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Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain 
poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this 
newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with 
IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network 
cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In 
total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) 
were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely 
correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade 
was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% 
CI 5.4–10.8) for grade 3, and 4.7 years (95% CI 3.4–6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, 
median overall survival was 5.5 years (95% CI 4.3–6.7) without (n = 58) versus 1.8 years (95% CI 0–4.1) with (n = 12) 
homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were 
strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not 
prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and 
CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, 
global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. 
Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials 
using IDH inhibitors.
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Abbreviations
CI  Confidence interval
CNS  Central nervous system
GGN  German Glioma Network
HR  Hazard ratio
IDH  Isocitrate dehydrogenase
KPS  Karnofsky performance status
LINE-1  Long interspersed nuclear element 1
MGMT  O6-methylguanine-DNA methyltransferase
OS  Overall survival
PFS  Progression-free survival
RT  Radiotherapy

TMZ  Temozolomide
WHO  World Health Organization

Introduction

The 2016 revision of the World Health Organization (WHO) 
classification of tumors of the central nervous system (CNS) 
had placed major emphasis on the isocitrate dehydrogenase 
(IDH) mutation status when classifying diffuse gliomas in 
adults [29]. Patients with diffuse gliomas with seemingly 
similar histology had very different outcomes when strati-
fied for IDH mutation status [2–4, 8, 24, 52]. However, the 
diagnostic separation of adult-type diffuse astrocytic gliomas 
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into IDH-mutant and IDH-wildtype tumors has generated 
new challenges regarding the role of grading and molecular 
prognosticators within these newly defined tumor types [7]. 
Detection of an IDH mutation in a diffuse astrocytic glioma 
with microvascular proliferation or necrosis is no longer com-
patible with a glioblastoma diagnosis, i.e., such tumors are 
now diagnosed as astrocytoma, IDH-mutant, CNS WHO grade 
4 [7, 30]. Moreover, homozygous deletion of the CDKN2A/
CDKN2B tumor suppressor gene locus has been introduced 
as a molecular biomarker for CNS WHO grade 4 in an IDH-
mutant astrocytoma [30, 41]. Other molecular alterations that 
have been associated with aggressive behavior and shorter 
survival include high tumor mutational burden and increased 
copy number variation load, as well as various aberrations 
affecting single genes or chromosomes, such as type of IDH 
mutation, PIK3R1 mutation, PDGFRA amplification, copy 
number neutral loss of 17p, loss of 19q, and others [42]. In 
addition, reduced global DNA methylation, referred to as 
glioma CpG island methylator phenotype low (gCIMPlow), 
has been associated with worse outcome [11, 41]. Detection 
of the global DNA methylation status can be accomplished by 
microarray- or sequencing-based methylome analyses [9, 11, 
31], with focused methylation analysis of the LINE-1 repeti-
tive element being reported as a valuable surrogate marker for 
global DNA methylation level assessment [57].

Histological grading of IDH-mutant astrocytomas is subject 
to inter-observer variability [29] and its prognostic relevance is 
a matter of ongoing discussion. While some studies questioned 
the prognostic role of histological grading, others showed dis-
tinct outcomes according to tumor grade (for review see [7]). 
Further, whether patients diagnosed with IDH-mutant astrocy-
toma, CNS WHO grade 4, should be treated like IDH-wildtype 
glioblastoma patients or rather like patients with IDH-mutant 
astrocytoma, CNS WHO grade 3, remains controversial [47]. 
The IDH mutation has recently gained clinical importance as 
a therapeutic target since vorasidenib, an oral brain-penetrant 
inhibitor of mutant IDH1 and IDH2 enzymes, significantly 
improved progression-free survival in patients with CNS 
WHO grade 2 IDH-mutant gliomas [32].

To further define the prognostic roles of clinical features, 
CNS WHO grade, and selected molecular biomarkers in 
IDH-mutant astrocytoma patients, we assembled a large, 
clinically well documented patient cohort with long-term 
follow-up data from the German Glioma Network (GGN) 
and two institutional cohorts.

Patients and methods

Patients

Patients were enrolled in the GGN (n = 212) or followed at 
the University Hospitals of Lille, France (n = 32) or Zurich, 

Switzerland (n = 14). The GGN is a prospective, non-inter-
ventional cohort study that comprised eight University Hos-
pitals in Germany. All GGN patients gave written informed 
consent for participation in the GGN and its translational 
research projects. Local ethics approvals were in place in 
Lille and Zurich. Patient characteristics, treatment, and out-
come data were collected prospectively within the GGN and 
assembled retrospectively following a similar data capture 
scheme for patients from Lille and Zurich.

