helena Bode6 · Fabian Hausmann2,3 · Tobias B. Huber8,9 · 
Stefan Bonn2,3 · Hannah Voß10 · Julia E. Neumann4,11 · Dana Silverbush12,13 · Volker Hovestadt12,15 · 
Mario L. Suvà12,13 · Katrin Lamszus1 · Jens Gempt1 · Manfred Westphal1 · Dieter H. Heiland14 · Sonja Hänzelmann2,3,8 · 
Franz L. Ricklefs1

Received: 14 September 2023 / Revised: 8 December 2023 / Accepted: 24 December 2023 
© The Author(s) 2024

Abstract
The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as 
an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogene-
ity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA 
methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoas-
say. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had 
non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass 
transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregu-
lated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like 
states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in 
serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components 
but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass 
transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not 
impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent 
glioblastoma targeted therapies.
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Introduction

Optimal treatment of isocitrate dehydrogenase (IDH)-
wildtype glioblastoma is particularly challenging due to its 
infiltrative nature and aggressive behavior. Current stand-
ard treatment includes maximal safe resection and adju-
vant combined radiochemotherapy for newly diagnosed 
glioblastoma [18]. Despite this multimodality treatment, 
long-term local tumor control is achieved only in rare 
cases, and the vast majority of patients’ relapse. To date, 
there is no standardized treatment regimen for recurrent 

glioblastoma, and it is unclear which patients benefit from 
local or systemic therapies at this time [44]. Ringel and 
colleagues reported the survival benefit of resection of 
recurrent glioblastoma and established recurrent surgery 
as an option for second-line therapy when this can be done 
safely [39]. Additional studies confirmed the prolonged 
survival after recurrent surgery [3, 50, 62]. Nevertheless, 
a major challenge in the search for a more effective sur-
gical and therapeutic regimen is the extensive inter- and 
intratumoral heterogeneity, which is considered one of the 
main factors for treatment failure in glioblastoma [36, 37].

Genome-wide DNA methylation profiling has recently 
emerged as a tool enabling accurate molecular classifi-
cation of central nervous system (CNS) tumors and has 
the potential to further stratify patients according to their 
molecular pathological characteristics [6, 7]. It allows the 
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subdivision of glioblastoma into different methylation sub-
classes such as the most abundant receptor tyrosine kinase 
I (RTK I), receptor tyrosine kinase II (RTK II), and mes-
enchymal (MES) subclasses [49]. Recently, methylation-
based classification of glioblastoma has become increas-
ingly important for predicting therapeutic response and 
aids in clinical decision-making for distinct subclasses 
[11–13, 38, 60]. One issue that needs to be addressed when 
generally classifying glioblastoma by subgroups is hetero-
geneity within the tumor itself [23, 34]. In addition, the 
extent of heterogeneity appears to influence patient prog-
nosis [23, 34]. Focusing on DNA methylation subclasses 
of glioblastoma, spatial heterogeneity of these subclasses 
has been analyzed in newly diagnosed glioblastoma, with 
studies reporting varying degrees of heterogeneity [53, 
59].

Drawing on these findings, an important considera-
tion is whether temporal changes in DNA methylation 
subclasses occur during glioblastoma progression, what 
factors contribute to a potential subclass transition, and 
the extent to which such a transition influences patient out-
come. To explore this, we conducted global DNA methyla-
tion profiling in 47 patients, comparing tissue and serum 
samples from the initial and recurrent surgeries.

Methods

Study population

Matched tissue samples from 47 patients diagnosed with 
IDH-wildtype glioblastoma, who underwent initial and 
recurrent surgeries at University Medical Center Ham-
burg-Eppendorf and University Medical Center Freiburg 
(both Germany), were analyzed. Diagnosis was based on 
the current WHO classification [29]. The extent of resection 
(EOR) was stratified into gross total resection (GTR), near-
GTR, and partial resection (PR). A GTR was defined as a 
complete removal of contrast-enhancing parts, a near-GTR 
as a removal of more than 90% of the contrast-enhancing 
parts, whereas a resection of lower than 90% was defined 
as PR/biopsy. The EOR of contrast-enhancing parts was 
evaluated by magnetic resonance imaging (MRI) performed 
within to 48 h after index surgery. Overall survival (OS) 
was calculated from diagnosis until death or last follow-up, 
and progression-free survival (PFS) from diagnosis until 
progression according to Response Assessment in Neuro-
Oncology (RANO) criteria based on local assessment [58]. 
The progression-to-progression survival (PPS) was calcu-
lated from recurrence surgery until next progression, and 
progression-to-overall survival (POS) from recurrence sur-
gery until death or last follow-up.

DNA methylation profiling

DNA was extracted from tumor tissue and bulk plasma and 
analyzed for genome-wide DNA methylation patterns using 
the Illumina EPIC (850 k) array. The tumor tissue of interest 
for performing DNA methylation was chosen by a board-cer-
tified neuropathologist of the Department of Neuropathol-
ogy, University Medical Center Hamburg-Eppendorf, Ger-
many. Processing of DNA methylation data was performed 
with custom approaches [7].

