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While the majority of schwannoma nerve sheath tumors are 
solitary sporadic tumors, a subset arise as part of heritable 
tumor predisposition syndromes termed schwannomatosis 
[11]. Neurofibromatosis type 2 (NF2, also now termed 
NF2-related schwannomatosis) is an autosomal dominant 
syndrome caused by heterozygous germline mutation in 
the NF2 gene on chromosome 22q12.2, which encodes 
the Merlin protein [16]. Patients with NF2 often develop 
bilateral vestibular schwannomas, as well as non-
vestibular schwannomas, multiple meningiomas, and spinal 
ependymomas [4]. Two other forms of autosomal dominant 
schwannomatosis are caused by heterozygous germline 
mutations in either the SMARCB1 gene on chromosome 
22q11.23 (which encodes the chromatin remodeling factor 
INI1/BAF47) or the LZTR1 gene on chromosome 22q11.21 
(which encodes a substrate-specific adaptor of CUL3-
dependent ubiquitin ligase that negatively regulates Ras 
signaling) [7, 10]. Patients with SMARCB1- and LZTR1-
associated schwannomatosis often develop multiple painful 
non-vestibular schwannomas in the absence of meningiomas 
or other tumor types [8, 14]. Germline mutation/deletion of 
the CDKN2A gene on chromosome 9p21.3 (which encodes a 
negative regulator of the cell cycle p16INK4a) or the DGCR8 
gene on chromosome 22q11.21 (which encodes a subunit 
of the microRNA processing complex) causes rare tumor 
predisposition syndromes that may be associated with 
development of multiple schwannoma or schwannoma-like 
nerve sheath tumors [1, 12, 13]. However, many patients 

and families with schwannomatosis do not have identifiable 
germline variants in NF2, SMARCB1, LZTR1, CDKN2A, or 
DGCR8, and efforts have been underway to identify other 
responsible molecular drivers of schwannoma predisposition 
[9, 15, 18]. While some individuals develop multiple 
schwannomas diffusely throughout the peripheral nervous 
system due to a germline mutation in one of the known 
schwannomatosis genes, other individuals develop multiple 
schwannomas that are limited to a segment of the body 
[11]. Such “segmental schwannomatosis” is presumed to be 
caused by somatic mosaicism (also termed constitutional 
mosaicism or post-zygotic mosaicism) for a mutation 
acquired during embryogenesis or perhaps later during 
postnatal life [11]. The exact nature of such segmental 
schwannomatosis including the responsible molecular 
drivers and their timing of acquisition during human life 
are not well defined. Here, we report identification of 
somatic mosaicism for SOX10 indel mutations as the genetic 
alteration underlying a form of segmental schwannomatosis.

A 41-year-old female initially presented with 
progressively worsening left leg and foot pain (Fig. 1a). 
Examination revealed fullness of the left thigh and an 
absent left ankle reflex. MR imaging showed several 
nodular masses along the course of the sciatic nerve in the 
mid-thigh (Fig. 1b). Following excision, numerous new 
nodules developed along the length of the left sciatic nerve 
with a “beads on a string” imaging appearance (Fig. 1b). 
She underwent four additional surgical excisions over the 
next 20 years due to continued pain and paresthesia. A 
second 49-year-old female initially presented with neck and 
shoulder pain. Imaging revealed two well-circumscribed 
and anatomically discrete masses in the left neck at levels 
2 and 5 along the course of the left spinal accessory nerve 
(cranial nerve XI, Fig. 1c). She underwent surgical excision 
of both masses and has remained disease free at 4 years 
of follow-up. Neither patient had cutaneous neurofibromas, 
café-au-lait macules, or axillary and inguinal freckling. 
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Neither patient had a family history of nerve sheath tumors. 
Neither patient had clinical features of Waardenburg 
syndrome type 4 associated with constitutional defects in 
the SOX10 gene (Online Mendelian Inheritance in Man # 
613266), including sensorineural hearing loss, abnormal 
pigmentation of the hair and skin, aganglionic megacolon 
(Hirschsprung disease), peripheral demyelinating 
neuropathy, central dysmyelinating leukodystrophy, and 
seizures/tremors. Histopathologic evaluation of the multiple 
resected tumors in both patients revealed schwannomas 
with classic histological features including both compact 
Antoni A and loose microcystic Antoni B areas, along with 
diffuse positivity for S100 and SOX10 immunostaining 
(Fig. 1d, e, Supplementary Figs. S1, S2). There was diffuse 
positivity for SMARCB1/BAF47/INI1 expression, without 
the pattern of mosaic loss that has been reported in some 
schwannomatosis-associated schwannomas (Supplementary 
Fig. S2) [3].