Central neuropathology review

Representative tumor specimens from all patients were 
subjected to central pathology review at the Brain Tumor 
Reference Center of the German Society for Neuropathol-
ogy and Neuroanatomy (DGNN) in Bonn (TP) and Düs-
seldorf (GR). In addition to histological confirmation of a 
diffuse astrocytic glioma, the tumors were histologically 
graded according to the World Health Organization (WHO) 
classification of central nervous system (CNS) tumors [30]. 
Accordingly, CNS WHO grade 3 tumors were distinguished 
from CNS WHO grade 2 tumors by the presence of focal or 
dispersed anaplasia and significant mitotic activity, while 
CNS WHO grade 4 tumors were distinguished from the 
CNS WHO grade 2 and 3 tumors by the presence of micro-
vascular proliferation and/or necrosis and/or homozygous 
CDKN2A/CDKN2B deletion [30]. All tumors were screened 
for the IDH1-R132H mutation using immunohistochemis-
try with a mutation-specific monoclonal antibody (clone 
H09, Dianova, Hamburg, Germany) [10]. Tumors negative 
for IDH1-R132H by immunohistochemistry were assessed 
for non-canonical IDH1 or IDH2 mutations using Sanger 
sequencing or pyrosequencing [15, 21, 22]. For the molecu-
lar analyses, DNA was extracted from frozen tissue sam-
ples using the PureLink™ Genomic DNA Mini Kit (Life 
Technologies, Carlsbad, CA) or ultracentrifugation [23]. 
Alternatively, DNA was extracted from formalin-fixed and 
paraffin-embedded tissue samples using the QIAamp DNA 
FFPE Tissue Kit (Qiagen, Hilden, Germany), the GeneRead 
DNA FFPE Kit (Qiagen), or the Maxwell® RSC FFPE Plus 
DNA Kit together with the Maxwell® RSC instrument (Pro-
mega, Mannheim, Germany). Tumor tissue samples used for 
DNA extraction were histologically evaluated to contain a 
sufficient tumor cell content of usually more than 80%. In 
four tumors (1 CNS WHO grade 2 and 3 CNS WHO grade 
4 tumors), classification as IDH-mutant astrocytoma was 
based only on array-based DNA methylome analysis using 
the Heidelberg classifier version v.12.5 (https:// www. molec 
ularn europ athol ogy. org/ mnp/) without further specification 
of the specific IDH1 or IDH2 mutation by DNA sequencing 
(Table 1).

In addition to IDH mutation testing, tumors were 
investigated for 1p/19q codeletion status using either 

https://www.molecularneuropathology.org/mnp/
https://www.molecularneuropathology.org/mnp/


Acta Neuropathologica          (2024) 147:11  Page 3 of 14    11 

microsatellite-based loss of heterozygosity (LOH) analysis 
[13, 58] or comparative genomic hybridization [51]. In indi-
vidual cases, the 1p/19q codeletion status was determined 
based on copy number profiles obtained by array-based 

DNA methylome analysis. None of the 258 tumors demon-
strated a 1p/19q codeletion.

The MGMT promoter methylation status was determined 
by methylation-specific PCR or DNA pyrosequencing [14, 

Table 1  Patient and disease characteristics by CNS WHO grade

CI confidence interval, KPS Karnofsky performance status
a Other IDH1 mutations are R132C (n = 4), R132G (n = 3), R132L (n = 2), R132S (n = 2)
b Other IDH1 mutations are R132C (n = 3), R132G (n = 2), R132L (n = 1)
c Other IDH1 mutations are R132C (n = 2), R132G (n = 1), R132S (n = 2)
d Assignment to methylation class astrocytoma, IDH-mutant based on DNA methylome analysis

Astrocytoma, IDH-mutant, CNS 
WHO grade 2
n = 114

Astrocytoma, IDH-mutant, CNS 
WHO grade 3
n = 73

Astrocytoma, IDH-
mutant, CNS WHO 
grade 4
n = 71

Age at diagnosis
 Median (years) 36 39 37
 Range (years) 19–69 21–80 23–79
Sex
 Male 78 (68.4%) 46 (63.0%) 47 (66.2%)
 Female 36 (31.6%) 27 (37.0%) 24 (33.8%)
KPS at diagnosis
 90–100 71 (86.6%) 39 (70.9%) 33 (47.1%)
 70–80 11 (13.4%) 14 (25.5%) 25 (35.7%)
 <70 0 2 (3.6%) 12 (17.1%)
 No data 32 18 1
Tumor location
 Frontal 41 (36.0%) 27 (37.0%) 36 (50.7%)
 Temporal 25 (21.9%) 16 (21.9%) 5 (7.0%)
 Parietal 9 (7.9%) 4 (5.5%) 7 (9.9%)
 Cerebellar, brain stem 0 0 2 (2.8%)
 Not localized to one site 25 (21.9%) 18 (24.7%) 20 (28.2%)
 Multifocal 1 (0.9%) 0 0
 Others 12 (10.5%) 8 (11.0%) 1 (1.4%)
 Unknown 1 (0.9%) 0 0
IDH mutation status
  IDH1R132H mutation 101 (88.6%) 66 (90.4%) 62 (87.3%)
 Other IDH1 mutations 11 (9.6%)a 6 (8.2%)b 5 (7.0%)c