Inclusion criteria

Methylation profiling results from first and recurrent surgery 
were submitted to the molecular neuropathology (MNP) 
methylation classifier v12.8 hosted by the German Cancer 
Research Center (DKFZ) [6]. Patients were included if the 
calibrated score for methylation class family glioblastoma, 
IDH-wildtype was > 0.84 at time of diagnosis [7]. In addi-
tion, patients with a score below 0.84 but above 0.7 with a 
combined gain of chromosome 7 and loss of chromosome 10 
or amplification of epidermal growth factor receptor (EGFR) 
were included in accordance with cIMPACT criteria [5]. 
Furthermore, a class member score of ≥ 0.5 for one of the 
glioblastoma subclasses was required. In addition, the fol-
lowing clinical criteria were defined: age above 18 years at 
time of diagnosis, local tumor progression at first recurrence, 
and availability of data for OS and PFS.

t‑SNE embeddings

To compute t-SNE embeddings, first, 50 principal compo-
nents (PCs) were computed for 25,000 of the most variable 
CpG sites. Subsequently, the class TSNE() from the Python 
package scikit-learn (v1.2.2) was fitted on the PCs with the 
perplexity argument set to 10, and was used to transform 
the PCs into t-SNE embeddings. The t-SNE results were 
visualized using the scatter function from the Python pack-
age Matplotlib (v3.8.2).

Differentially methylated probes and gene set 
enrichment

Differentially methylated probes in newly diagnosed glio-
blastoma with subclass transition were computed using the 
function dmpfinder from the R package minfi (v1.40.0). The 
resulting data frame was filtered with a p value cutoff of 0.01 
and an absolute beta-value difference of 0.1. This led to the 
identification of 1962 differentially methylated probes (1415 
hypermethylated probes and 547 hypomethylated probes). 
Gene annotations for these CpGs were extracted from the 
Illumina EPIC Manifest file (v1.0 B5). Only the following 
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gene region feature categories were retained: TSS200, 
TSS1500, 1stExon, and 5’UTR. The resulting 493 hyper-
methylated and 113 hypomethylated genes were then used 
for gene set enrichment analysis based on GO biological 
processes (2023) with the R Package clusterProfiler (v4.2.0).

Copy number alterations

Genome-wide DNA methylation profiling was further used 
to analyze chromosomal copy number alterations and to pro-
vide information regarding gene amplifications, gains and 
losses as routinely done by the tumor classifier of the DKFZ. 
Genes and chromosomal regions were manually evaluated 
for differences in copy numbers from baseline and compared 
with other indicator genes on the array. For the assessment 
of relevant deviations, we followed the recommendations 
described by Capper et al. [7].

Cell state composition analysis

To infer the abundance of cell type and cell state in the sam-
ples, we applied the Silverbush et al. deconvolution method 
[47] to each sample that underwent bulk DNA methylation 
analysis using EPIC V2.0 arrays. The deconvolution method 
is a reference free method that uses a hierarchical matrix 
factorization approach inferring both cell types and the cell 
states therein. The method was trained on the DKFZ GBM 
cohort and tested on the TCGA GBM cohort and was shown 
to be able to infer the abundance of cell types in the micro-
environment (immune cells, glia, and neurons) as well as 
malignant cell states (malignant stem-like cells component 
and two differentiated cells components). The stem-like 
component provides a deconvoluted estimation of the frac-
tion of stem-like cells in a glioblastoma sample, specifically 
those exhibiting a transcriptional cell state of OPC-like or 
NPC-like [32]. Both Differentiated 1 and Differentiated 2 
represent the estimated fraction of differentiated cells in a 
glioblastoma sample, particularly those with a transcrip-
tional cell state of MES or AC-like [32]. We applied the 
method as described in Silverbush et al. using the cell type 
and cell state encoding provided in the manuscript and via 
the engine provided in EpiDISH [63] package, with Robust 
Partial Correlations (RPC) method and maximum iterations 
of 2000.

Cell type deconvolution

Processing of methylation arrays

All Idats corresponding to methylation array data of tumor 
tissue and patients serum were processed similarly using the 
minfi package in R (version 1.40.0). The data was processed 

using the preprocessIllumina function. Only probes with 
detection p values < 0.01 were kept for further analysis. 
Also, probes with < 3 beads in at least 5% of samples, as 
well as all non-CpG probes, SNP-related probes, and probes 
located on X and Y chromosomes were discarded. The CpG 
intensities were converted into beta values representing total 
methylation levels (between 0 and 1).

Cell type deconvolution

Cell type deconvolution was applied to methylation arrays of 
tumor tissue and serum. Non-negative least square (NNLS) 
linear regression was used in deconvolving the beta values 
of methylation arrays into cell type components [30, 41, 51]. 
As a reference, a publicly available signature was obtained 
from Moss et al. (2018) consisting of gene expressions for 
25 cell type components (Monocytes_EPIC, B-cells_EPIC, 
CD4T-cells_EPIC, NK-cells_EPIC, CD8T-cells_EPIC, 
Neutrophils_EPIC, Erythrocyte_progenitors, Adipocytes, 
Cortical_neurons, Hepatocytes, Lung_cells, Pancreatic_
beta_cells, Pancreatic_acinar_cells, Pancreatic_duct_cells, 
Vascular_endothelial_cells, Colon_epithelial_cells, Left_
atrium, Bladder, Breast, Head_and_neck_larynx, Kidney, 
Prostate, Thyroid, Upper_GI, Uterus_cervix) and 6,105 
unique CpGs[30].