Genomic analysis was performed on four tumor 
specimens and adjacent uninvolved sciatic nerve tissue 
as a source of non-neoplastic constitutional DNA for the 
first patient, and the two tumor specimens along with both 
peripheral blood and a skin biopsy specimen as a source 
of constitutional DNA for the second patient. The multiple 
tumors from both patients were found to harbor short 
in-frame insertion/duplication mutations in the SOX10 
gene (Supplementary Table S1), similar to those recently 
discovered in approximately 30% of sporadic solitary 
schwannomas that were localized at the carboxy-terminal 
end of the HMG-box DNA binding domain of the encoded 
homeobox transcription factor (Supplementary Fig. S3) 
[18]. The first patient harbored a p.Y173_Q174insKY (also 
annotated as p.K172_Y173dup) mutation that had been 
found in several sporadic schwannomas, while the second 
patient harbored a p.R176_R177insQYQPR mutation which 
was also previously identified in the sporadic schwannoma 
cohort [18]. The identical SOX10 mutation was present 
in each of the four tumors from the first patient, and the 
identical SOX10 mutation was present in both tumors from 
the second patient (Fig. 1f, g). These SOX10 indel mutations 
were absent from the non-neoplastic constitutional DNA 
samples from these patients, thereby proving their somatic 

origin. No chromosomal copy number aberrations were 
present beyond monosomy/loss of 22q (Supplementary 
Table S2), and no other genetic alterations characteristic of 
nerve sheath tumors were identified involving NF1, NF2, 
SMARCB1, LZTR1, ERBB2, TRAF7, CDKN2A, TP53, 
SUZ12, EED, PRKAR1A, or VGLL3 [6, 17]. Genome-
wide DNA methylation profiling using the Infinium EPIC 
Beadchips revealed that these tumors all epigenetically 
classified as schwannomas (Supplementary Table  S3). 
Furthermore, these tumors clustered together with SOX10-
mutant sporadic schwannomas which we previously found 
are epigenetically distinct from NF2-mutant schwannomas 
(Supplementary Fig. S4, Supplementary Table S4) [18].

We surmise that the SOX10 indel mutations likely 
occurred in these patients in a neural crest or Schwann cell 
progenitor during embryogenesis or early postnatal life. This 
resulted in individuals that harbor these SOX10 mutations in 
Schwann cells and their progenitors in a limited segmental 
distribution along a single peripheral nerve, which then 
gave rise to multiple genetically identical schwannomas 
over time. We speculate that the absence of Waardenburg 
syndrome type 4 clinical features in these individuals 
is because the somatic mosaicism for the SOX10 indel 
mutations was limited to a small population of neural crest 
progenitor cells affecting only a single peripheral nerve and 
not the central or autonomic nervous systems. The SOX10 
gene encodes a homeobox transcription factor known to be 
critical for differentiation of Schwann cells and maturation 
to a myelinating cell state [2, 5]. Our prior studies in a fetal 
glial cell model found that SOX10 indel mutations impair 
transactivation of glial differentiation and myelination genes, 
and likely cause schwannoma development through blockade 
of Schwann cell maturation [18]. Based on the observations 
in these two patients, we conclude somatic mosaicism 
for SOX10 indel mutations causes a form of segmental 
schwannomatosis lacking other known nerve sheath tumor 
molecular alterations.

Supplementary Information  The online version contains 
supplementary material available at https://​doi.​org/​10.​1007/​
s00401-​023-​02641-6.
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Fig. 1   Segmental schwannomatosis arising from somatic mosaic 
SOX10 indel mutations. a Clinicopathologic features of the two 
patients with segmental schwannomatosis arising due to somatic 
mosaic SOX10 indel mutations. b, c Imaging of the two patients 
showing multiple synchronous schwannomas along the left sciatic 
nerve of patient #1 and the left spinal accessory nerve of patient #2 
at time of initial presentation. d, e Histologic features of the schwan-
nomas arising in the setting of somatic mosaic SOX10 indel muta-
tions. f, g Snapshots of the somatic mosaic SOX10 indel mutations 
present in the two patients from genomic profiling performed on mul-
tiple independent tumor samples and paired normal samples for each 
patient. VAF variant allele frequency
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 Data availability  Raw and processed DNA methylation data from 
the segmental schwannomatosis tumor cohort has been deposited at 
the NCBI Gene Expression Omnibus (GEO) under accession number 
GSE239715. Digitally scanned image files of representative H&E and 
immunostained sections from the schwannomas are available at the 
following link: https://​figsh​are.​com/​proje​cts/​Segme​ntal_​schwa​nnoma​
tosis/​175770. Annotated DNA sequencing data from the schwannoma 
cohort are provided in the supplementary data tables. Raw sequencing 
data files are available from the authors upon request.
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