  IDH2R172K mutation 1 (0.9%) 1 (1.4%) 1 (1.4%)
 IDH mutation type not  determinedd 1 (0.9%) 0 3 (4.2%)
MGMT promoter methylation status
 Methylated 72 (65.5%) 58 (84.1%) 53 (74.6%)
 Unmethylated 38 (34.5%) 11 (15.9%) 18 (25.4%)
 No data 4 4 0
CDKN2A deletion status
 Homozygous deletion 0 0 12 (17.1%)
 No homozygous deletion 66 (100%) 61 (100%) 58 (82.9%)
 No data 48 12 1
LINE-1 methylation status
 Methylated alleles (%, median) 83.0 82.7 72.8
 Methylated alleles (%, range) 74.2–86.0 71.2–86.3 60.0–79.1
 No data 62 15 1
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46] or, in individual cases, by DNA methylome analysis 
using the STP27 algorithm [1]. A total of 173 of the 212 
GGN cases had been included in previous GGN studies [5, 
6, 19, 20, 22, 27, 36, 37, 39, 40, 48–51, 53].

Detection of homozygous deletion of CDKN2A 
by droplet digital PCR (ddPCR)

We used a commercially available ddPCR assay (Bio-Rad 
Laboratories) for the detection of CDKN2A homozygous 
deletions on 9p21 [55]. The loci NCKAP5 and KCNS3 
(2p24.2) served as reference loci. The threshold for detection 
of a homozygous deletion was set to a calculated relative 
CDKN2A copy number value of <0.5 which was experimen-
tally demonstrated to reliably detect a homozygous deletion 
when the tumor cell content in the tissue sample used for 
DNA extraction was ≥75% [55].

Determination of LINE‑1 methylation 
by pyrosequencing

As a surrogate marker for the global DNA methylation status 
[57], we determined the methylation level of the LINE-1 
repetitive element (GenBank accession number X58075) 
in the tumor DNA using DNA pyrosequencing of sodium 
bisulfite converted DNA. The primer pair LINE-1-bisu-F1 
5ʹ- taggattttttgagttaggtgtg and LINE-1-bisu-R1 5ʹ-[Btn]
caaaaaatcaaaaaattccctttcc (biotinylated at the 5ʹ -end) was 
used for amplification of a 156-bp fragment. Pyrosequenc-
ing on the PyroMark Q24 (Qiagen, Hilden, Germany) was 
performed using the sequencing primer LINE-1-bisu-Seq1 5ʹ 
-ttaggtgtgggatatagt with the sequence to analyze being “TTY 
GTG GTG YGT YGTTT”. The three investigated CpG sites 
correspond to the first three CpGs covered by the PyroMark 
Q96 CpG LINE-1 kit from Qiagen. After pyrosequencing, 
we calculated the mean value of the methylated allele per-
centages at the three investigated CpG sites. A ROC analysis 
was performed to determine an appropriate cut-off value for 
the LINE-1 methylation levels, i.e., percentage of methylated 
alleles that distinguished best between CNS WHO grade 
4 tumors as opposed to CNS WHO grade 2 or 3 tumors. 
Thereby, a cut-off value of ≤77% methylated alleles was 
calculated with an area under the curve (AUC) of 0.98.

Array‑based DNA methylation analyses

Large-scale DNA methylation data obtained by hybridiza-
tion of tumor DNA to 450 k methylation bead arrays (Illu-
mina, San Diego, CA) were available for 85 patients with 
IDH-mutant astrocytoma included in this study, comprising 
31 CNS WHO grade 2, 31 CNS WHO grade 3, and 23 CNS 
WHO grade 4 tumors. LINE-1 methylation data were avail-
able from 80 of these tumors (29 grade 2, 28 grade 3, and 

23 grade 4). 450 k DNA methylation data were generated 
as described [9] and analyzed with the Heidelberg classi-
fier algorithm version v.12.5 (www. molec ularn europ athol 
ogy. org). Tumors were assigned to the methylation classes 
“astrocytoma, IDH-mutant, lower grade” or “astrocytoma, 
IDH-mutant, high-grade” based on calibrated classifier 
scores of ≥0.9. Principles of the DNA methylation-based 
classification of central nervous system tumors, the distinc-
tion of methylation classes, and the role of calibrated clas-
sifier scores have been reported [9].

Statistical analyses

Progression-free survival (PFS) was calculated from the day 
of first surgery until tumor progression, death, or end of fol-
low-up. Overall survival (OS) was calculated from the day of 
first surgery until death or end of follow-up. Kaplan–Meier 
survival curves, Log-rank test, and Cox regression were 
used for univariate and multivariate analyses of survival. 
 Chi2-test and Fisher’s exact test were used to analyze cat-
egorical data. Quantitative data were analyzed by t test and 
Mann–Whitney U test. A ROC analysis was performed to 
determine an appropriate cut-off value for the percentage of 
LINE-1 methylated alleles. Sensitivity and specificity with 
95% confidence interval (CI) were calculated.