Proteomics

Proteomic processing of human glioblastoma samples

Formalin-fixed paraffin embedded (FFPE) samples of tumors 
were obtained from tissue archives from the neuropathology 
unit in Hamburg. Tumor samples were fixed, dehydrated, 
embedded in paraffin, and sectioned at 10 μm for micro-
dissection using standard laboratory protocols. For paraf-
fin removal FFPE tissue sections were incubated in 0.5 mL 
n-heptane at room temperature for 30 min, using a Ther-
moMixer  (ThermoMixer® 5436, Eppendorf). Samples were 
centrifuged at 14.000 g for 5 min and the supernatant was 
discarded. Samples were reconditioned with 70% ethanol 
and centrifuged at 14.000 g for 5 min. The supernatant was 
discarded. The procedure was repeated twice. Pellets were 
dissolved in 150 µL 1% w/v sodium deoxycholate (SDC) in 
0.1 M triethylammonium bicarbonate buffer (TEAB) and 
incubated for 1 h at 95 °C for reverse formalin fixation. Sam-
ples were sonicated for 5 s at an energy of 25% to destroy 
interfering DNA. A bicinchoninic acid (BCA) assay was per-
formed  (Pierce™ BCA Protein Assay Kit, Thermo Scientific) 
to determine the protein concentration, following the manu-
facturer’s instructions. Tryptic digestion was performed for 
20 µg protein, using the Single-pot, solid-phase-enhanced 
sample preparation (SP3) protocol, as described by Hughes 
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et al. [20].  Eluted Peptides were dried in a Savant SpeedVac 
Vacumconcentrator (Thermo Fisher Scientific, Waltham, 
USA) and stored at -20° until further use. Directly prior to 
measurement dried peptides were resolved in 0.1% FA to a 
final concentration of 1 μg/μl. In total 1 μg was subjected to 
mass spectrometric analysis.

Liquid chromatography–tandem mass spectrometer 
parameters

Liquid chromatography–tandem mass spectrometer 
(LC–MS/MS) measurements were performed on a quad-
rupole-ion-trap-orbitrap mass spectrometer (MS, QEx-
active, Thermo Fisher Scientific, Waltham, MA, USA) 
coupled to a nano-UPLC (Dionex Ultimate 3000 UPLC 
system, Thermo Fisher Scientific, Waltham, MA, USA). 
Tryptic peptides were injected to the LC system via an 
autosampler, purified and desalted by using a reversed 
phase trapping column (Acclaim PepMap 100 C18 trap; 
100  μm × 2  cm, 100 A pore size, 5  μm particle size; 
Thermo Fisher Scientific, Waltham, MA, USA), and there-
after separated with a reversed phase column (Acclaim 
PepMap 100 C18; 75 μm × 25 cm, 100 A pore size, 2 μm 
particle size, Thermo Fisher Scientific, Waltham, MA, 
USA). Trapping was performed for 5 min at a flow rate of 
5 µL/min with 98% solvent A (0.1% FA) and 2% solvent 
B (0.1% FA in ACN). Separation and elution of peptides 
were achieved by a linear gradient from 2 to 30% solvent 
B in 65 min at a flow rate of 0.3 µL/min. Eluting pep-
tides were ionized by using a nano-electrospray ioniza-
tion source (nano-ESI) with a spray voltage of 1800 V, 
transferred into the MS, and analyzed in data depend-
ent acquisition (DDA) mode. For each MS1 scan, ions 
were accumulated for a maximum of 240 ms or until a 
charge density of 1 ×  16 ions (AGC target) were reached. 
Fourier-transformation-based mass analysis of the data 
from the orbitrap mass analyzer was performed by cover-
ing a mass range of 400–1200 m/z with a resolution of 
70,000 at m/z = 200. Peptides with charge states between 
2 + –5 + above an intensity threshold of 5,000 were iso-
lated within a  2.0  m/z  isolation window in top-speed 
mode for 3 s from each precursor scan and fragmented 
with a normalized collision energy of 25%, using higher 
energy collisional dissociation (HCD). MS2 scanning was 
performed, using an orbitrap mass analyzer, with a start-
ing mass of 100 m/z at an orbitrap resolution of 17,500 
at m/z = 200 and accumulated for 50 ms or to an AGC tar-
get of 1 × 105. Already fragmented peptides were excluded 
for 20 s.

Raw data processing

Proteomics samples were measured with liquid chromatog-
raphy tandem mass spectrometry (LC–MS/MS) systems 
and processed with Proteome Discoverer 3.0 and searched 
against a reviewed FASTA database (UniProtKB: Swiss-
Prot, Homo sapiens, February 2022, 20,300 entries). To 
cope with protein injection amount differences, the protein 
abundances were normalized at the peptide level. Perseus 
2.0.3 was used to obtain log2 transformed intensities. The 
imputation was performed using the Random Forest imputa-
tion algorithm (Hyperparameters: 1000 Trees and 10 repeti-
tions) in R, version 4.3.

Differential protein abundance

The protein abundances of the nine samples were corrected 
for the batch effect using ComBat [24]. Protein level normal-
ization was performed by centering protein abundances per 
file around the median value. For cases, measured multiple 
times, the mean value of abundances across all measure-
ments was calculated. Values are log2 normalized (Peptide 
level), RF-imputed, batch-effect corrected normalized (Pro-
tein level) protein abundance (Mean value per case, across 
all measurements). For differential abundance analysis, p 
values and log2 fold changes for each quantified protein 
(total 4716) were estimated using the empirical Bayes sta-
tistical test as implemented in the limma R package [35].

Weighted correlation network analysis (WGCNA)

The WGCNA package in R (version 1.70.3) was used to 
identify protein co-expression modules [28]. The minimum 
module size was set to 15 and a merging threshold of 0.40 
was defined. Based on the assessment of scale-free topology, 
soft-power of 18 was selected. To construct modules, first 
we corrected for any technical batch effect using empiri-
cal Bayes-moderated adjustment using empiricalBayesLM 
function of WGCNA. Modules were assessed based on their 
correlation with traits (No transition and transition) and their 
levels of significance (associated with two-tailed Student’s 
t test). The significant modules (p < 0.05) were used for 
further analysis. All genesets within a module were used 
for overrepresentation analysis using clusterProfiler pack-
age in R (Version 4.2.0) [61]. Further, to identify cell type 
enrichment within each module, enrichr API in python was 
used (Package maayanlab_bioinformatics, version 0.5.4 with 
PanglaoDB library available within the package) [40]. To 
assess the module scores on single cells, Scanpy’s score_
genes function was used to calculate module scores using 
core glioblastoma single-cell atlas [27].
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Detection of soluble factors in patient serum

Plasma from glioblastoma patients was taken 1 h prior pri-
mary surgery and then isolated by double spin centrifuga-
tion of whole blood. Samples were aliquoted and stored at 
− 80 °C before use. Soluble factors were detected using the 
LEGENDplex Neuroinflammation Panel 1 (Biolegend, San 
Diego, CA, USA) according to the supplier’s protocol were 
simultaneously determined using a multiplex bead-based 
immunoassay (LEGENDPlexTM Human Neuroinflamma-
tion Panel 1, Cat. No. 740795, Biolegend, USA). Data were 
acquired using the BD LSR Fortessa and Beckman Coulter 
Cytoflex LX flow cytometer and analyzed with the BioLeg-
end LEGENDplex software.