Results

Patient characteristics

The median age was below 40 years for all CNS WHO 
grades. Less than half (47.1%) of the patients with CNS 
WHO grade 4 tumors had a KPS 90 or 100, as opposed to 
86.6 and 70.9% of the patients with CNS WHO grade 2 or 3 
tumors (p < 0.001). IDH-mutant astrocytomas of CNS WHO 
grade 4 were numerically more often located in the frontal 
lobes (p = 0.118) (Table 1), and a gross total resection was 
numerically more often performed in these patients than in 
patients with CNS WHO grade 2 or 3 tumors (p = 0.177) 
(Table S1).

Molecular characteristics

The canonical IDH-R132H mutation was detected in almost 
90% of the tumors with equal frequencies across grades. 
MGMT promoter methylation was detected in more than 70% 
of all tumors, with the lowest percentage of 65.5% detected 
in CNS WHO grade 2 tumors (Table 1). CDKN2A homozy-
gous deletions were detected in 12 of 71 patients (16.9%) 
with CNS WHO grade 4 tumors. Eleven of these tumors 
also showed histological features of CNS WHO grade 4, i.e., 
microvascular proliferation or necrosis or both. The LINE-1 
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methylation levels were lower in CNS WHO grade 4 tumors 
than in CNS WHO grade 2 or 3 groups (Table 1).

Treatment and outcome

Patients with CNS WHO grade 4 tumors received combined 
modality treatment upfront more often than patients with 
CNS WHO grade 2 or 3 tumors. A wait-and-scan strategy 
was more commonly adopted in patients with CNS WHO 
grade 2 tumors than in patients with CNS WHO grade 3 
or 4 tumors. PFS did not differ between patients with CNS 
WHO grade 2 versus 3 tumors (p = 0.557), but was sig-
nificantly lower in patients with CNS WHO grade 4 tumors 
(p < 0.001) (Fig. 1a, Table S1). At progression, 36 of 50 
CNS WHO grade 2 tumors (72%) and 4 of 15 CNS WHO 
grade 3 tumors (27%) that were subjected to repeated sur-
gery showed histological progression to a higher grade in 
the recurrent tumor tissue. The rates of documented pro-
gression events were similar across the tumor grades. The 
percentages of patients treated at first progression varied 
from 90.5% in patients with CNS WHO grade 2 tumors to 
81.6 and 82.1% for patients with CNS WHO grade 3 and 4 
tumors.

Survival was longer for patients with CNS WHO grade 2 
tumors than for patients with CNS WHO grade 3 or 4 tumors 
(p < 0.001) (Table S1, Fig. 1b). Furthermore, patients with 
CNS WHO grade 3 tumors lived longer than patients with 
CNS WHO grade 4 tumors (p = 0.023) (Table S1, Fig. 1b). 
Since CDKN2A loss is a defining feature of CNS WHO 
grade 4 and since there was insufficient tissue to complete 
CDKN2A assessment for all CNS WHO grade 2 and 3 
tumors, we performed a sensitivity analysis omitting all CNS 
WHO grade 2 and 3 tumors without CDKN2A assessment. 
These analyses revealed essentially the same survival curves 
(Fig. S1a, b), confirming that CDKN2A loss is infrequent in 
morphologically defined CNS WHO grade 2 and 3 tumors.

Molecular marker profiles and outcome: type of IDH 
mutation and MGMT promoter methylation

Figure S2 shows survival curves stratified by IDH muta-
tion type, i.e., IDH1-R132H versus all other (non-canonical) 
IDH1 or IDH2 mutations. In the entire cohort (Fig. S2a) 
as well as in the grade 2 (Fig. S2b) and grade 4 (Fig. S2d) 
subcohorts, there were no differences in OS by IDH muta-
tion type. Only in patients with CNS WHO grade 3 tumors, 
presence of a non-canonical IDH mutation was associated 
with a better outcome (p = 0.021) (Fig. S2c).

We also compared the outcome by MGMT promoter 
methylation status across the entire cohort and by CNS 
WHO grade. In the entire cohort, MGMT promoter meth-
ylation was not prognostic for PFS but inversely related to 
OS (Fig. S3a,b). The latter finding is explained by the overall 

lower frequency of MGMT promoter methylation in the CNS 
WHO grade 2 tumors compared with CNS WHO grade 3 
and 4 tumors (Table 1). Among patients with CNS WHO 
grade 4 tumors, MGMT promoter methylation was associ-
ated with longer PFS, but not OS (Fig. S3c, d, Table S2). 
Within the cohorts of patients with CNS WHO grade 2 
or 3 tumors, the MGMT promoter methylation status was 
not related to PFS and OS (Fig. S3e–h). MGMT promoter 
methylation status was also not related to OS when survival 
analyses were restricted to patients exposed to alkylating 
agents (Fig. S4).

Molecular markers associated with CNS WHO grade 
4: CDKN2A homozygous deletion and lower levels 
of LINE‑1 methylation

Homozygous deletion of CDKN2A is per definition restricted 
to IDH-mutant astrocytomas of CNS WHO grade 4 [30] 
where it has been detected in 20–40% of tumors [26, 41]. We 
confirmed that homozygous CDKN2A deletion was highly 
prognostic over the complete dataset encompassing all CNS 
WHO grades (Fig. 1c,d) and remained prognostic among 
CNS WHO grade 4 tumors (Fig. 1e,f).

LINE-1 methylation levels were significantly lower 
in CNS WHO grade 4 compared to lower grade tumors 
(Fig.  2a). IDH-mutant astrocytomas with homozygous 
CDKN2A deletion showed lower LINE-1 methylation 
levels than IDH-mutant astrocytomas without complete 
CDKN2A loss (Fig. 2b). Correlation of LINE-1 methyla-
tion levels with survival using a cut-off of 77% methylated 
alleles revealed that patients whose tumors had LINE-1 
methylation levels of ≤ 77% showed less favorable PFS and 
OS (Fig. 2c,d). Among patients with CNS WHO grade 4 
tumors, LINE-1 methylation levels ≤77% were not associ-
ated with shorter PFS or OS, a finding likely related to the 
low fraction of tumors with LINE-1 methylation level >77% 
(n = 4) (Fig. 2e,f). We also performed a comparative analy-
sis between LINE-1 methylation levels and the assignment 
of tumors into the methylation classes “astrocytoma, IDH-
mutant, lower grade” or “astrocytoma, IDH-mutant, high-
grade” according to the Heidelberg brain tumor classified 
v.12b5 (www. molec ularn europ athol ogy. org) using avail-
able 450 k DNA methylome data of 85 IDH-mutant astro-
cytomas included in our cohort, with LINE-1 methylation 
data being available for 80 of these cases. Overall, 31 of 31 
CNS WHO grade 2 and 29 of 31 CNS WHO grade 3 tumors 
were assigned to the methylation class “astrocytoma, IDH-
mutant, lower grade”, while 17 of 23 CNS WHO grade 4 
tumors were assigned to the methylation class “astrocytoma, 
IDH-mutant, high-grade”. Similar to lower levels of LINE-
1 methylation, the DNA methylation class “astrocytoma, 
IDH-mutant, high-grade” was associated with CNS WHO 
grade 4 (p < 0.001). Correspondingly, LINE-1 methylation 
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levels were significantly lower in tumors assigned to the 
methylation class “astrocytoma, IDH-mutant, high-grade” 
(Fig. S5a). The previously determined LINE-1 cut-off value 
of ≤77% methylated alleles was applied to assess its value 
to discriminate the two methylation classes. Overall, sensi-
tivity for detection of the “astrocytoma, IDH mutant, high 
grade” methylation class by a LINE-1 methylation level of 
≤77% was 94.7% (95% CI 74.0–99.9%) and specificity was 
90.2% (95% CI 79.8–96.3%). Among 23 CNS WHO grade 4 
tumors with available 450 k DNA methylome data, a similar 
trend of lower LINE-1 methylation levels in “astrocytoma, 
IDH-mutant, high-grade” tumors was observed, albeit the p 

value remained insignificant likely due to the low number 
of tumors assigned to the methylation class “astrocytoma, 
IDH-mutant, lower grade” among the CNS WHO grade 4 
tumors (Fig. S5b).

Prognostic factor analyses

Univariate analyses over the entire cohort revealed that CNS 
WHO grade, age, KPS, extent of resection, CDKN2A dele-
tion, and LINE-1 methylation level were prognostic. MGMT 
promoter methylation was prognostic, too, but with a better 
outcome for patients with tumors lacking MGMT promoter 

Fig. 1  Outcome of patients with IDH-mutant astrocytoma stratified 
according to CNS WHO grade and CDKN2A copy number status. 
(a, b) PFS (a) and OS (b) of the entire cohort of patients with IDH-
mutant astrocytomas stratified by CNS WHO grade 2, 3 or 4. (c–f) 

PFS (c, e) and OS (d, f) of the entire cohort of patients with IDH-
mutant astrocytoma (c, d) or IDH-mutant astrocytoma of CNS WHO 
grade 4 only (e, f)
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methylation (see above). On multivariate analysis, CNS 
WHO grade, extent of resection, and CDKN2A deletion 
were retained as prognostic factors (Table 2). Similar results 
were obtained when the same analyses were restricted to 
patients with IDH-mutant astrocytoma, CNS WHO grade 
4 (Table S3).

Combination of CNS WHO grade and molecular 
biomarkers for improved prediction of outcome

Next we explored whether our findings might provide a new 
approach for improved prognostic assessment of patients 
with IDH-mutant astrocytoma. Stratification according to 

LINE-1 methylation levels and CDKN2A copy number sta-
tus resulted in three groups of patients with distinct over-
all survival (Fig. 3a). Group assignment remained highly 
significant upon adjustment for other prognostic factors 
(Table S4). Since CDKN2A homozygous deletion was a pro-
found negative prognostic factor in our cohort (Figs. 1c–f), 
we also explored the prognostic significance of the current 
WHO classification when patients with CDKN2A homozy-
gously deleted tumors were excluded. This resulted in a 
less distinct separation of outcome of CNS WHO grade 3 
and 4 tumors (Fig. 3b). Yet, in tumors without homozygous 
CDKN2A deletion, lower LINE-1 methylation levels were 
highly associated with CNS WHO grade 4 (Figs. S6a, b). 