DNA tumor purity

Tumor-purity was calculated using the RF_purify Package 
in R [22]. This package uses the “absolute” method which 
measures the frequency of somatic mutations within the 
tumor sample and relates this to the entire DNA quantity [8].

3D volumetric segmentation

We analyzed T1-weighted as well as T2-weighted FLAIR 
(Fluid attenuated inversion recovery) from MRI using 
the program BRAINLAB. To measure tumor volume, the 
tumor region of interest was delineated with the tool “Smart 
Brush” enabling a multiplanar 3D reconstruction. Volume 
of contrast enhancement and FLAIR hyperintensity was 
assessed in  cm3.

Ethics statement

This study was approved by the medical ethics committee 
of the Hamburg chamber of physicians (PV4904). Informed 
written consent was obtained from all patients.

Statistical analysis

Gaussian distribution was confirmed by the Shapiro–Wilk 
normality test. For parametric data, unpaired two-tailed 
Student’s t test or one-way ANOVA with Tukey’s post hoc 
tests to examine pairwise differences were used as indi-
cated. Survival curves were visualized as results from the 
Kaplan–Meier method applying two-tailed log rank analyses 
for analyzing statistical significance. In general, a p value 
less than 0.05 was considered statistically significant for 
all experiments. Statistical analyses were performed using 
SPSS Inc. (Version 29, Chicago, IL, USA). Data illustrations 

were performed using GraphPad Prism 10. Alluvial plots 
were graphed with R.

Results

Study population

In this study, we analyzed a cohort of 47 patients who under-
went surgery for newly diagnosed glioblastoma as well as 
tumor recurrence, with their tumors subjected to global 
DNA methylation profiling. Clinical data were available 
for 32 patients, among whom 11 (34.4%) were female and 
21 (65.6%) were male, with a mean age at the time of the 
initial surgery of 59.4 ± 11.5 years (Table 1). All 32 tumors 
exhibited contrast enhancement on preoperative MRI and 
were localized supratentorially, with 20 (62.5%) in eloquent 
areas. Gross total resection (GTR) was achieved in 62.5%, 
near-GTR in 28.1%, and partial resection in 9.4% of patients 
(Table 1).

The majority (87.5%) received radiochemotherapy as 
adjuvant treatment between the initial and recurrent surger-
ies. The median time between the initial and recurrent sur-
geries was 15.6 ± 16.7 months. At recurrence surgery, GTR 
or near-GTR was achieved in 27 (84.4%) patients, and partial 
resection was performed in 5 (15.6%) patients. Following 
recurrence surgery, 2 (6.3%) patients did not receive adju-
vant treatment due to a low Karnofsky performance score 
(Table 1). 

Mesenchymal transition is most frequent 
in recurrent glioblastoma

After applying DNA methylation profiling with the DKFZ 
methylation classifier, patients were stratified based on 
their methylation subclass, with RTK II being the most 
common subclass at the time of diagnosis (40.4%, Fig. 1b). 
Eight (17.0%) tumors had a classifier result designated 
as “no match” by the time of recurrence (Fig. 1b). DNA 
purity and input amount were checked to ensure suffi-
cient quality of these samples (Supplementary Fig. 1a, b). 
Among the remaining 39 (83.0%) recurrent glioblastomas, 
the majority (48.7%) were of the MES subclass (Fig. 1b). 
Overall, a change in the dominant DNA methylation sub-
class was observed in 11 of 39 (28.2%) glioblastomas that 
had a valid classifier output at both time points (Fig. 1b). 
In these tumors, most transitions (72.7%) were to the MES 
subclass (Fig. 1b). Calibrated scores for “IDH-wildtype 
glioblastoma” and family member scores for methylation 
subclass were comparable between matched tumor tissues 
(Table 1, Fig. 1c). A change in the MGMT promoter meth-
ylation status was observed in 6 (12.8%) patients (Fig. 1d).
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Table 1  Clinical and methylation characteristics of the study population at time of first and recurrence surgery

Feature N = 32 No subclass transi-
tion (n = 22)

Subclass transi-
tion (n = 10)

p value

First resection
Age at 1st surgery, mean (SD) 59.4 (11.5) 59.1 (12.4) 59.9 (9.9) 0.87
Gender, n (%)
 Female 11 (34.4) 8 (36.4) 3 (30.0) 0.73
 Male 21 (65.6) 14 (63.6) 7 (70.0)

Preoperative seizures, n (%) 15 (46.9) 10 (45.5) 5 (50.0) 0.81
Location, n (%)
 Frontal 8 (25.0) 5 (22.7) 3 (30.0) 0.66
 Parietal 17 (53.1) 11 (50.0) 6 (60.0) 0.59
 Temporal 15 (46.9) 8 (36.4) 7 (70.0) 0.08
 Occipital 3 (9.4) 2 (9.1) 1 (10.0) 0.94
 Eloquent 20 (62.5) 14 (63.6) 6 (60.0) 0.84

Side, n (%)
 Left 19 (59.4) 14 (63.6) 5 (50.0) 0.47
 Right 13 (40.6) 8 (36.4) 5 (50.0)