Fig. 2  LINE-1 methylation levels in IDH-mutant astrocytomas. LINE-
1 methylation levels according to CNS WHO grade 2 (n = 62), CNS 
WHO grade 3 (n = 58), and CNS WHO grade 4 (n = 70) (a). LINE-
1 methylation levels according to CDKN2A deletion status based on 
11 tumors with homozygous CDKN2A deletion and 178 tumors with-

out this alteration (b). PFS (c) and OS (d) of the entire patient cohort 
according to LINE-1 methylation level stratified into ≤77% methyl-
ated alleles versus >77% methylated alleles. PFS (e) and OS (f) of the 
patients with CNS WHO grade 4 tumors according to LINE-1 meth-
ylation levels
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Finally, placing LINE-1 methylation levels at the apex of 
the prognostic stratification delineated four subgroups with 
relevant significant outcome differences (group 2 versus 
1, HR = 2.99, p = 0.011; group 3 versus 2, HR = 1.68, 
p = 0.095; group 4 versus 3, HR = 3.51, p = 0.010).

In the group of patients whose tumors showed high 
LINE-1 methylation levels (>77% methylated alleles), 
outcome was significantly different for patients with 
CNS WHO grade 2 tumors versus patients with CNS 

WHO grade 3 or (rare) grade 4 tumors. In the group of 
patients whose tumors showed low LINE-1 methylation 
levels (≤77%), outcome was significantly different for 
patients with CDKN2A homozygously deleted tumors ver-
sus patients whose tumors had no homozygous CDKN2A 
deletion (Fig. 3c). The differences in outcome between 
the four groups were significant on univariate and mul-
tivariate analysis except for group 3 versus 2 (Table S5).

Table 2  Prognostic factors in IDH-mutant astrocytoma: univariate and multivariate analyses

Entire cohort, univariate analyses Hazard ratio p value 95% CI

CNS WHO grade
 2 (ref) –
 3 2.35 <0.001 1.47–3.76
 4 4.14 <0.001 2.60–6.57
Age (years)
  > 40 versus ≤ 40 (ref.) 1.61 0.013 1.10–2.34
KPS
 <80 versus ≥80 (ref.) 2.55 <0.001 1.53–4.25
Surgery
 No total versus total (ref.) 1.73 0.017 1.10–2.73
MGMT promoter status
 Methylated versus unmethylated (ref.) 1.64 0.043 1.01–2.64
IDH mutation status
 IDH1-R132H versus other IDH1 or IDH2 mutations (ref.) 1.66 0.169 0.81–3.40
CDKN2A deletion status
 Homozygous versus no homozygous (ref.) 6.04 <0.001 2.90–12.56
LINE-1 methylation status
 ≤77 versus >77% methylated alleles (ref.) 3.54 <0.001 2.25–5.56

Entire cohort, multivariate analyses Hazard ratio p value 95% CI

CNS WHO grade
 2 (ref) –
 3 3.09 0.007 1.36–7.00
 4 1.42 0.577 0.42–4.80
Age (years)
 > 40 versus ≤ 40 (ref.) 1.58 0.098 0.92–2.72
KPS
 <80 versus ≥80 (ref.) 1.17 0.627 0.621–2.21
Surgery
 No total versus total (ref.) 2.61  < 0.001 1.49–4.58
MGMT promoter status
 Methylated versus unmethylated (ref.) 1.03 0.936 0.54–1.96
IDH mutations status
 IDH1-R132H versus other IDH1 or IDH2 mutations (ref.) 1.85 0.165 0.78–4.39
CDKN2A deletion status
 Homozygous versus no homozygous (ref.) 3.74 0.008 1.41–9.92
LINE-1 methylation status
 ≤77 versus >77% methylated alleles (ref.) 3.39 0.025 1.17–9.85
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Discussion

The present study provides contemporary data on the pat-
terns of presentation, treatment, and outcome in the newly 
defined adult-type diffuse glioma group of IDH-mutant 
astrocytomas [7, 30] with a particular focus on astrocy-
toma, IDH-mutant, CNS WHO grade 4. The grading of 
IDH-mutant astrocytomas remains a matter of ongoing 
controversy [7, 18, 30, 34, 38]. Here, we report that strati-
fication of these tumors into CNS WHO grades 2, 3, or 4 
as recently defined in the WHO 2021 classification [30] is 
prognostically important (Fig. 1). Currently, the distinction 
of CNS WHO grade 2 versus 3 according to the WHO clas-
sification 2021 relies on the presence of focal or dispersed 
anaplasia and significant mitotic activity; however, a dis-
tinct cut-off for the mitotic count was not established [30]. 
A recent study based on patients included in the EORTC 
trials 26053 (CATNON) and 22033–26033 supported a 
prognostic role of mitotic activity and reported that a cut-
off of two mitoses per ten microscopic high power fields was 

linked to significantly longer PFS and marginally longer OS 
in patients with IDH-mutant astrocytoma without homozy-
gous CDKN2A/CDKN2B deletion [28]. Another recent study 
reported that the combination of <6 mitoses per 3  mm2 and 
a residual tumor volume of <1  cm2 upon postsurgical imag-
ing was indicative of longer time to treatment and overall 
survival in patients with IDH-mutant astrocytomas of CNS 
WHO grade 2 or 3 [45].

The majority of IDH-mutant astrocytomas, CNS WHO 
grade 4, present de novo, rather than arising from a pre-
existing lower grade astrocytoma [26]. The similar age at 
diagnosis across the groups defined by CNS WHO grade 
reported here (Table 1) supports this notion. A recent anal-
ysis of pooled data from clinical trials suggested that the 
canonical R132H mutation may confer an inferior survival 
compared with the less common, non-canonical mutations in 
IDH1 or mutations in IDH2 [44]. This association was con-
firmed in a cohort from Italy [17] and a recent meta-analysis 
[12], while data from the French POLA cohort revealed no 
clear prognostic association by type of IDH mutation [35]. 

Fig. 3  Prognostic stratification based on CNS WHO grade, LINE-1 
methylation level, and CDKN2A homozygous deletion status. (a) OS 
stratified by LINE-1 methylation level (77% cut-off) and CDKN2A 
homozygous deletion status. The three distinct groups of patients cor-
respond to: 1, LINE-1 methylation levels of >77% without homozy-
gous CDKN2A deletion; 2, LINE-1 methylation levels of ≤77% with-
out homozygous CDKN2A deletion; 3, LINE-1 methylation levels of 
≤77% with homozygous CDKN2A deletion). (b) OS by CNS WHO 
grade with omission of patients with CDKN2A homozygously deleted 

tumors. (c) OS stratified based on LINE-1 methylation levels followed 
by CNS WHO grade 2 versus CNS WHO grade 3 or 4 in tumors with 
high LINE-1 methylation levels or followed by CDKN2A homozy-
gous deletion status in tumors with low LINE-1 methylation levels 
The four distinct groups of patients correspond to: 1, LINE-1 methyl-
ation levels of >77% and CNS WHO grade 2; 2, LINE-1 methylation 
levels of >77% and CNS WHO grade 3 or 4; 3, LINE-1 methylation 
levels of ≤77% without homozygous CDKN2A deletion; and 4, LINE-
1 methylation levels of ≤77% and homozygous CDKN2A deletion
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We observed an association of non-canonical IDH muta-
tions with longer OS only in the group of patients with CNS 
WHO grade 3 tumors (Fig. S2), but the sample size was 
overall small.

The limited prognostic role of MGMT promoter methyla-
tion status despite the broad use of alkylating agents in our 
patient population was surprising, but may confirm a recent 
cohort study [25] and is in line with previous data indicat-
ing MGMT promoter methylation as a predictive marker of 
response to alkylating agents in IDH-wildtype glioblastoma 
but not in IDH-mutant gliomas [53]. We observed MGMT 
promoter methylation in IDH-mutant astrocytomas of CNS 
WHO grade 2 less frequently than in CNS WHO grade 3 
or 4 tumors, a finding which might contribute to the lack of 
prognostic association of the MGMT status.

Our study confirms the strong negative prognostic value 
of CDKN2A homozygous deletion in IDH-mutant astrocy-
toma patients. As reported before [16, 26, 41], presence of 
a CDKN2A/CDKN2B homozygous deletion is associated 
with particularly poor outcome of IDH-mutant astrocytoma 
patients, even within the group of patients with CNS WHO 
grade 4 tumors [26]. Thus, our findings lend further sup-
port for this molecular alteration as an independent indica-
tor of CNS WHO grade 4 behavior [30]. The WHO clas-
sification recommends diagnostic testing for CDKN2A/
CDKN2B homozygous in IDH-mutant astrocytomas show-
ing histological features of anaplasia corresponding to CNS 
WHO grade 3, but not for IDH-mutant astrocytomas with 
histological features corresponding to CNS WHO grade 2 
tumors [30], as the latter generally lack CDKN2A/CDKN2B 
homozygous deletion [41] (Table 1). However, CDKN2A/
CDKN2B homozygous deletion is not very common even 
in CNS WHO grade 4 tumors, and novel markers of CNS 
WHO grade 4 that can be easily tested in clinical practice 
are urgently needed.