Preoperative CE volume,  [cm3], mean (SD) 20.5 (22.2) 13.8 (20.6) 29.5 (25.1) 0.40
Preoperative FLAIR volume,  [cm3], mean (SD) 53.9 (45.9) 33.1 (30.3) 81.8 (53.9) 0.18
Extent of 1st resection, n (%)
 GTR 20 (62.5) 17 (77.3) 3 (30.0) 0.04
 Near GTR 9 (28.1) 4 (18.2) 5 (50.0)
 Partial resection 3 (9.4) 1 (4.5) 2 (20.0)

Karnofsky prior 1st line adjuvant therapy, [%], mean (SD)
1st line adjuvant therapy, n (%)
 None 4 (12.5) 3 (13.6) 1 (10.0) 0.77
 Combined radiochemotherapy 28 (87.5) 19 (86.4) 9 (90.0)

Radiation dosage, [Gy], mean (SD) 59.6 (2.9) 60.2 (0.9) 58.2 (4.9) 0.09
No. of cycles of Temozolomide, mean (%) 3.8 (2.4) 3.9 (2.2) 3.4 (2.9) 0.59
Max. TMZ dosage, [mg/m2], mean (SD) 159.0 (31.4) 159.2 (30.3) 158.2 (37.7) 0.95
Time 1st surgery to adjuvant treatment start, [days], mean (SD) 27.8 (9.7) 28.9 (10.1) 25.1 (8.8) 0.37
Time end combined treatment to start 1st cycle TMZ, [days], mean (SD) 23.4 (12.4) 23.7 (13.9) 22.0 (4.0) 0.79
Time 1st to 2nd surgery, [months], mean (SD) 15.6 (16.7) 15.4 (17.6) 16.1 (15.3) 0.91
Absolute DNA tumor purity, mean (SD) 0.54 (0.09) 0.55 (0.09) 0.52 (0.11) 0.46
Estimate DNA tumor purity, mean (SD) 0.80 (0.07) 0.82 (0.06) 0.78 (0.08) 0.20
Re-resection
Extent of 2nd resection, n (%)
 GTR 12 (37.5) 11 (50.0) 1 (10.0) 0.09
 Near GTR 15 (46.9) 8 (36.4) 7 (70.0)
 Partial resection 5 (15.6) 3 (13.6) 2 (20.0)

Karnofsky prior 2nd line adjuvant therapy, mean (SD) 78.4 (14.2) 80.5 (13.9) 74.0 (14.3) 0.24
2nd line adjuvant therapy, n (%)
 None 2 (6.3) 2 (9.1) 0 (0.0) 0.04
 Stupp 11 (34.4) 7 (31.8) 4 (40.0)
 Radiation + procarbazin/CCNU 7 (21.9) 7 (31.8) 0 (0.0)
 Temzolomide 2 (6.3) 0 (0.0) 2 (20.0)
 Procarbazin/CCNU 3 (9.4) 3 (13.6) 0 (0.0)
 Re-radiation 1 (3.1) 0 (0.0) 1 (10.0)
 Experimental 6 (18.8) 3 (13.6) 3 (30.0)
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We analyzed clinical, surgical, and treatment-related 
factors potentially influencing the temporal transition of 
the DNA methylation subclass (Table 1). From this analy-
sis, transition was more likely after incomplete removal 
of contrast-enhanced tumor parts (p = 0.04, Table  1). 
Treatment-related factors such as radiation dose (p = 0.09), 
maximum temozolomide dose (p = 0.95), number of TMZ 
cycles (p = 0.59), and time intervals between surgery and 
treatment initiation (p = 0.37) or between the first surgery 
and recurrence surgery (p = 0.91) did not correlate with 
subclass transition (Table 1).

Deconvolution reveals an increased stem cell‑like 
state but decreased proportion of immune cells 
in glioblastomas with mesenchymal transition 
at the time of diagnosis

For a deeper insight into the epigenetic mechanisms underly-
ing glioblastoma with a subclass change upon recurrence, we 
explored the distinctions in methylation signatures (Fig. 1e). 
To address this, we conducted a differential methylation 
analysis, focusing on significantly differentially methylated 
CpG sites in both hypomethylated (Fig. 1f) and hypermeth-
ylated (Fig. 1g) genes between newly diagnosed glioblas-
tomas that did not undergo a subclass transition and those 
that did.

Given the identification of distinct cell populations within 
DNA methylation subclasses in prior studies [48], and the 
alterations in cell composition during glioblastoma recur-
rence [52], we investigated whether specific cell states at 
the time of diagnosis were linked to subsequent subclass 
transitions. To explore this hypothesis, we employed a 

methylation-based deconvolution method, integrating bulk 
and cell-type-specific tumor datasets to analyze cell state 
compositions [47]. There were no significant variations in 
cell composition observed between newly diagnosed glio-
blastoma cases without subclass transition and those with 
subclass transition (Fig. 2a). However, within the subgroup 
undergoing a subsequent mesenchymal transition, there was 
a notable increase in the presence of malignant stem cell-
like and differentiated 2-like states at the time of diagnosis 
(Fig. 2a). Furthermore, this subgroup with a mesenchymal 
transition exhibited a decreased proportion of immune 
cells compared to newly diagnosed tumors without a sub-
class transition (Fig. 2a). A more detailed breakdown of 
the immune compartment into distinct immune cell types 
revealed no significant differences between glioblasto-
mas with or without mesenchymal transition (Fig. 2b–e). 
Interestingly, an increase in circulating monocyte, B-cell 
and neutrophil signatures, inferred from 850 k arrays, was 
observed in the serum at the time of diagnosis in a subset of 
patients with mesenchymal transition (Fig. 2f–i).