Here, we report that the LINE-1 methylation level, a sur-
rogate marker for the global DNA methylation status, is 
markedly lower in IDH-mutant astrocytomas of CNS WHO 
grade 4 compared with lower-grade tumors. So far, LINE-1 
methylation levels have not been studied in depth in glio-
mas. One study reported lower LINE-1 methylation levels 
in glioblastomas compared to low-grade gliomas, and higher 
LINE-1 methylation levels were associated with MGMT 
promoter methylation and longer survival of glioblastoma 
patients [33]. Another study revealed that high levels of 
LINE-1 methylation and gene-specific hypermethylation 
of several genes were linked to longer survival of glioma 
patients [59]. However, both studies were based on histologi-
cally classified glioblastomas and lower grade diffuse glio-
mas, i.e., did not stratify the investigated cohorts according 
to the IDH mutation status. Here, we found a significantly 
lower level of LINE-1 methylation in IDH-mutant astrocy-
tomas of CNS WHO grade 4 compared with IDH-mutant 

astrocytomas of CNS WHO grade 2 or 3. In addition, lower 
LINE-1 methylation levels were associated with shorter 
survival in IDH-mutant astrocytoma patients. Our findings 
confirm large-scale methylome analyses that identified a 
subset of IDH-mutant astrocytomas with lower levels of 
global DNA methylation and shorter survival, which were 
referred to as “glioma-CpG island methylator phenotype 
(G-CIMP)-low” tumors as opposed to “G-CIMP-high” 
tumors [11, 31, 42, 43]. Along this line, array-based DNA 
methylome profiling using the Heidelberg methylation clas-
sifier version v.12.5 identifies two distinct DNA methylation 
classes of IDH-mutant astrocytoma, namely “astrocytoma, 
IDH-mutant, lower grade” and “astrocytoma, IDH-mutant, 
high-grade” (www. molec ularn europ athol ogy. org) [9], which 
largely overlap with the “G-CIMP-high” and “G-CIMPlow” 
groups, respectively [42]. Correlative analysis in relation 
to these two distinct methylation classes consequently 
revealed lower levels of LINE-1 methylation in the “astro-
cytoma, IDH-mutant, high-grade” methylation class. Taken 
together, our findings, thus, confirm lower levels of global 
DNA methylation as a prognostically unfavorable molecular 
alteration in IDH-mutant astrocytomas [42, 43, 56] that can 
be detected by DNA methylation arrays and other methods 
like LINE-1 methylation analysis using pyrosequencing, 
i.e., a method already established in many laboratories for 
the assessment of the MGMT promoter methylation status 
[54]. Hence, detection of lower levels of LINE-1 methyla-
tion may represent a novel biomarker that may support grad-
ing of IDH-mutant astrocytoma by indicating CNS WHO 
grade 4 behavior. In our study, a LINE-1 methylation level of 
77% calculated across three selected LINE-1 CpG sites was 
employed to distinguish high level versus low-level methyl-
ated cases. However, quantitative methylation levels may 
vary according to specific assays and equipment used; hence, 
validation and potential adaptation of cut-offs to work-flows 
used in other laboratories will likely be required, as also 
indicated by the variable levels of LINE-1 methylation 
reported in astrocytic gliomas before [33, 59].

LINE-1 methylation levels were an independent prog-
nostic variable for survival upon multivariate analysis 
(Table 2). However, individual cases of CNS WHO grade 2 
and 3 tumors showed LINE-1 methylation levels of ≤77% 
while individual cases of CNS WHO grade 4 tumors without 
CDKN2A homozygous deletion had LINE-1 methylation lev-
els of >77% (Fig. S6b). In addition, other authors reported 
on a prognostically unfavorable association of lower global 
DNA methylation levels in a cohort of IDH-mutant grade 4 
astrocytic gliomas/glioblastomas [56]. Thus, determination 
of the global DNA methylation level may provide informa-
tion beyond WHO grading, as supported by other studies 
[11, 31].

Limitations of our study include the retrospective 
design, potential bias of enrolling patients with favorable 

http://www.molecularneuropathology.org
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outcome into cohorts like the GGN and lack of standard-
ized approaches to treatment and follow-up. We also did 
not quantitatively evaluate mitotic count as performed in 
the recent studies by Kros et al. [28] and Tran et al. [45] that 
reported on various cut-offs for mitotic counts predicting 
outcome. In addition, the LINE-1 cut-off used in this study 
would require independent validation in a distinct patient 
cohort. Furthermore, potential diagnostic use in individual 
patients would demand the establishment of a validated 
assay that is standardized concerning, among others, the 
definition of CpG sites to be interrogated, the method for 
calculation of methylated allele frequencies, input amount 
of DNA and completeness of bisulfite conversion, appro-
priate control samples, and the actual pyrosequencing 
protocol. Nevertheless, the present cohort of patients with 
IDH-mutant astrocytomas is relatively large and may serve 
as a framework for further efforts aiming at characterizing 
novel markers for improved prediction of therapy response 
and outcome that could also guide treatment strategy and 
clinical trial design, notably with the view to defining the 
role of IDH inhibitors along the disease trajectory [32]. Fur-
thermore, we provide possible future avenues to improve 
histomolecular prognostic assessment of IDH-mutant astro-
cytoma based on CNS WHO grade, global DNA methylation 
level, and CDKN2A homozygous deletion (Fig. 3).
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