Analyzing the cell compositions in tumor tissue at the 
time of recurrence showed no significant differences in 
cell states for tumors with or without subclass transition 
(Fig. 2j). Intriguingly, tumors with a mesenchymal transi-
tion demonstrated a highly elevated immune component 
but a decreased stem-like state, resulting in an opposite cell 
composition compared to the initial diagnosis (Fig. 2j). In 
addition, further analyses revealed an increased signature 
of monocytes, B cells, and CD8 + T cells in the tumor tis-
sue of recurrent glioblastomas with mesenchymal transition 
(Fig. 2k–m).

Table 1  (continued)

Feature N = 32 No subclass transi-
tion (n = 22)

Subclass transi-
tion (n = 10)

p value

DNA methylation profiling
Subclass 1st surgery, n (%)
 RTK I 8 (25.0) 5 (22.7) 3 (30.0) 0.77
 RTK II 15 (46.9) 10 (45.5) 5 (50.0)
 MES 9 (28.1) 7 (31.8) 2 (20.0)

Calibrated score 1st surgery, mean (SD) 0.95 (0.09) 0.94 (0.09) 0.96 (0.07) 0.57
Family member score 1st surgery, mean (SD) 0.72 (0.18) 0.74 (0.19) 0.70 (0.16) 0.57
Subclass 2nd surgery, n (%)
 RTK I 6 (18.8) 5 (22.7) 1 (10.0) 0.13
 RTK II 12 (37.5) 10 (45.5) 2 (20.0)
 MES 14 (43.8) 7 (31.8) 7 (70.0)

Calibrated score 2nd surgery, mean (SD) 0.95 (0.09) 0.95 (0.08) 0.95 (0.11) 0.93
Family member score 2nd surgery, mean (SD) 0.73 (0.16) 0.77 (0.16) 0.66 (0.16) 0.11

P values in bold refer to a significant value below 0.05
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TREM‑2, IL‑6, and IL‑18 in serum change 
significantly during mesenchymal transition

Since we demonstrated a lower immune cell compart-
ment at time of diagnosis in tumor tissue with a mesen-
chymal subclass transition which is significantly increased 
in recurrent tissue, we pondered the question if we could 
identify a soluble factor as potential biomarker for a sub-
class transition. To address, we performed a bead-based 
immunoassay using LEGENDplex and quantified various 
soluble analytes of a neuroinflammation panel (see meth-
ods). This analysis was possible for 14 matched serum pairs 
of newly diagnosed and recurrent glioblastoma, of which 
5 glioblastomas experienced a mesenchymal transition 
(Fig. 3). Among all soluble factors in the panel, triggering 

receptor expressed on myeloid cells (TREM)-2, Interleukin 
(IL)-6, and IL-18 showed significant changes between the 
two subgroups at first diagnosis (Fig. 3a–c). While IL-6 
(p < 0.01) and IL-18 (p < 0.01) serum levels were signifi-
cantly increased in serum of newly diagnosed tumors with 
subsequent mesenchymal transition, TREM-2 (p = 0.01) lev-
els were decreased (Fig. 3a–c). However, the aforementioned 
cytokines IL-6 and IL-18 had lower serum levels at time of 
recurrence of mesenchymal transitioned tumors (Fig. 3d–f). 
In summary, glioblastoma cases exhibiting a mesenchymal 
transition demonstrate elevated levels of stem cell-like 
states within the tumor tissue, while the immune compart-
ment shows a decrease. Interestingly, there is a concurrent 
increase in immune cell signature observed in the serum of 
these patients at the time of diagnosis.
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receptor tyrosine kinase, MES mesenchymal
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Tumor proteome shows altered metabolism 
and an enrichment of AC‑like cells in transitioning 
tumors at time of diagnosis

To extend our analysis of transitioning and non-transitioning 
tumors, we employed an integrative analysis of paired epi-
genetic and tumor proteome (mass spectrometry) datasets of 
our glioblastoma samples. First, we computed a scale-free 
gene expression network (WGCNA) which revealed that the 
gene expression module “skyblue1” was significantly higher 
abundant in transitioning tumors while non-transitioning 
tumors were enriched for the module “coral1” (Fig. 4a). 
Further analysis of these modules demonstrated contrary 
expressed proteins between both subgroups (Fig. 4b, c). 
When projecting the proteome module of glioblastomas with 
a subclass transition (“skyblue1”) onto a public single-cell 
dataset, results showed an enrichment of AC-like cells and 
somewhat reduction of MES-like cells at time of diagno-
sis when compared to tumors without a subclass transition 
(Fig. 4d). These findings primarily reflect the signature of 
the RTK subclasses present in the newly diagnosed tumors, 
specifically the RTK II subclass [32]. In addition, analyzing 
proteomic differential abundances showed various proteins 
significantly upregulated in transitioning tumors (Fig. 4e). 
Results of a consecutive ontology analysis revealed an 
upregulation of several terms associated with metabolic and 
catabolic processes in newly diagnosed glioblastoma with a 
subclass transition (Fig. 4f). Altered metabolism has previ-
ously been shown to be a hallmark of high-grade gliomas 
and its prognostic relevance in glioblastoma has recently 
been demonstrated [16, 42]. However, the association 
between a methylation-based subclass transition in recur-
rent glioblastoma and metabolic processes is as yet unchar-
acterized. Since a link between altered tumor metabolism 
and receptor tyrosine kinase signaling and their associated 
gene alterations has been described [4], we analyzed copy 
number profiles of all samples (Supplementary Table 1). 
Genomic alterations inferred from the methylation data at 
first surgery showed amplification of EGFR (50.0%) and 
loss of CDKN2A/B (53.1%) as the most frequent alterations. 
However, none of the genomic alterations were correlated 
with a subclass transition (Supplementary Table 1). Lastly, 
further characterization of the enriched stem cell-like state 
compartment in glioblastomas with a mesenchymal transi-
tion revealed an increased abundance of stem cell markers 
SOX2, PROM-1, and Nestin (Fig. 4e–g).

Subclass transition did not influence patients 
outcome

We further explored whether a change in DNA methylation 
subclass had an impact on patient survival, conducting an 
outcome analysis on patients from the Hamburg institution 

(n = 32). With a median (SD) follow-up of 19.5 (5.9) months, 
26 (81.3%) deaths were observed. Clinical characteristics, 
including age, adjuvant treatment, and Karnofsky score at 
the time of initial and recurrent surgery, were comparable 
between the two groups (Table 1). Notably, patients with-
out a subclass change had a higher rate of GTR at the first 
surgery (p = 0.04). Survival analysis revealed comparable 
overall survival (OS) (p = 0.93, Fig. 5a) and progression-free 
survival (PFS) (p = 0.77, Fig. 5b). After recurrent surgery, 
outcomes remained comparable between the two groups 
when analyzing postoperative survival (POS) (p = 0.90, 
Fig. 5c) and progression-free postoperative survival (PPS) 
(p = 0.58, Fig. 5d). Furthermore, no significant survival dif-
ferences were observed in patients undergoing a mesenchy-
mal transition (Fig. 5e–h).

Discussion

A factor contributing to the aggressive behavior of glio-
blastoma is the spatiotemporal heterogeneity, which poses 
a major challenge in finding an optimal therapeutic regimen 
and targeting tumor cells [37, 52, 57]. Although the spatial 
heterogeneity of DNA methylation subclasses in newly diag-
nosed glioblastoma has been described previously [53, 59], 
their robustness and its clinical significance during disease 
progression remains of great interest. Our study provides the 
following important findings: (1) Temporal changes in DNA 
methylation subclasses were observed in 28.2% of tumors, 
with the majority of transitions occurring towards the mes-
enchymal subclass. (2) Transition to the dominant DNA 
methylation subclass was more frequent after incomplete 
tumor resection; however, there was no association with 
adjuvant treatment modalities or the time between initial 
and recurrent surgery. (3) Glioblastomas with subsequent 
mesenchymal transition demonstrated a higher stem cell-like 
state but a decreased immune cell state, as well as upregu-
lated metabolic and catabolic processes at the time of diag-
nosis. (4) Despite a decreased immune cell state in tissue, 
significantly higher circulating immune signatures, as well 
as the cytokines IL-6 and IL-18, were observed in serum at 
the time of diagnosis in patients with a mesenchymal tran-
sition. (5) Conversely, matched tumor tissue at recurrence 
showed an increased immune cell state but decreased stem 
cell-like state after a mesenchymal transition, revealing an 
opposite cell composition than at the initial diagnosis. (6) 
The survival outcome of glioblastoma patients with a sub-
class transition was comparable to that of patients without 
such a transition.

Tumor profiling based on DNA methylation facilitates 
more accurate differentiation of brain tumor subgroups and 
allows subclassification of glioblastoma, with RTK I, RTK 
II, and MES being the most common subclasses [6, 49]. 
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For these DNA methylation subclasses, two studies inves-
tigated the spatial heterogeneity of malignant gliomas [53, 
59]. Wenger and colleagues analyzed 38 biopsies from 12 
patients with newly diagnosed glioblastoma and reported 
intratumoral heterogeneity of the dominant DNA methyla-
tion subclass in 5 patients, demonstrating the existence of 
different DNA methylation subclasses within one tumor 
[59]. A more recent study by Verburg et al. failed to con-
firm this degree of heterogeneity and reported more stable 
DNA methylation subclasses across tumors when analyzing 
133 biopsies from 16 patients, 7 of whom diagnosed with 

glioblastoma [53]. While these studies investigated spatial 
differences of DNA methylation subclasses, we focused on 
possible temporal heterogeneity and found that the dominant 
DNA methylation subclass changed in 28.2% of 39 tumors 
between first and recurrent surgery, with the transition to 
the mesenchymal subclass being most likely. These findings 
indicate that DNA methylation subclasses exhibit greater 
stability compared to transcriptional subtypes, since large-
scale studies investigating the transcriptional glioblastoma 
subtypes reported about a transition of the dominant subtype 
in about 50.0% of the patients [26, 52]. Varn and colleagues 
observed a most frequent switch to the transcriptional mes-
enchymal subtype which is in accordance with our findings 
[52]. In the past years, the mesenchymal transition was 
investigated extensively and various drivers, such as radia-
tion, and immune cell interactions were identified [14, 17, 
32, 43]. When investigating potential surgery- or treatment-
related factors contributing to a DNA methylation subclass 
transition, we identified incomplete removal of the contrast-
enhancing tumor. In contrast, treatment characteristics and 
time between surgeries as well as genetic alterations had no 

Fig. 2  Cell state composition analysis from tissue and serum. a Cell 
state composition analysis of newly diagnosed glioblastoma separated 
to a potential subclass transition. b–e Immune cell signatures calcu-
lated from tumor tissue of first surgery. f–i Signatures of circulating 
serum levels of immune cells in patients with newly diagnosed IDH-
wildtype glioblastoma. j Cell state composition analysis of recurrent 
glioblastoma tissue separated to a potential subclass transition. k–m 
Soluble factors with significantly different serum levels at time of 
diagnosis between glioblastoma with and without mesenchymal tran-
sition. MES mesenchymal
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Fig. 3  Soluble factor analysis of patients’ serum at time of diagnosis 
and recurrence. a–c Serum levels of soluble factors TREM-2, IL-6, 
and IL-18 at time of diagnosis between tumors with  a mesenchy-
mal  transition and without a  subclass transition. d–f Comparison of 

serum levels of soluble factors TREM-2, IL-6, and IL-18 between 
first (blank dot) and recurrent (x-shaped dot) surgery with respect to a 
potential mesenchymal transition. MES mesenchymal, TREM-2  trig-
gering receptor expressed on myeloid cells, IL interleukin
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impact. To obtain a more comprehensive understanding of 
the epigenetic profile, we conducted an analysis of CpG sites 
in newly diagnosed glioblastoma. Through this analysis, we 
identified specific methylation signatures that were differen-
tially abundant and associated with metabolic and catabolic 
processes in glioblastoma cases exhibiting a subclass tran-
sition. While the link between DNA methylation subclass 
heterogeneity and increased tumor metabolism remains 
unclear, changes in metabolic profiles have been identified 
as a hallmark of high-grade gliomas [16] and have demon-
strated prognostic impact in glioblastoma patients recently 
[42]. An underlying mechanism could be the interaction 
with stem cells, as demonstrated previously [45], which is 
also related to another finding of our study. Integrating cell 
state composition analysis showed a markedly increased 
stem cell-like state in tumors with mesenchymal transition 
at time of diagnosis, highlighting the importance of stem 
cells in transition processes and progress [15, 52, 57]. This 
result is consistent with our finding that increased residual 
contrast enhancement after first surgery favors subclass tran-
sition since peripheral, contrast-enhanced tumor areas are 
considered as one niche of stem cells [33]. However, at time 
of recurrence, there was a comparatively reduced stem cell 
percentage, which agrees with the results of Varn et al. [52].

The interplay between stem cells and immune cells in 
the tumor environment has been illustrated several times 
[15, 31, 46]. Here, we found a decreased immune state in 
newly diagnosed glioblastoma with mesenchymal transi-
tion, in opposition to the stem cell state, which is inverted 
in recurrent tumor tissue after mesenchymal transition. Inter-
estingly, signatures of increased circulating immune cells in 
the serum of patients with a mesenchymal transition were 

already observed at the time of diagnosis, so that here a stem 
cell-associated immune evasion preceding mesenchymal 
transition during the course of the disease can be hypoth-
esized and could be subject of future studies. The relevance 
of the change in immune cell composition observed here in 
tumors with a mesenchymal transition is consistent with two 
recent studies [10, 56]. Furthermore, our study identified 
possible soluble factors which are differentially concentrated 
in patients serum at time of diagnosis. The cytokines IL-6 
and IL-18 were highly elevated in serum of mesenchymal-
transitioning tumors. This might be explained with an inter-
play with stem cells given the existing literature [2, 9, 21, 
55], and for both factors it appears reasonable to consider 
these as biomarkers in further studies with larger cohorts.

Since recurrent glioblastoma and especially the mesen-
chymal transcriptional subtype are considered particularly 
aggressive, we asked whether a DNA methylation subtype 
transition is relevant to patient survival [14]. Previously, 
studies demonstrated worse PFS and OS in patients with 
a transition to the mesenchymal transcriptional subtype at 
recurrence [26, 57]. This might be explained in conjunction 
to our study with the increased stem cell-like state at time 
of diagnosis in these transitioning tumors, as already dem-
onstrated in recurrent gliomas [52].

However, in our study, survival of patients with and with-
out a subclass transition was comparable. The lack of prog-
nostic relevance of methylation subclass transition is most 
plausibly consistent with previous studies that reported com-
parable survival between RTK I, RTK II, and MES tumors at 
the time of initial diagnosis [11, 13, 25, 60]. Although meth-
ylation subclass does not appear to be a general prognostic 
marker, its clinical importance in predicting the probability 
of glioblastoma-associated seizure [12, 38] and the benefit of 
surgical resection [13] has been previously highlighted. This 
underscores the need for additional rapid [1, 19] and intra-
operative [54] methods to detect the methylation subclass.

Conclusion

In summary, our study unveiled that 28.2% of glioblas-
toma cases manifested a transition in the dominant DNA 
methylation subclass, predominantly clustering towards the 
mesenchymal subclass. This mesenchymal transition was 
accompanied by significant changes in stem cell-like and 
immune-like components, both at the time of diagnosis and 
recurrence. These findings underscore the importance of 
considering such transitions in the development of future 
targeted therapies for recurrent tumors.

Fig. 4  Proteomic profiling of newly diagnosed IDH-wildtype glio-
blastomas with and without a subclass transition. a WCGNA analy-
sis showed differentially correlated proteome modules between both 
subgroups. Tumors with a subclass transition showed a significantly 
enrichment of the module “skyblue1”, while non-transitioning tumors 
have higher protein abundance in module “coral1”. b Most abun-
dant proteins for tumor with a subclass transition (referring to mod-
ule “skyblue1”). c Most abundant proteins for tumor with a subclass 
transition (referring to module “skyblue1”). d Integrating public tran-
scriptomic single-cell data showed an AC-/OPC- and MES-like char-
acter in tumors with a subclass transition. e Volcano plot of -log10 
(p value) against log2 fold change representing the differently abun-
dant proteins at time of diagnosis between tumors of with a subclass 
transition as compared to tumors without a transition. f Dot plot illus-
trating most significantly upregulated gene ontology terms at time 
of diagnosis in glioblastoma with a subclass transition. e–g Protein 
abundance of stem cell markers from tumor tissue of first surgery 
were compared between glioblastomas without transition and with 
mesenchymal transition. AC astrocytic, OPC oligodendrocyte precur-
sor cell, MES mesenchymal, SOX Sex determining region Y-box  2, 
PROM prominin

◂
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Fig. 5  Kaplan Meier curves representing the survival outcome regarding DNA methylation subclass transition. a–d Survival outcome between 
patients with a methylation subclass change and without a subclass change, and e–h dependent on a potential mesenchymal subclass change
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